首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the classic organisms used in chronobiological research is the fiddler crab (genus Uca), an animal unique in that it displays both circadian and tidal (i.e., circalunidian) rhythms. The pioneering work on this animal helped produce the early evidence for many of the standard properties now recognized for all circadian rhythms: near temperature independence of the period, phase lability and setability, the light and temperature sensitivity rhythms expressed by phase response curves, and the persistence of rhythms in organs isolated from a multicellular animal. Importantly, results arising from studies of this crab--and a few other organisms--resulted in the development of the exogenous timing hypothesis. While philosophically sound, the lack of supporting evidence for this hypothesis has resulted in it being discarded by most chronobiologists; but while still in its prime, it drew great interest, and therefore grant support, to the field in general, stimulated a great deal of research that otherwise might not have been performed, and resulted in the discovery of environmental stimuli previously unsuspected to influence organisms. As could be expected, continuing work with this crab, using modern approaches and statistical techniques, has modified earlier findings and interpretations, has revealed new properties, and has resulted in the creation of new hypotheses. The review and update is a synthesis of 45 years of this work.  相似文献   

2.
In the not too distant past, it was common belief that rhythms in the physical environment were the driving force, to which organisms responded passively, for the observed daily rhythms in measurable physiological and behavioral variables. The demonstration that this was not the case, but that both plants and animals possess accurate endogenous time-measuring machinery (i.e., circadian clocks) contributed to heightening interest in the study of circadian biological rhythms. In the last few decades, flourishing studies have demonstrated that most organisms have at least one internal circadian timekeeping device that oscillates with a period close to that of the astronomical day (i.e., 24h). To date, many of the physiological mechanisms underlying the control of circadian rhythmicity have been described, while the improvement of molecular biology techniques has permitted extraordinary advancements in our knowledge of the molecular components involved in the machinery underlying the functioning of circadian clocks in many different organisms, man included. In this review, we attempt to summarize our current understanding of the genetic and molecular biology of circadian clocks in cyanobacteria, fungi, insects, and mammals. (Chronobiology International, 17(4), 433–451, 2000)  相似文献   

3.
Circadian (∼24 h) clock regulated biological rhythms have been identified in a wide range of organisms from prokaryotic unicellular cyanobacteria to higher mammals. These rhythms regulate an enormous variety of processes including gene expression, metabolic processes, activity and reproduction. Given the widespread occurrence of circadian systems it is not surprising that extensive efforts have been directed at understanding the adaptive significance of circadian rhythms. In this review we discuss the approaches and findings that have resulted. In studies on organisms in their natural environments, some species show adaptations in their circadian systems that correlate with living at different latitudes, such as clines in circadian clock properties. Additionally, some species show plasticity in their circadian systems suggested to match the demands of their physical and social environment. A number of experiments, both in the field and in the laboratory, have examined the effects of having a circadian system that does not resonate with the organism's environment. We conclude that the results of these studies suggest that having a circadian system that matches the oscillating environment is adaptive.  相似文献   

4.
《Journal of Physiology》2013,107(4):298-309
Biological rhythms are crucial phenomena that are perfect examples of the adaptation of organisms to their environment. A considerable amount of work has described different types of biological rhythms (from circadian to ultradian), individual differences in their patterns and the complexity of their regulation. In particular, the regulation and maturation of the sleep–wake cycle have been thoroughly studied. Its desynchronization, both endogenous and exogenous, is now well understood, as are its consequences for cognitive impairments and health problems. From a completely different perspective, psychoanalysts have shown a growing interest in the rhythms of psychic life. This interest extends beyond the original focus of psychoanalysis on dreams and the sleep–wake cycle, incorporating central theoretical and practical psychoanalytic issues related to the core functioning of the psychic life: the rhythmic structures of drive dynamics, intersubjective developmental processes and psychic containment functions. Psychopathological and biological approaches to the study of infantile autism reveal the importance of specific biological and psychological rhythmic disturbances in this disorder. Considering data and hypotheses from both perspectives, this paper proposes an integrative approach to the study of these rhythmic disturbances and offers an etiopathogenic hypothesis based on this integrative approach.  相似文献   

5.
Laposky AD  Bass J  Kohsaka A  Turek FW 《FEBS letters》2008,582(1):142-151
In this review, we present evidence from human and animal studies to evaluate the hypothesis that sleep and circadian rhythms have direct impacts on energy metabolism, and represent important mechanisms underlying the major health epidemics of obesity and diabetes. The first part of this review will focus on studies that support the idea that sleep loss and obesity are "interacting epidemics." The second part will discuss recent evidence that the circadian clock system plays a fundamental role in energy metabolism at both the behavioral and molecular levels. These lines of research must be seen as in their infancy, but nevertheless, have provided a conceptual and experimental framework that potentially has great importance for understanding metabolic health and disease.  相似文献   

6.
7.
Discoveries first published in 1986 did not fit the de rigueur working hypothesis that the clocks governing tide-associated rhythms had a fundamental period of 12.4 h, a value equal to the average interval between successive tides on most coastlines of the world. To explain the results a dual-clock schema was fashioned that envisioned two clocks, strongly coupled together 180° antiphase, each running at a basic rate of 24.8 h (the interval of a lunar day), as the driving agents of tide-associated rhythms (details are given in the text). This elaboration has been named the circalunidian-clock hypothesis, a hypocorism used in some armchair ruminations back in 1973. In the decade since 1986, a goodly amount of evidence has been garnered that is consistent with this hypothesis—suggesting that first-call divination appears to have been visionary. Acceptance of this hypothesis leads to further cerebration that a 24.8-h clock, its circa periods in constant conditions, and other properties—which fully overlap with our perception of the circadian clock that drives daily rhythms—may indicate that circadian and circalunidan timepieces are not different entities. The known properties of both daily and lunar clock-types are compared and contrasted, and, with the exception of one feature (for which there is at least a philosophical explanation), it is concluded that the same clock that drives tidal rhythms could also motor daily rhythms, i.e., there may be no such thing as a 12.4-h horologue.  相似文献   

8.
In passerine birds, the periodic secretion of melatonin by the pineal organ represents an important component of the pacemaker that controls overt circadian functions. The daily phase of low melatonin secretion generally coincides with the phase of intense activity, but the precise relationship between the melatonin and the behavioral rhythms has not been studied. Therefore, we investigated in European starlings (Sturnus vulgaris) (1) the temporal relationship between the circadian plasma melatonin rhythm and the rhythms in locomotor activity and feeding; (2) the persistence of the melatonin rhythm in constant conditions; and (3) the effects of light intensity on synchronized and free-running melatonin and behavioral rhythms. There was a marked rhythm in plasma melatonin with high levels at night and/or the inactive phase of the behavioral cycles in almost all birds. Like the behavioral rhythms, the melatonin rhythm persisted for at least 50 days in constant dim light. In the synchronized state, higher daytime light intensity resulted in more tightly synchronized rhythms and a delayed melatonin peak. While all three rhythms usually assumed a rather constant phase relationship to each other, in one bird the two behavioral rhythms dissociated from each other. In this case, the melatonin rhythm retained the appropriate phase relationship with the feeding rhythm. Accepted: 10 December 1999  相似文献   

9.
Summary In higher organisms, many physiological and behavioral functions exhibit daily variations, generated by endogenous circadian oscillators. It is not yet clear whether all the various rhythms that occur within an individual depend on one and the same pacemaker or whether different pacemakers are involved. To examine this question, the feeding and perch-hopping rhythms were measured in European starlings (Sturnus vulgaris) under light-dark cycles and continuous dim light. In dim light, the internal phase relationship between the feeding and perch-hopping rhythms changed systematically as a function of the circadian period, and the two rhythms could even dissociate and show different circadian periods in individuals with extremely long or extremely short circadian periods. Moreover, in some birds kept on lowamplitude light-dark cycles, the rhythm of feeding was synchronized 180° out of phase with the rhythm of locomotor activity. These results strongly suggest that in the European starling the feeding and locomotor activity rhythms are controlled by separate circadian pacemakers.  相似文献   

10.
Abstract

To test the hypothesis that an oscillator located outside the suprachiasmatic nuclei (SCN) controls the circadian rhythm of body temperature, we conducted a study with 14 blinded rats, 10 of which receiving a SCN lesion. Body temperature was automatically and continuously recorded for about one month by intraperitoneal radio transmitters. Food intake, drinking and locomotor activity were also recorded. Periodograms revealed that 3 rats with histologically verified total bilateral SCN lesions did not exhibit any circadian rhythmicity. The 7 other rats appeared to have partial lesions. They showed shortening of period and severe amplitude reduction in all functions. Thus, no support was found for the hypothesis of a separate circadian ‘temperature oscillator’ located outside the SCN. Nevertheless, after large partial lesions body temperature showed more persistency than some of the other behavioral rhythms.

Ultradian rhythms in temperature persisted after partial and total lesions. Other functions showed parallel ultradian rhythms. In intact rats the ultradian peaks were restricted predominantly to the subjective night. After total lesions these peaks became more or less homogeneously distributed in time but more heterogeneously after partial lesions. So the SCN plays a role in the temporal structure of ultradian rhythms but does not generate them. Non‐24‐hour actograms showed instabilities of period and phase of ultradian rhythms. Intact and lesioned rats were similar with respect to the mean (about 3.5 hrs) and standard deviation (about 1.5 hrs) of ultradian periods in temperature. These features indicate that a mechanism outside the SCN is underlying ultradian rhythmicity, capable of generating short‐term oscillations. Two approaches, homeostatic sleep‐wake relaxation oscillations and multiple circadian oscillators, are discussed.  相似文献   

11.
Circadian rhythms are believed to be an evolutionary adaptation to daily environmental cycles resulting from Earth's rotation about its axis. A trait evolved through a process of natural selection is considered as adaptation; therefore, rigorous demonstration of adaptation requires evidence suggesting evolution of a trait by natural selection. Like any other adaptive trait, circadian rhythms are believed to be advantageous to living beings through some perceived function. Circadian rhythms are thought to confer advantage to their owners through scheduling of biological functions at appropriate time of daily environmental cycle (extrinsic advantage), coordination of internal physiology (intrinsic advantage), and through their role in responses to seasonal changes. So far, the adaptive value of circadian rhythms has been tested in several studies and evidence indeed suggests that they confer advantage to their owners. In this review, we have discussed the background for development of the framework currently used to test the hypothesis of adaptive significance of circadian rhythms. Critical examination of evidence reveals that there are several lacunae in our understanding of circadian rhythms as adaptation. Although it is well known that demonstrating a given trait as adaptation (or setting the necessary criteria) is not a trivial task, here we recommend some of the basic criteria and suggest the nature of evidence required to comprehensively understand circadian rhythms as adaptation. Thus, we hope to create some awareness that may benefit future studies in this direction. (Author correspondence: or )  相似文献   

12.
In the not too distant past, it was common belief that rhythms in the physical environment were the driving force, to which organisms responded passively, for the observed daily rhythms in measurable physiological and behavioral variables. The demonstration that this was not the case, but that both plants and animals possess accurate endogenous time-measuring machinery (i.e., circadian clocks) contributed to heightening interest in the study of circadian biological rhythms. In the last few decades, flourishing studies have demonstrated that most organisms have at least one internal circadian timekeeping device that oscillates with a period close to that of the astronomical day (i.e., 24h). To date, many of the physiological mechanisms underlying the control of circadian rhythmicity have been described, while the improvement of molecular biology techniques has permitted extraordinary advancements in our knowledge of the molecular components involved in the machinery underlying the functioning of circadian clocks in many different organisms, man included. In this review, we attempt to summarize our current understanding of the genetic and molecular biology of circadian clocks in cyanobacteria, fungi, insects, and mammals. (Chronobiology International, 17(4), 433-451, 2000)  相似文献   

13.
1. A great number of vital processes are rhythmic and the rhythms quite often persist in constant conditions. The best-known rhythms are circadian; much less is known about circalunadian rhythms, and this review was prepared in an attempt to rectify this deficiency. All through the article comparisons are drawn between circalunadian and circacian rhythms. 2. Activity rhythms. (a) The activity patterns of 28 intertidal animals are discussed. All describe a periodicity with a basic component of 24.8 hours, and this approximate period persists in the laboratory in constant light and temperature and in the absence of the tides. The duration of persistence ranges from a few cycles to months, and is a function of the species studied, the conditions imposed, and individual tenacity. (b) In those few cases where relatively long-term observations have been made, there is a trend for the period of the rhythm to become circatidal, or better, circalunadian. (c) The ‘desired’ phase relationship between rhythm and tidal cycle is species-specific. Geographical translocation experiments have shown that the phase is set by the local tides. (d) In some cases the amplitude of the persistent rhythm mimics the semidiurnal inequality of the tides. (e) In about a third of the species discussed, a circadian component has been found combined with the tidal component. Many of the other studies were of such short duration that a low-amplitude circadian component would have gone unnoticed. (f) The tidal rhythm is innate. However, the rhythm is (i) sometimes lacking in organisms living in non-tidal habitats, or (ii) fades after a spell of incarceration in constant conditions. Various treatments — some aperiodic — can induce the expression of the missing tidal rhythm. (g) In the green crab, removal of the eyestalks destroys the activity rhythm. 3. Vertical migration rhythms. (a) A rather surprisingly large number of intertidal animals have been found to undergo migration rhythms between the upper layers of the substratum and its surface. The movements are synchronized with the tides in nature, but most species have either been shown to be diurnal in constant conditions, or in cases where adequate testing has not been done, suspected of being so. (b) In only one species has confirming work shown that the fundamental frequency is truly tidal. This finding is especially important as it shows that tidal rhythms need only the single-cell level of organization for expression. Even at this level there appears to be a dictatorial override by a circadian clock. 4. Colour change. Low-amplitude tidal rhythms in colour change — superimposed on a more dominant circadian change — have been reported to be intrinsic in four species and inducible in a fifth. 5. Oxygen consumption. Tidal rhythms in oxygen consumption have been described for seven invertebrates and one alga; six of the species have superimposed solar-day rhythmic components also. 6. Translocation. A total of five geographical translocation experiments, in which the organisms were maintained in constant conditions throughout, have been tried. Unequivocally in one case, and possibly in a second, the test organisms rephased spontaneously to the times commensurate with local tidal conditions. In two other cases, the pretranslocation phase was retained. The fifth experiment has not been reproducible. 7. Determination of phase. (a) The tidal cycle on the home shoreline sets the phase of the inhabitant's rhythms. Even the location of a crab's burrow on the beach incline can play a determining role. (b) Paradoxically, the periodic wetting by inundation is not an important entraining factor for most intertidal organisms. Instead, the effective portions of the tidal cycle include one or more of the following. (i) Mechanical agitation, especially for animals living in an uprush zone where they are periodically subjected to the pounding surf, (ii) Temperature cycles, though they have not yet been systematically investigated, have very pronounced entraining roles in crabs. (iii) Pressure is probably not a generally important entraining agent for most intertidal organisms, but it is so for the green crab. (c) Light-dark cycles in general, whether daily or tidal in length, have no effect on the entrainment or phase setting of many tidal rhythms. There are two exceptions: (i) a 24-hour light-dark cycle is known to keep a tidal locomotor rhythm (one that becomes circalunadian in constant conditions) at a strict tidal frequency. (ii) In rhythms with both daily and tidal components, when the former is shifted by light stimuli, the latter is affected in a nearly identical manner. 8. Temperature. (a) The role of temperature on tidal rhythms is compared with its role on circadian rhythms. (b) The effects of different constant temperatures have so far been studied on only four tidal rhythms. All studies indicate a lack of any permanent change in period, which is not so with most circadian rhythms; the latter having temperature coefficients around 1.1. In two of the studies the rhythms under test temperatures were followed for less than a day, and a third study cannot be repeated. (c) Short exposure to very cold temperature pulses produced a response that may be interpreted as a temporary stoppage of the clock. Exposure to relatively less-cold pulses appear simply to reset the hands of the clock. The same responses have been demonstrated with circadian rhythms. (d) In the case of green crabs, which had become arrhythmic during prolongued captivity in the laboratory, a tidal rhythm could be reinitiated by a single short cold treatment. The cold pulse also set the phase of the rhythm. (e) A few superficial studies employing temperature steps or pulses have produced results which suggest that a phase-change sensitivity rhythm — just like that found associated with circadian rhythms — may underlie tidal rhythms. Certainly a determined search for this rhythm should be made in the near future. 9. Clock control of rhythms. (a) An argument is constructed claiming that tidal rhythms have a basic period of about 24–8 hours rather than the more expected tidal interval of 12.4 hours. In constant conditions, a circalunadian period is usually displayed. (b) After speculating that a frequency-transforming coupler may function between the clock and the overt rhythm, reasons are given that lead to the further speculation that both circadian and circalunadian rhythms could be generated by a single clock, via specific coupling mechanisms. (c) Two current hypotheses concerning the nature of the clockworks are reviewed and discussed. (d) Suggestions are made for future investigations.  相似文献   

14.
Seasonal Affective Disorder (SAD) is a condition of regularly occurring depressions in winter with a remission the following spring or summer. In addition to depressed mood, the patients tend to experience increased appetite and an increased duration of sleep during the winter. SAD is a relatively common condition, affecting 1–3% of adults in temperate climates, and it is more prevalent in women.

The pathological mechanisms underlying SAD are incompletely understood. Certain neurotransmitters have been implicated; a dysfunction in the serotonin system in particular has been demonstrated by a variety of approaches. The role of circadian rhythms in SAD needs to be clarified. The phase-delay hypothesis holds that SAD patients' circadian rhythms are delayed relative to the sleep/wake or rest/activity cycle. This hypothesis predicts that the symptoms of SAD will improve if the circadian rhythms can be phase-advanced. There is some experimental support for this.

SAD can be treated successfully with light therapy. In classical light therapy, the SAD sufferer sits in front of a light box, exposed to 2000–10,000 lux for 30–120min daily during the winter. Other forms of light treatments, pharmacotherapy, and other therapies are currently being tested for SAD.  相似文献   

15.
Discoveries first published in 1986 did not fit the de rigueur working hypothesis that the clocks governing tide-associated rhythms had a fundamental period of 12.4 h, a value equal to the average interval between successive tides on most coastlines of the world. To explain the results a dual-clock schema was fashioned that envisioned two clocks, strongly coupled together 180° antiphase, each running at a basic rate of 24.8 h (the interval of a lunar day), as the driving agents of tide-associated rhythms (details are given in the text). This elaboration has been named the circalunidian-clock hypothesis, a hypocorism used in some armchair ruminations back in 1973. In the decade since 1986, a goodly amount of evidence has been garnered that is consistent with this hypothesis—suggesting that first-call divination appears to have been visionary. Acceptance of this hypothesis leads to further cerebration that a 24.8-h clock, its circa periods in constant conditions, and other properties—which fully overlap with our perception of the circadian clock that drives daily rhythms—may indicate that circadian and circalunidan timepieces are not different entities. The known properties of both daily and lunar clock-types are compared and contrasted, and, with the exception of one feature (for which there is at least a philosophical explanation), it is concluded that the same clock that drives tidal rhythms could also motor daily rhythms, i.e., there may be no such thing as a 12.4-h horologue.  相似文献   

16.
The estimation of human circadian rhythms from experimental data is complicated by the presence of “masking” effects associated with the sleep-wake cycle. The observed rhythm may include a component due to masking, as well as the endogenous component linked to a circadian pacemaker. In situations where the relationship between the sleep-wake cycle and the circadian rhythm is not constant, it may be possible to obtain individual estimates of these two components, but methods commonly used for the estimation of circadian rhythms, such as the cosinor analysis, spectral analysis, average waveforms and complex demodulation, have not generally been adapted to identify the modulations that arise from masking. The estimates relate to the observed rhythms, and the amplitudes and acrophases do not necessarily refer to the endogenous rhythm.

In this paper methods are discussed for the separation of circadian and masking effects using regression models that incorporate a sinusoidal circadian variation together with functions of time since sleep and time during sleep. The basic model can be extended to include a time-varying circadian rhythm and estimates are available for the amplitude and phase at a given time, together with their joint confidence intervals and tests for changes in amplitude and acrophase between any two selected times. Modifications of these procedures are discussed to allow for non-sinusoidal circadian rhythms, non-additivity of the circadian and time-since-sleep effects and the breakdown of the usual assumptions concerning the residual errors.

This approach enables systematic masking effects associated with the sleep-wake cycle to be separated from the circadian rhythm, and it has applications to the analysis of data from experiments where the sleep-wake cycle is not synchronized with the circadian rhythm, for example after time-zone transitions or during irregular schedules of work and rest.  相似文献   

17.
Although extraocular light can entrain the circadian rhythms of invertebrates and nonmammalian vertebrates, almost all studies show that the mammalian circadian system can only be affected by light to the eyes. The exception is a recent study by Campbell and Murphy that reported phase shifts in humans to bright light applied with fiber-optic pads behind the knees (popliteal region). We tested whether this extraocular light stimulus could accelerate the entrainment of circadian rhythms to a shift of the sleep schedule, as occurs in shift work or jet lag. In experiment 1, the sleep/dark episodes were delayed 8h from baseline for 2 days, and 3h light exposures were timed to occur before the temperature minimum to help delay circadian rhythms. There were three groups: (1) bright (about 13,000 lux) extraocular light from fiber-optic pads, (2) control (dim light, 10–20 lux), and (3) medium-intensity (about 1000 lux) ocular light from light boxes. In experiment 2, the sleep/dark episodes were inverted, and extraocular light was applied either before the temperature minimum to help delay circadian rhythms or after the temperature minimum to help advance rhythms. Circadian phase markers were the salivary dim light melatonin onset (DLMO) and the rectal temperature minimum. There was no evidence that the popliteal extraocular light had a phase-shifting effect in either experiment. Possible reasons for phase shifts in the Campbell and Murphy study and not the current study include the many differences between the protocols. In the current study, there was substantial sleep deprivation before the extraocular light was applied. There was a large shift in the sleep/dark schedule, rather than allowing subjects to sleep each day from midnight to noon, as in the Campbell and Murphy study. Also, when extraocular light was applied in the current protocol, subjects did not experience a change from sleeping to awake, a change in posture (from lying in bed to sitting in a chair), or a change in ocular light (from dark to dim light). Further research is necessary to determine the conditions under which extraocular light might produce phase shifts in human circadian rhythms. (Chronobiology International, 17(6), 807–826, 2000).  相似文献   

18.
Using both previously published findings and entirely new data, we present evidence in support of the argument that the circadian dysfunction of advancing age in the healthy human is primarily one of failing to transduce the circadian signal from the circadian timing system (CTS) to rhythms “downstream” from the pacemaker rather than one of failing to generate the circadian signal itself. Two downstream rhythms are considered: subjective alertness and objective performance. For subjective alertness, we show that in both normal nychthemeral (24h routine, sleeping at night) and unmasking (36h of constant wakeful bed rest) conditions, advancing age, especially in men, leads to flattening of subjective alertness rhythms, even when circadian temperature rhythms are relatively robust. For objective performance, an unmasking experiment involving manual dexterity, visual search, and visual vigilance tasks was used to demonstrate that the relationship between temperature and performance is strong in the young, but not in older subjects (and especially not in older men). (Chronobiology International, 17(3), 355–368, 2000)  相似文献   

19.
African mole-rats (family: Bathyergidae) are strictly subterranean mammals that reside in extensive networks of underground tunnels. They are rarely, if ever, exposed to light and experience muted temperature ranges. Despite these constant conditions, the presence of a functional circadian clock capable of entraining to external light cues has been reported for a number of species. In this study, we examine a social mole-rat species, Cryptomys hottentotus mahali, to determine if it possesses a functional circadian clock that is capable of perceiving light and ambient temperature cycles, and can integrate these cues into circadian rhythms of locomotor activity and core body temperature. Eight male and eight female, non-reproductive individuals were subjected to six cycles of varying light and temperature regimes. The majority of the individuals displayed daily rhythms of locomotor activity and body temperature that are synchronised to the external light and temperature cycles. Furthermore, endogenous rhythms of both locomotor activity and core body temperature were displayed under constant conditions. Thus, we can conclude that C. h. mahali possesses a functional circadian clock that can integrate external light and temperature cues into circadian rhythms of locomotor activity and core-body temperature.  相似文献   

20.
While much is known about the circadian systems of rodents, chronobiological studies of other mammalian groups have been limited. One of the most extensively studied nonrodent species, both in the laboratory and in the wild, is the European rabbit. The aim of this study was to extend knowledge of the rabbit circadian system by examining its phasic response to light. Twelve Dutch-Himalayan cross rabbits of both sexes were allowed to free-run in constant darkness and then administered 1 h light pulses (1000 lux) at multiple predetermined circadian times. Changes in the phase of the rabbits’ circadian wheel-running rhythms were measured after each light pulse and used to construct a phase–response curve (PRC). The rabbits’ PRC and free-running period (τ) conformed to the empirical regularities reported for other predominantly nocturnal animals, including rodents and predatory marsupials. The results of the study are thus consistent with reports that the rabbit is essentially a nocturnal animal and show that it can entrain to light/dark (LD) cycles via discrete phase shifts. Knowledge about the rabbit’s circadian range of entrainment to LD cycles gained in this study will be useful for examining the putative circadian processes believed to underlie the unusual rhythm of very brief, once-daily nest visits by nursing rabbit mothers and other nursing lagomorphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号