首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of warming rate on mouse embryos frozen and thawed in glycerol   总被引:2,自引:0,他引:2  
Mouse embryos (8-cell) fully equilibrated in 1.5 M-glycerol were cooled slowly (0.5 degrees C/min) to temperatures between - 7.5 and - 80 degrees C before rapid cooling and storage in liquid nitrogen (-196 degrees C). Some embryos survived rapid warming (approximately 500 degrees C/min) irrespective of the temperature at which slow cooling was terminated. However, the highest levels of survival of rapidly warmed embryos were observed when slow cooling was terminated between -25 and -80 degrees C (74-86%). In contrast, high survival (75-86%) was obtained after slow warming (approximately 2 degrees C/min) only when slow cooling was continued to -55 degrees C or below before transfer into liquid N2. Injury to embryos cooled slowly to -30 degrees C and then rapidly to -196 degrees C occurred only when slow warming (approximately 2 degrees C/min) was continued to -60 degrees C or above. Parallel cryomicroscopical observations indicated that embryos became dehydrated during slow cooling to -30 degrees C and did not freeze intracellularly during subsequent rapid cooling (approximately 250 degrees C/min) to -150 degrees C. During slow warming (2 degrees C/min), however, intracellular ice appeared at a temperature between -70 and -65 degrees C and melted when warming was continued to -30 degrees C. Intracellular freezing was not observed during rapid warming (250 degrees C/min) or during slow warming when slow cooling had been continued to -65 degrees C. These results indicate that glycerol provides superior or equal protection when compared to dimethyl sulphoxide against the deleterious effects of freezing and thawing.  相似文献   

2.
Successful cryopreservation demands there be little or no intracellular ice. One procedure is classical slow equilibrium freezing, and it has been successful in many cases. However, for some important cell types, including some mammalian oocytes, it has not. For the latter, there are increasing attempts to cryopreserve them by vitrification. However, even if intracellular ice formation (IIF) is prevented during cooling, it can still occur during the warming of a vitrified sample. Here, we examine two aspects of this occurrence in mouse oocytes. One took place in oocytes that were partly dehydrated by an initial hold for 12 min at -25 degrees C. They were then cooled rapidly to -70 degrees C and warmed slowly, or they were warmed rapidly to intermediate temperatures and held. These oocytes underwent no IIF during cooling but blackened from IIF during warming. The blackening rate increased about 5-fold for each five-degree rise in temperature. Upon thawing, they were dead. The second aspect involved oocytes that had been vitrified by cooling to -196 degrees C while suspended in a concentrated solution of cryoprotectants and warmed at rates ranging from 140 degrees C/min to 3300 degrees C/min. Survivals after warming at 140 degrees C/min and 250 degrees C/min were low (<30%). Survivals after warming at > or =2200 degrees C/min were high (80%). When warmed slowly, they were killed, apparently by the recrystallization of previously formed small internal ice crystals. The similarities and differences in the consequences of the two types of freezing are discussed.  相似文献   

3.
Hochi S  Semple E  Leibo SP 《Theriogenology》1996,46(5):837-847
The effect of cooling and warming rates during cryopreservation on subsequent embryo survival was studied in 607 bovine morulae and 595 blastocysts produced by in vitro maturation, fertilization and culture (IVM/IVF/IVC). Morulae and blastocysts were prepared by co-culturing presumptive zygotes with bovine oviductal epithelial cells (BOEC) in serum-free TCM199 medium for 6 and 7 d, respectively. The embryos in 1.5 M ethylene glycol in plastic straws were seeded at -7 degrees C, cooled to -35 degrees C at each of 5 rates (0.3 degrees, 0.6 degrees , 0.9 degrees, 1.2 degrees, or 1.5 degrees C/min) and then immediately plunged into liquid nitrogen. The frozen embryos were warmed either rapidly in a 35 degrees C water bath (warming rate > 1,000 degrees C/min) or slowly in 25 degrees to 28 degrees C air (< 250 degrees C/mm). With rapid warming, 42.1% of the morulae that had been cooled at 0.3 degrees C/min developed into hatching blastocysts. The proportions of rapidly wanned morulae that hatched decreased with increasing cooling rates (30.4, 19.0, 15.8 and 8.9% at 0.6 degrees , 0.9 degrees, 1.2 degrees and 1.5 degrees C/min, respectively). With slow warming 25.9% of the morulae that had been cooled at 0.3 degrees C/min developed into hatching blastocysts, while <10% of the morulae that had been cooled faster developed. The hatching rate of blastocysts cooled at 0.3 degrees C/min and warmed rapidly (96.3%) was higher than those cooled at 06 degrees and 0.9 degrees C/min (82.7 and 84.6%, respectively), and was also significantly higher than those warmed slowly after cooling at 0.3 degrees, 0.6 degrees or 0.9 degrees C/min (69.1, 56.6 and 51.8%, respectively). Cooling blastocysts at 1.2 degrees or 1.5 degrees C/min resulted in lowered hatching rates either with rapid (71.2 or 66 0%) or slow warming (38.2 or 38.9%). These results indicate that the survival of in vitro-produced bovine morulae and blastocysts is improved by very slow cooling during 2-step freezing, nevertheless, slow warming appears to cause injuries to morulae and blastocysts even after very slow cooling.  相似文献   

4.
Vitrification of human monocytes   总被引:2,自引:1,他引:1  
Human monocytes purified from peripheral blood by counterflow centrifugal elutriation were cryopreserved in a vitreous state at 1 atm pressure. The vitrification solution was Hanks' balanced salt solution (HBSS) containing (w/v) 20.5% Me2SO, 15.5% acetamide, 10% propylene glycol, and 6% polyethylene glycol. Fifteen milliliters of this solution was added dropwise to 1 ml of a concentrated monocyte suspension at 0 degrees C. Of this, 0.8 ml was drawn into silicone tubing and rapidly cooled to liquid nitrogen temperature, stored for various periods, and rapidly warmed in an ice bath. The vitrification solution was removed by slow addition of HBSS containing 20% fetal calf serum. The numerical cell recovery was about 92% and most of these retained normal phagocytic and chemotactic ability. Differential scanning calorimeter records of the solution show a glass transition at -115 degrees C during cooling and warming, but no evidence of ice formation during cooling. Devitrification occurs at about -70 degrees C during warming at rates as rapid as 80 degrees C/min. The amount of devitrification is dependent upon the warming rate. Freeze-fracture freeze-etch electron microscope observations revealed no ice either intra- or extracellularly in samples rapidly cooled to liquid nitrogen temperatures except for small amounts in some cellular organelles. However, if these cell suspensions were warmed rapidly to -70 degrees C and then held for 5 min, allowing devitrification to occur, the preparation contained significant amounts of both intra- and extracellular ice. Biological data showed that this devitrification was associated with severe loss of cell function.  相似文献   

5.
The effect of the rate of rewarming on the survival of 8-cell mouse embryos and blastocysts was examined. The samples were slowly cooled (0.3--0.6 degrees C/min) in 1.5 M-DMSO to temperatures between -10 and -80 degrees C before direct transfer to liquid nitrogen (-196 degrees C). Embryos survived rapid thawing (275--500 degrees C/min) only when slow cooling was terminated at relatively high subzero temperatures (-10 to -50 degrees C). The highest levels of survival in vitro of rapidly thawed 8-cell embryos were obtained after transfer to -196 degrees C from -35 and -40 degrees C (72 to 88%) and of rapidly thawed blastocysts after transfer from -25 to -50 degrees C (69 to 74%). By contrast, for embryos to survive slow thawing (8 to 20 degrees C/min) slow cooling to lower subzero temperatures (-60 degrees C and below) was required before transfer to -196 degrees C. The results indicate that embryos transferred to -196 degrees C from high subzero temperatures contain sufficient intracellular ice to damage them during slow warming but to permit survival after rapid warming. Survival of embryos after rapid dilution of DMSO at room temperature was similar to that after slow (stepwise) dilution at 0 degrees C. There was no difference between the viability of rapidly and slowly thawed embryos after transfer to pseudopregnant foster mothers. It is concluded that the behaviour of mammalian embryos subjected to the stresses of freezing and thawing is similar to that of other mammalian cells. A simpler and quicker method for the preservation of mouse embryos is described.  相似文献   

6.
A three-part, coupled model of cell dehydration, nucleation, and crystal growth was used to study intracellular ice formation (IIF) in cultured hepatocytes frozen in the presence of dimethyl sulfoxide (DMSO). Heterogeneous nucleation temperatures were predicted as a function of DMSO concentration and were in good agreement with experimental data. Simulated freezing protocols correctly predicted and explained experimentally observed effects of cooling rate, warming rate, and storage temperature on hepatocyte function. For cells cooled to -40 degrees C, no IIF occurred for cooling rates less than 10 degrees C/min. IIF did occur at faster cooling rates, and the predicted volume of intracellular ice increased with increasing cooling rate. Cells cooled at 5 degrees C/min to -80 degrees C were shown to undergo nucleation at -46.8 degrees C, with the consequence that storage temperatures above this value resulted in high viability independent of warming rate, whereas colder storage temperatures resulted in cell injury for slow warming rates. Cell damage correlated positively with predicted intracellular ice volume, and an upper limit for the critical ice content was estimated to be 3.7% of the isotonic water content. The power of the model was limited by difficulties in estimating the cytosol viscosity and membrane permeability as functions of DMSO concentration at low temperatures.  相似文献   

7.
Rall WF  Meyer TK 《Theriogenology》1989,31(3):683-692
Although fracture damage to the zonae pellucidae and blastomeres is frequently observed after the cryopreservation of mammalian embryos, little is known of the mechanism by which this occurs. The incidence of damage to zonae was measured when bovine ova with normal zonae were frozen in straws or glass test tubes by standard embryo cryopreservation procedures that yield high rates of survival. Ova were examined for zona damage after warming by procedures that ought to produce little or no thermal stress (slow warming in 20 degrees C air) or high levels of stress (rapid warming in liquid baths). Ova frozen in straws exhibited no zona damage after slow warming at 150 degrees C/min in air (n = 206). However, the incidence of zona damage increased when the straws were warmed rapidly in 20 degrees C (n = 157) or 36 degrees C (n = 159) water (17 and 24%, respectively). Ova in straws warmed rapidly in nonaqueous liquids (ethylene glycol, or silicone oil) exhibited lower rates of zona damage (2 to 5%). Ova frozen in glass tubes exhibited a much higher incidence of zona damage than those frozen in straws, regardless of the warming conditions. Thus, 30% of 114 ova exhibited damage when tubes were warmed slowly at 25 degrees C/min in air, while 54% of 98 ova showed zona damage when tubes were warmed rapidly at 500 degrees C/min in 36 degrees C water. These results are consistent with the view that zona damage is associated with thermally-induced fracturing of the suspension during rapid changes of temperature.  相似文献   

8.
We have previously reported high survival in mouse sperm frozen at 21 degrees C/min to -70 degrees C in a solution containing 18% raffinose in 0.25 x PBS (400 mOsm) and then warmed rapidly at approximately 2000 degrees C/min, especially under lowered oxygen tensions induced by Oxyrase, a bacterial membrane preparation. The best survival rates were obtained in the absence of glycerol. The first concern of the present study was to determine the effects of the cooling rate on the survival of sperm suspended in this medium. The sperm were cooled to -70 degrees C at rates ranging from 0.3 to 530 degrees C/min. The survival curve was an inverted "U" shape, with the highest motility occurring between 27 and 130 degrees C/min. Survival decreased precipitously at higher cooling rates. Decreasing the warming rate, however, decreased survivals at all cooling rates. The motility depression with slow warming was especially evident in sperm cooled at the optimal rates. This fact is consistent with our current view that the frozen medium surrounding sperm cells is in a metastable state, perhaps partly vitrified as a result of the high concentrations of sugar. The decimation of sperm cooled more rapidly than optimum (>130 degrees C/min), even with rapid warming, is consistent with the induction of considerable quantities of intracellular ice at these rates. When glycerol was added to the above medium, motilities were also dependent on the cooling rate, but they tended to be substantially lower than those obtained in the absence of glycerol. The minimum temperature in the above experiments was -70 degrees C. When sperm were frozen to -70 degrees C at optimum rates, lowering the temperature to -196 degrees C had no adverse effect.  相似文献   

9.
Liu XH  Zhang T  Rawson DM 《Theriogenology》2001,55(8):1719-1731
High chilling sensitivity is one of the main obstacles to successful cryopreservation of zebrafish embryos. So far the nature of the chilling injury in fish embryos has not been clear. The aim of this study is to investigate the effect of cooling rate and partial removal of yolk on chilling injury in zebrafish embryos. Zebrafish embryos at 64-cell, 50%-epiboly, 6-somite and prim-6 stages were cooled to either 0 degrees C or -5 degrees C at three different cooling rates: slow (0.3 degrees C/min or 1 degree C/min), moderate (30 degrees C/min), and rapid (approximately 300 degrees C/min). After chilling, embryos were warmed in a 26 degrees C water bath, followed by 3-day culturing in EM at 26 +/- 1 degrees C for survival assessment. When embryos were cooled to 0 degrees C for up to 30 min, 64-cell embryos had higher survival after rapid cooling than when they were cooled at a slower rate. When 64-cell embryos were held at -5 degrees C for 1 min, their survival decreased greatly after both slow and rapid cooling. The effect of cooling rate on the survival of 50%-epiboly and 6-somite embryos was not significant after 1 h exposure at 0 degrees C and 1 min exposure at -5 degrees C. However, rapid cooling resulted in significantly lower embryo survival than a cooling rate of 30 degrees C/min or 1 degree C/min after 1 h exposure to 0 degrees C for prim-6 stage or 1 h exposure to -5 degrees C for all stages. Chilling injury in 64-cell embryos appears to be a consequence of exposure time at low temperatures rather than a consequence of rapid cooling. Results also indicate that chilling injury in later stage embryos (50%-epiboly, 6-somite and prim-6) is a consequence of the combination of rapid cooling and exposure time at low temperatures. Dechorionated prim-6 embryos were punctured and about half of yolk was removed. After 24 h culture at 26 +/- 1 degrees C after removal of yolk, the yolk-reduced embryos showed higher embryo survival than did control embryos after rapid cooling to -5 degrees C for 10 to 60 min. Results suggest that cold shock injury after rapid cooling can be mitigated after partial removal of yolk at the prim-6 stage. These findings help us to understand the nature of chilling sensitivity of fish embryos and to develop protocols for their cryopreservation.  相似文献   

10.
Freeze-thawing cat sperm in cryoprotectant results in extensive membrane damage. To determine whether cooling alone influences sperm structure and viability, we compared the effect of cooling rate on sperm from normospermic (N; > 60% normal sperm per ejaculate) and teratospermic (T; < 40% normal sperm per ejaculate) domestic cats. Electroejaculates were divided into raw or washed (Ham's F-10 + 5% fetal calf serum) aliquots, with the latter resuspended in Ham's F-10 medium or Platz Diluent Variant Filtered without glycerol (20% egg yolk, 11% lactose). Aliquots were 1) maintained at 25 degrees C (no cooling; control), 2) cooled to 5 degrees C in a commercial refrigerator for 30 min (rapid cooling; approximately 4 degrees C/min), 3) placed in an ice slush at 0 degrees C for 10 min (ultrarapid cooling; approximately 14 degrees C/min), or 4) cooled to 0 degrees C at 0.5 degrees C/min in a programmable alcohol bath (slow cooling); and aliquots were removed every 4 degrees C. All samples then were warmed to 25 degrees C and evaluated for percentage sperm motility and the proportion of intact acrosomes using a fluorescein-conjugated peanut agglutinin stain. In both cat populations, sperm percentage motility remained unaffected (p > 0.05) immediately after exposure to low temperatures and after warming to 25 degrees C. However, the proportion of spermatozoa with intact acrosomes declined (p < 0.05) after rapid cooling ( approximately 4 degrees C/min) to 5 degrees C (N, 65.6%; T, 27.5%) or ultrarapid cooling ( approximately 14 degrees C/min) to 0 degrees C (N, 62.1%; T, 23.0%) in comparison to the control value (N, 81.5%; T, 77.5%). Transmission electron microscopy of cooled sperm revealed extensive damage to acrosomal membranes. In contrast, slow cooling (0.5 degrees C/min) to 5 degrees C maintained (p > 0.05) a high proportion of spermatozoa with intact acrosomes (N, 75.5%; T, 68.3%), which also remained similar (p > 0.05) between cat populations (N, 64.7%; T, 56.8%) through continued cooling to 0 degrees C. Results demonstrate that 1) rapid cooling of domestic cat sperm induces significant acrosomal damage without altering sperm motility, 2) spermatozoa from teratospermic males are more susceptible to cold-induced acrosomal damage than normospermic counterparts, and 3) reducing the rate of initial cooling markedly decreases sperm structural damage.  相似文献   

11.
P Mazur 《Cell biophysics》1990,17(1):53-92
The first successful freezing of early embryos to -196 degrees C in 1972 required that they be cooled slowly at approximately 1 degree C/min to about -70 degrees C. Subsequent observations and physical/chemical analyses indicate that embryos cooled at that rate dehydrate sufficiently to maintain the chemical potential of their intracellular water close to that of the water in the partly frozen extracellular solution. Consequently, such slow freezing is referred to as equilibrium freezing. In 1972 and since, a number of investigators have studied the responses of embryos to departures from equilibrium freezing. When disequilibrium is achieved by the use of higher constant cooling rates to -70 degrees C, the results is usually intracellular ice formation and embryo death. That result is quantitatively in accord with the predictions of the physical/chemical analysis of the kinetics of water loss as a function of cooling rate. However, other procedures involving rapid nonequilibrium cooling do not result in high mortality. One common element in these other nonequilibrium procedures is that, before the temperature has dropped to a level that permits intracellular ice formation, the embryo water content is reduced to the point at which the subsequent rapid nonequilibrium cooling results in either the formation of small innocuous intracellular ice crystals or the conversion of the intracellular solution into a glass. In both cases, high survival requires that subsequent warming be rapid, to prevent recrystallization or devitrification. The physical/chemical analysis developed for initially nondehydrated cells appears generally applicable to these other nonequilibrium procedures as well.  相似文献   

12.
The occurrence of intracellular ice formation (IIF) during freezing, or the lack there of, is the single most important factor determining whether or not cells survive cryopreservation. One important determinant of IIF is the temperature at which a supercooled cell nucleates. To avoid intracellular ice formation, the cell must be cooled slowly enough so that osmotic dehydration eliminates nearly all cell supercooling before reaching that temperature. This report is concerned with factors that determine the nucleation temperature in mouse oocytes. Chief among these is the concentration of cryoprotective additive (here, glycerol or ethylene glycol). The temperature for IIF decreases from -14 degrees C in buffered isotonic saline (PBS) to -41 degrees C in 1M glycerol/PBS and 1.5M ethylene glycol/PBS. The latter rapidly permeates the oocyte; the former does not. The initial extracellular freezing at -3.9 to -7.8 degrees C, depending on the CPA concentration, deforms the cell. In PBS that deformation often leads to IIF; in CPA it does not. The oocytes are surrounded by a zona pellucida. That structure appears to impede the growth of external ice through it, but not to block it. In most cases, IIF is characterized by an abrupt blackening or flashing during cooling. But in some cases, especially with dezonated oocytes, a pale brown veil abruptly forms during cooling followed by slower blackening during warming. Above -30 degrees C, flashing occurs in a fraction of a second. Below -30 degrees C, it commonly occurs much more slowly. We have observed instances where flashing is accompanied by the abrupt ejection of cytoplasm. During freezing, cells lie in unfrozen channels between the growing external ice. From phase diagram data, we have computed the fraction of water and solution that remains unfrozen at the observed flash temperatures and the concentrations of salt and CPA in those channels. The results are somewhat ambiguous as to which of these characteristics best correlates with IIF.  相似文献   

13.
Factors affecting the cryosurvival of mouse two-cell embryos   总被引:1,自引:0,他引:1  
A series of 4 experiments was conducted to examine factors affecting the survival of frozen-thawed 2-cell mouse embryos. Rapid addition of 1.5 M-DMSO (20 min equilibration at 25 degrees C) and immediate, rapid removal using 0.5 M-sucrose did not alter the frequency (mean +/- s.e.m.) of blastocyst development in vitro when compared to untreated controls (90.5 +/- 2.7% vs 95.3 +/- 2.8%). There was an interaction between the temperature at which slow cooling was terminated and thawing rate. Termination of slow cooling (-0.3 degrees C/min) at -40 degrees C with subsequent rapid thawing (approximately 1500 degrees C/min) resulted in a lower frequency of blastocyst development than did termination of slow cooling at -80 degrees C with subsequent slow thawing (+8 degrees C/min) (36.8 +/- 5.6% vs 63.9 +/- 5.7%). When slow cooling was terminated between -40 and -60 degrees C, higher survival rates were achieved with rapid thawing. When slow cooling was terminated below -60 degrees C, higher survival rates were obtained with slow thawing rates. In these comparisons absolute survival rates were highest among embryos cooled below -60 degrees C and thawed slowly. However, when slow cooling was terminated at -32 degrees C, with subsequent rapid warming, survival rates were not different from those obtained when embryos were cooled to -80 degrees C and thawed slowly (52.4 +/- 9.5%, 59.5 +/- 8.6%). These results suggest that optimal cryosurvival rates may be obtained from 2-cell mouse embryos by a rapid or slow thawing procedure, as has been found for mouse preimplantation embryos at later stages.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Mazur P  Pinn IL  Kleinhans FW 《Cryobiology》2007,55(2):158-166
The formation of ice crystals within cells (IIF) is lethal. The classical approach to avoiding it is to cool cells slowly enough so that nearly all their supercooled freezable water leaves the cell osmotically before they have cooled to a temperature that permits IIF. An alternative approach is to cool the cell rapidly to just above its ice nucleation temperature, and hold it there long enough to permit dehydration. Then, the cell is cooled rapidly to -70 degrees C or below. This approach, often called interrupted rapid cooling, is the subject of this paper. Mouse oocytes were suspended in 1.5M ethylene glycol (EG)/PBS, rapidly cooled (50 degrees C/min) to -25 degrees C and held for 5, 10, 20, 30, or 40 min before being rapidly cooled (50 degrees C/min) to -70 degrees C. In cells held for 5 min, IIF (flashing) occurred abruptly during the second rapid cool. As the holding period was increased to 10 and 20 min, fewer cells flashed during the cooling and more turned black during warming. Finally, when the oocytes were held 30 or 40 min, relatively few flashed during either cooling or warming. Immediately upon thawing, these oocytes were highly shrunken and crenated. However, upon warming to 20 degrees C, they regained most of their normal volume, shape, and appearance. These oocytes have intact cell membranes, and we refer to them as survivors. We conclude that 30 min at -25 degrees C removes nearly all intracellular freezable water, the consequence of which is that IIF occurs neither during the subsequent rapid cooling to -70 degrees C nor during warming.  相似文献   

15.
Protective effect of intracellular ice during freezing?   总被引:9,自引:0,他引:9  
Acker JP  McGann LE 《Cryobiology》2003,46(2):197-202
Injury results during freezing when cells are exposed to increasing concentrations of solutes or by the formation of intracellular ice. Methods to protect cells from the damaging effects of freezing have focused on the addition of cryoprotective chemicals and the determination of optimal cooling rates. Based on other studies of innocuous intracellular ice formation, this study investigates the potential for this ice to protect cells from injury during subsequent slow cooling. V-79W Chinese hamster fibroblasts and Madin-Darby Canine Kidney (MDCK) cells were cultured as single attached cells or confluent monolayers. The incidence of intracellular ice formation (IIF) in the cultures at the start of cooling was pre-determined using one of two different extracellular ice nucleation temperatures (-5 or -10 degrees C). Samples were then cooled at 1 degrees C/min to the experimental temperature (-5 to -40 degrees C) where samples were warmed rapidly and cell survival assessed using membrane integrity and metabolic activity. For single attached cells, the lower ice nucleation temperature, corresponding to increased incidence of IIF, resulted in decreased post-thaw cell recovery. In contrast, confluent monolayers in which IIF has been shown to be innocuous, show higher survival after cooling to temperatures as low as -40 degrees C, supporting the concept that intracellular ice confers cryoprotection by preventing cell dehydration during subsequent slow cooling.  相似文献   

16.
Kinetics of intracellular ice formation (IIF) for isolated rat hepatocytes was studied using a cryomicroscopy system. The effect of the cooling rate on IIF was investigated between 20 and 400 degrees C/min in isotonic solution. At 50 degrees C/min and below, none of the hepatocytes underwent IIF; whereas at 150 degrees C/min and above, IIF was observed throughout the entire hepatocyte population. The temperature at which 50% of hepatocytes showed IIF (50TIIF) was almost constant with an average value of -7.7 degrees C. Different behavior was seen in isothermal subzero holding temperatures in the presence of extracellular ice. 50TIIF from isothermal temperature experiments was approximately -5 degrees C as opposed to -7.7 degrees C for constant cooling rate experiments. These experiments clearly demonstrated both the time and temperature dependence of IIF. On the other hand, in cooling experiments in the absence of extracellular ice, IIF was not observed until approximately -20 degrees C (at which temperature the whole suspension was frozen spontaneously) suggesting the involvement of the external ice in the initiation of IIF. The effect of dimethyl sulfoxide (Me2SO) on IIF was also quantified. 50TIIF decreased from -7.7 degrees C in the absence of Me2SO to -16.8 degrees C in 2.0 M Me2SO for a cooling rate of 400 degrees C/min. However, the cooling rate (between 75 and 400 degrees C/min) did not significantly affect 50TIIF (-8.7 degrees C) in 0.5 M Me2SO. These results suggest that multistep protocols will be required for the cryopreservation of hepatocytes.  相似文献   

17.
The purpose of this study was to clarify the relationship of cooling rates (CR) and warming rates (WR) during vitrification with postwarming viability of in vitro-matured bovine oocytes. In Experiment 1, oocytes were vitrified in a solution containing 7.2 M ethylene glycol and 1.0 M sucrose by use of open-pulled glass capillaries with five different outer diameters and were warmed by placement of the capillaries into 0.25 M sucrose solution. The capillaries of 2000-, 1400-, 1000-, 630-, and 440-mm diameters provided CR of 2000, 3000, 5000, 8000, and 12,000 degrees C/min and WR of 5000, 8000, 17,000, 33,000, and 62,000 degrees C/min, respectively. In oocytes vitrified in capillaries of 1400-mm diameter (CR, 3000 degrees C/min; WR, 8000 degrees C/min), the morphological survival rate (86% of vitrified), penetration rate (79% of inseminated), and normal fertilization rate (69% of penetrated) were higher or tended to be higher than those in the other vitrification groups. In Experiment 2, oocytes cooled at 2000, 3000, or 12,000 degrees C/min were warmed at 8000 degrees C/min, and oocytes cooled at 3000 degrees C/min were warmed at 5000, 8000, or 33,000 degrees C/min. Among these CR-WR combinations, cooling of oocytes at 3000 degrees C/min regardless of the WR resulted in higher postwarming survival. These results indicate that survival of in vitro-matured bovine oocytes after vitrification and subsequent warming is improved by a slightly rapid cooling rate in open-pulled glass capillaries compared to that obtained in conventional straws.  相似文献   

18.
Spermatozoa collected from the caudae epididymides of 16 dogs of various breeds were suspended in an isotonic salt solution (DIMI medium) containing 0.6 M glycerol, frozen in liquid nitrogen, and their "survival" was measured after thawing. In the first experimental series, duplicate samples of spermatozoa from each of 11 dogs were cooled at rates of 0.5, 3, 11, 58, or 209 degrees C/min, stored in liquid nitrogen, and the frozen samples warmed at approximately 830 or at 33 degrees C/min. Sperm "survival" was judged by microscopic assessments of motility and of membrane integrity, the latter as assayed with Fertilight, a double fluorescent stain. Motility of frozen spermatozoa that were thawed rapidly, averaged for 11 dogs, was low at low rates, increased to a maximum at 11 degrees C/min, and then decreased significantly at higher rates (P<0.01). This inverted V-shaped curve was also observed with slow thawing, although the apparent optimum cooling rate ranged from 3 to 11 degrees C/min. The integrity of sperm plasma membranes showed a similar dependence on cooling rate, although the percentages of spermatozoa with intact plasma membranes were higher than the percentages of motile spermatozoa. Motility of spermatozoa, as a function of cooling rate, varied considerably from male to male (P<0.01), whereas membrane integrity was much more consistent among the 11 dogs. In the second experimental series with spermatozoa from 5 dogs, motility of spermatozoa frozen at 0.5 degrees C/min and warmed at 3.6, 33, 140, or 830 degrees C/min also exhibited an inverted V-shaped survival curve, in this case as a function of warming rate. In summary, high survival of frozen-thawed canine epididymal spermatozoa depended on both cooling and warming rates, but spermatozoa from each dog exhibited their own sensitivity to cooling and warming rates.  相似文献   

19.
Human spermatozoa were cooled from 37 to 0 degrees C at 10 degrees C min(-1) in 5 degrees C steps with 1 min equilibration at each step, the temperature control was +/- 0.1 degrees C. Spermatozoa were held at 0 degrees C for 5 min and then rewarmed at the same rate. No significant effect of cooling on the straight-line velocity was found using computer-aided semen analysis. The physiological function of spermatozoa was also examined before and after cooling using hypoosmotic swelling, ionophore-provoked acrosome reaction, and binding to fragments of human zonae pellucidae. Spermatozoa were cooled either in seminal plasma or in conventional IVF medium with or without fractionation by centrifugation through a discontinuous Percoll gradient. When spermatozoa were cooled and rewarmed in seminal plasma there was no significant change in either the ionophore-induced acrosome reaction or the binding to zona pellucida fragments. When spermatozoa were fractionated by centrifugation through Percoll an increased response in both was seen. However, following cooling and rewarming, a significant decline in the response of both occurred. We suggest that motility alone is not a reliable predictor of changes in other physiological functions of spermatozoa following cooling. Furthermore, short-term cooling appears to have no significant detrimental effect on normozoospermic samples and cold shock may be avoided in the clinical context by controlled cooling and warming.  相似文献   

20.
To model the cryobiological responses of cells and tissues, permeability characteristics are often measured at suprazero temperatures and the measured values are used to predict the responses at subzero temperatures. The purpose of the present study was to determine whether the rate of cooling from +25 to +4 degrees C influenced the measured water transport response of ovarian tissue at subzero temperatures in the presence or absence of cryoprotective agents (CPAs). Sections of freshly collected equine ovarian tissue were first cooled either at 40 degrees C/min or at 0.5 degrees C/min from 25 to 4 degrees C, and then cooled to subzero temperatures. A shape-independent differential scanning calorimeter (DSC) technique was used to measure the volumetric shrinkage during freezing of equine ovarian tissue sections. After ice was induced to form in the extracellular fluid within the specimen, the sample was frozen from the phase change temperature to -50 degrees C at 5 degrees C/min. Replicate samples were frozen in isotonic medium alone or in medium containing 0.85 M glycerol or 0.85 M dimethylsulfoxide. The water transport response of ovarian tissue samples cooled at 40 degrees C/min from 25 to 4 degrees C was significantly different (confidence level >95%) from that of tissue samples cooled at 0.5 degrees C/min, whether in the presence or absence of CPAs. We fitted a model of water transport to the experimentally-derived volumetric shrinkage data and determined the best-fit membrane permeability parameters (L(pg) and E(Lp)) of equine ovarian tissue during freezing. Subzero water transport parameters of ovarian tissue samples cooled at 0.5 degrees C/min from 25 to 4 degrees C ranged from: L(pg) = 0.06 to 0.73 microm/min.atm and E(Lp) = 6.1 to 20.5 kcal/mol. The corresponding parameters of samples cooled at 40 degrees C/min from 25 to 4 degrees C ranged from: L(pg) = 0.04 to 0.61 microm/min.atm and E(Lp) = 8.2 to 54.2 kcal/mol. Calculations made of the theoretical response of tissue at subzero temperatures suggest that the optimal cooling rates to cryopreserve ovarian tissue are significantly dependent upon suprazero cooling conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号