首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alarm pheromone mediates production of winged dispersal morphs in aphids   总被引:9,自引:0,他引:9  
The aphid alarm pheromone ( E )- β -farnesene (EBF) is the major example of defence communication in the insect world. Released when aphids are attacked by predators such as ladybirds or lacewing larvae, aphid alarm pheromone causes behavioural reactions such as walking or dropping off the host plant. In this paper, we show that the exposure to alarm pheromone also induces aphids to give birth to winged dispersal morphs that leave their host plants. We first demonstrate that the alarm pheromone is the only volatile compound emitted from aphid colonies under predator attack and that emission is proportional to predator activity. We then show that artificial alarm pheromone induces groups of aphids but not single individuals to produce a higher proportion of winged morphs among their offspring. Furthermore, aphids react more strongly to the frequency of pheromone release than the amount of pheromone delivered. We suggest that EBF leads to a 'pseudo crowding' effect whereby alarm pheromone perception causes increased walking behaviour in aphids resulting in an increase in the number of physical contacts between individuals, similar to what happens when aphids are crowded. As many plants also produce EBF, our finding suggests that aphids could be manipulated by plants into leaving their hosts, but they also show that the context-dependence of EBF-induced wing formation may hinder such an exploitation of intraspecific signalling by plants.  相似文献   

2.
Deploying collective antipredator behaviors during periods of increased predation risk is a major determinant of individual fitness for most animal groups. Pea aphids, Acyrthosiphon pisum, which live in aggregations of genetically identical individuals produced via asexual reproduction warn nearby conspecifics of pending attack by secreting a volatile alarm pheromone. This alarm pheromone allows clone‐mates to evade predation by walking away or dropping off the host plant. Here, we test how a single alarm pheromone emission influences colony structure and defensive behavior in this species. Relative to control colonies, groups exposed to alarm pheromone exhibited pronounced escape behavior where many individuals relocated to adjacent leaves on the host plant. Alarm pheromone reception, however, also had subtle instar‐specific effects: The proportion of 1st instars feeding nearest the leaf petiole decreased as these individuals moved to adjacent leaves, while the proportion of 2nd–3rd instars feeding nearest the leaf petiole remained constant. Fourth instars also dispersed to neighboring leaves after pheromone exposure. Lastly, alarm pheromone reception caused maternal aphids to alter their preferred feeding sites in a genotype‐specific manner: Maternal aphids of the green genotype fed further from the petiole, while maternal aphids of the pink genotype fed closer to the petiole. Together, our results suggest that aphid colony responses to alarm pheromone constitute a diversity of nuanced instar‐ and genotype‐specific effects. These behavioral responses can dramatically change the spatial organization of colonies and their collective defensive behavior.  相似文献   

3.
Olfaction is crucial for short distance host location and pheromone detection by insects. Complexes of olfactory receptors (ORs) are composed of odor-specific ORs and OR co-receptors (Orco). Orcos are widely co-expressed with odor-specific ORs and are conserved across insect taxa. A number of Orco orthologs have been studied to date, although none has been identified in cereal aphids. In this study, an Orco gene ortholog was cloned from the grain aphid, Sitobion avenae, and named “SaveOrco”; RNA interference (RNAi) reduced the expression of SaveOrco to 34.11% in aphids, resulting in weaker EAG (electroantennogram) responses to plant volatiles (Z-3-hexene-1-ol; methyl salicylate, MeSA) and aphid alarm pheromone (E-β-farnesene, EBF). Aphid wing differentiation induced by EBF was investigated in both RNAi treated and untreated aphids. EBF induced production of winged aphids in both pre-natal and post-natal periods in untreated aphids, but no such induction was observed in the RNAi-treated aphids. We conclude that SaveOrco is crucial for the aphid's response to pheromones and other volatiles, and is involved in wing differentiation triggered by EBF.  相似文献   

4.
When attacked by natural enemies some insect pests, including many aphid species, alert neighboring conspecifics with alarm pheromones. Cornicle secretions with pheromones benefit the attacked aphid but are costly to produce, while alarm pheromone benefits probably fall largely on alerted conspecifics. Given these variable benefits, the likelihood of a secretion may change depending on aphid density. Thus, we first hypothesized that the common alarm pheromone in aphids, E-ß-farnesene (EBF), was present in soybean aphid (Aphis glycines Matsumura) cornicle secretions and would elicit an alarm response in aphids exposed to it. Second, since aphids other than the secretor also benefit from cornicle secretions, we hypothesized that the likelihood of secretion would increase concurrently with the density of neighboring clonal conspecifics. Third, because alarm reaction behavior (e.g. feeding cessation) is probably costly, we hypothesized that alarm reaction behavior would decrease as conspecific density (i.e. alternative prey for an attacking natural enemy) increased. We found that soybean aphids 1) produce cornicle secretions using EBF as an alarm pheromone, 2) are less likely to release cornicle secretions when alone than in a small group (~10 individuals), but that the rate of secretion does not increase further with additional conspecific density, and 3) also exhibit alarm reaction behavior in response to cornicle secretions independent of aphid density. We show that soybean aphids can use their cornicle secretions to warn their neighbors of probable attack by natural enemies, but that both secretion and alarm reaction behavior does not change as density of nearby conspecifics rises above a few individuals.  相似文献   

5.
1. Winged dispersal is vital for aphids as predation pressure and host plant conditions fluctuate. 2. Ant‐tended aphids also need to disperse, but this may represent a cost for the ants, resulting in an evolutionary conflict of interest over aphid dispersal. 3. The combined effects of aphid alarm pheromone, indicating predation risk, and ant attendance on the production of winged aphids were examined in an experiment with Aphis fabae (Homoptera: Aphididae) (Scopoli 1763) aphids and Lasius niger (Formicidae: Formicinae) (Linné, 1758) ants. 4. This study is the first to investigate the joint effects of alarm pheromone and ant attendance, and also the first to detect an influence of alarm pheromone on the production of winged morphs in A. fabae. 5. After a period of 2 weeks, it was found that aphid colonies exposed to intermittent doses of alarm pheromone produced more winged individuals, whereas ant tending had the opposite effect. The effects were additive on a log scale, and ant attendance had a greater proportional influence than exposure to alarm pheromone. A tentative conclusion is that ants have gained the upper hand in an evolutionary conflict about aphid dispersal.  相似文献   

6.
1. The aphid alarm pheromone (E)‐β‐farnesene (EBF) is often considered to be used by natural enemies as a prey/host finding kairomone. However, studies show opposing results, some appear to confirm an attraction of aphid natural enemies by EBF whereas others do not provide any evidence for the kairomone function of EBF. 2. To clarify if aphid natural enemies are attracted by the amounts of EBF naturally emitted by aphids, the existing literature was reviewed about EBF attractiveness to aphid natural enemies with consideration of the amounts of EBF used in the studies. 3. Thirty‐one publications that investigated the ability of EBF, aphid cornicle secretion, and attacked aphids, to attract aphid natural enemies were found. Several studies showed an attraction by EBF, but these used much higher amounts of EBF than usually emitted by aphids during a predator attack. Studies investigating EBF amounts similar to what is emitted by aphids are rare and failed to show attraction. Only two studies document an attraction of natural enemies by attacked aphids. 4. As EBF is emitted in very low amounts, not very stable, and only present after an attack, we suggest that aphid‐derived EBF is not a suitable kairomone for most natural enemy species, especially when they are able to use alternative cues. As EBF, amongst other volatiles, is also emitted by herbivore‐induced plants, we propose that natural enemies might use plant‐derived EBF as a synomone to identify aphid‐infested plants via an altered plant volatile bouquet.  相似文献   

7.
The response of pea aphids, Acyrthosiphon pisum, to aphid alarm pheromone was not modified by infection with Beauveria bassiana. Approximately 50% of uninfected and infected aphids responded to synthetic alarm pheromone. The simulated attack of aphids infected with B. bassiana did not elicit a response in uninfected aphids. Preliminary air entrainment experiments of both uninfected aphids and aphids at different stages of B. bassiana (generalist pathogen) or P. neoaphidis (obligate pathogen of aphids) demonstrated that B. bassiana infected aphids produced less alarm pheromone than uninfected aphids and, conversely, P. neoaphidis infected aphids produced more alarm pheromone than uninfected aphids. These results are discussed with particular emphasis on the different life history strategies of these two pathogens. We hypothesise that the obligate, specialist pathogen, P. neoaphidis, is under greater selection pressure to increase pathogen transmission and survival resulting in modified host behaviour, than the generalist pathogen, B. bassiana.  相似文献   

8.
Reliable cues of increased predation risk can induce phenotypic changes in an organism’s offspring (i.e. transgenerational phenotypic plasticity). While induction of defensive morphologies in naïve offspring in response to maternal predation risk is widespread, little is known about transgenerational changes in offspring behavior. Here we provide evidence for transgenerational behavioral plasticity in the pea aphid, Acyrthosiphon pisum. When pre-reproductive individuals of two genotypes (“pink” and “green”) were exposed to the alarm pheromone (E)-β-Farnesene (EBF), a reliable cue of increased predation risk, next-generation offspring altered their feeding site choices relative to the location of the maternal aphids. Offspring of EBF-treated aphids occupied “safer” feeding sites: green offspring occupied “safer” feeding sites in the natal colony, while pink offspring dispersed to occupy sites on neighboring plant leaves.  相似文献   

9.
The mutualistic relationships that occur between myrmecophilous aphids and ants are based on the rich food supply that honeydew represents for ants and on the protection they provide against aphid natural enemies. While aphid predators and parasitoids actively forage for oviposition sites by using aphid semiochemicals, scouts of aphid-tending ant species would also benefit from locating honeydew resources by orienting toward aphid pheromone sources. The present study aims to provide additional information on the use of Aphis fabae alarm pheromone, i.e. (E)-β-farnesene (EβF), by ant scouts. The perception and behavioral impact of EβF on Lasius niger were investigated using electroantennography and two bio-assays measuring their attraction and orientation towards aphid semiochemicals. Pronounced electrical depolarizations were observed from L. niger scout antennae to stimulations of A. fabae alarm pheromone, while other sesquiterpenes elicited weak or no responses. L. niger scouts were significantly attracted toward EβF in a four-arm olfactometer, as well as in an two-choice bioassay. These laboratory results suggest for the first time that low amounts of aphid alarm pheromone can be used by L. niger scouts as a cue indicating the presence of aphid colonies and could therefore mediate the aphid-ant partnership in the field.  相似文献   

10.
When attacked by a predator, aphids of many species secrete cornicle droplets, containing an alarm pheromone, that results in the dispersal of nearby conspecifics. As females are parthenogenetic, alarm signaling functions to enhance the survival of clone-mates. Enigmatically, however, aphids are physically able to, but usually do not emit alarm pheromone when initially detecting a predator, but rather signal only when captured by a predator. We hypothesized that cornicle droplets may be attractive to natural enemies and result in an increased risk of predation for the signaler, thereby selecting for prudent alarm signalers. We tested this hypothesis by investigating the olfactory cues that the multicolored Asian ladybird beetle, Harmonia axyridis Pallas, uses to locate pea aphids, Acyrthosiphon pisum. In choice tests, H. axyridis were attracted to odors from pea aphid colonies, whether feeding or not feeding on a host plant leaf, but were not attracted to cornicle droplets containing alarm pheromone. Further, individual pea aphids emitting cornicle droplets were not located more often or in a shorter period of time by beetles than aphids not emitting cornicle droplets. Thus, the cost of emitting early alarm signals is not prohibitively high in regards to the attraction of predators such as H. axyridis.  相似文献   

11.
蚜虫报警信息素类似物的结构与生物活性关系   总被引:4,自引:0,他引:4  
利用AccuModel和PowerFit软件比较了蚜虫报警信息素[反]-β-法尼烯(EBF)的氟取代类似物与EBF的结构相似性,并对非EBF系列物结构活性关系进行了研究。结果发现对于一氟取代化合物来说,在分子骨架两端进行取代修饰,所得化合物EBF04, EBF05, EBF12与EBF结构最相似;非EBF系列化合物的扭转角(H25-C4-C5-C1和C5-C6-C7-C8)数值的正负取向对报警活性有明显影响。  相似文献   

12.
First instar nymphs and adults of the grain aphid Sirobion auenae that had been reared at 10°C and 20°C over a number of generations, were cooled to -5°C and -10°C for 1 h and 6 h and returned to 20°C to assess the effects of brief exposures to low temperatures (cold-pulses) on their survival. rate of development, longevity and fecundity. A strong acclimation response was observed in first instar nymphs, with significantly less mortality in groups reared to 10°C compared to 20°C. Mean development time from first instar to adult was not significantly affected by low temperature exposure at the first nymphal stage. Longevity in all groups cooled as first instars was reduced by the sub-zero cold-pulses, and was also dependent on temperature and exposure time. Acclimated aphids survived longer than non-acclimated individuals. Reproductive rate, in terms of the number of nymphs born per aphid per day, was unaffected by cold stress applied at the first instar stage. Total fecundity was however reduced, being a function of the number and longevity of the survivors. Adult aphids were less cold hardy than nymphs; mortality was higher at -10°C than -5°C increasing with duration of exposure from 1 h to 6 h. Mean fecundity was reduced significantly in aphids cooled at the adult stage, the number of aphids born per day decreasing as the exposure period of the cold-pulse increased, suggesting that low temperature had affected embryogenesis. All the nymphs born to adults surviving exposure to -5°C for 6 h died within 48 h of birth, indicating that low temperature has a pre-natal effect on mortality.  相似文献   

13.
Abstract: Herbivore insects use a broad range of chemical cues to locate their host to feed or to oviposit. Whether several plant volatiles are effective allelochemicals for insects, the latter also emit molecules which have infochemical role. The (E)‐β‐farnesene (EBF) is a well‐known aphid alarm pheromone commonly found in all previously tested species. Analysis of the released molecules from 23 aphid species, mainly collected on their natural host plant from May to July, was performed by gas chromatography–mass spectrometry. While EBF was identified as the main volatile substance in 16 species, alone or associated with other molecules, the alarm pheromone was only a minor component of the volatile molecule pattern of five other species. Moreover, two species, Euceraphis punctipennis and Drepanosiphum platanoides, did not release EBF at all but other terpenes were identified. This original observation raised the question on the utility and the source of the non‐EBF volatiles. Are these potential infochemical substances produced by the aphid or only absorbed from the host plant? Here we determined that terpenes released by insects were not only provided by the host plants. Indeed, Megoura viciae emitted additional molecules than the ones from several aphid species reared on the same host plant. Moreover, no systematic relation between the feeding behaviour of the aphid species and the volatile releases was observed. Aphid terpene composition and proportion would provide reliable cues to identify the emitting organism, plant or insect. The next step of this work will be to determine the infochemical role of terpenes found in the range of tested aphid samples to better understand the relations between the different tritrophic levels.  相似文献   

14.
The pea aphid, Acyrthosiphon pisum Harris, (Homoptera: Aphididae) releases the volatile sesquiterpene (E)-β-farnesene (EBF) when attacked by a predator, triggering escape responses in the aphid colony. Recently, it was shown that this alarm pheromone also mediates the production of the winged dispersal morph under laboratory conditions. The present work tested the wing-inducing effect of EBF under field conditions. Aphid colonies were exposed to two treatments (control and EBF) and tested in two different environmental conditions (field and laboratory). As in previous experiments aphids produced higher proportion of winged morphs among their offspring when exposed to EBF in the laboratory but even under field conditions the proportion of winged offspring was higher after EBF application (6.84±0.98%) compared to the hexane control (1.54±0.25%). In the field, the proportion of adult aphids found on the plant at the end of the experiment was lower in the EBF treatment (58.1±5.5%) than in the control (66.9±4.6%), in contrast to the climate chamber test where the numbers of adult aphids found on the plant at the end of the experiment were, in both treatments, similar to the numbers put on the plant initially. Our results show that the role of EBF in aphid wing induction is also apparent under field conditions and they may indicate a potential cost of EBF emission. They also emphasize the importance of investigating the ecological role of induced defences under field conditions.  相似文献   

15.
Abstract. 1. The cabbage root fly, Delia radicum (L.), was deterred from laying eggs on brassica plants with >250 cabbage aphid, Brevicoryne brassicae (L.), or peach-potato aphid, Myzuspersicae (Sulz.).
2. Flies did not lay on plants infested with >250 aphids.
3. Preparations of (E)-β-farnesene, the aphid alarm pheromone, deterred the flies from laying only at the extremely high dose of 32 mg/plant.
4. Although M. persicae secreted large (1 ng/insect) amounts of alarm pheromone and B. brassicae extremely small (<0.01 ng/insect) amounts, both aphids equally deterred D. radicum from laying.
5. The deterrent effect appeared to result from the aphids physically disturbing the flies during host-plant selection.  相似文献   

16.
Jeong Jun Kim 《BioControl》2007,52(6):789-799
The activity of entomopathogens on insect pests has been investigated for many species but the influence of entomopathogenic fungi on factors other than mortality relating to population increase has not been frequently studied. The influence of Lecanicillium attenuatum CS625 (=Verticillium lecanii CS625) on development and reproduction of cotton aphid (Aphis gossypii) was investigated. A conidia suspension of the isolate was applied onto first instar nymphs. Increased spore concentration did not significantly affect each nymphal stage, total nymphal period, pre-reproductive period and the age of first larviposition. A significant dose effect on reduction of life span, reproductive period and fecundity was observed in 1st and 3rd instars after spore application. When conidia were applied to 1st instars, life span was significantly reduced to 10.8 and 8.4 days at 1 × 104 and 1 × 108 conidia/ml, respectively from 12.2 days in the control. During the life span, total fecundity was 41 ± 7.3, 26 ± 0.8 and 22 ± 5.7 nymphs per female at 1 × 104, 1 × 106 and 1 × 108 conidia/ml, respectively compared with 51 ± 2.0 nymphs per untreated female. Reproduction period was also significantly shortened with increasing spore concentration. Application of spores to 3rd instars showed a similar trend. However, daily fecundity of individual aphids was not affected by spore dose. It was concluded that the isolate of L. attenuatum is able to affect populations of cotton aphid by reducing life span and total fecundity as well as by killing the aphids directly.  相似文献   

17.
张润志  梁宏斌  张军  邱焯 《昆虫学报》1999,42(-1):35-39
实验室内测定麦双尾蚜Diuraphis noxia (Mordvilko) 在9个恒温下取食小麦叶片时的生长发育数据。麦双尾蚜发育起点温度为3.27℃,发育适温区为15~20℃,有效积温为152.55日·度。在较低温度下 (7.5℃、10℃、15℃) 各发育阶段的总存活率较高,说明低温对麦双尾蚜生长有利,但1~2龄若蚜的存活率略低于3~4龄,说明低龄若蚜的抗逆性稍差。在15~24℃下麦双尾蚜单雌产仔量高,为繁殖最适温区。  相似文献   

18.
Larvae of the lacewing Chrysoperla plorabunda (Fitch) were evaluated in laboratory and field tests for potential to control the brown citrus aphid, Toxoptera citricida (Kirkaldy) in inundative releases. Larvae surviving to pupation consumed an average of 1676, 1297, 392, 165 and 130 1st–4th instar T. citricida nymphs and apterous adults, respectively, and the mean developmental time was 27.0, 23.0, 16.5, 13.8 and 18.3 days, respectively. The average pupation rate was 37.5%, but only 6.3% of pupae yielded adults. Developmental time and survival to pupation varied with the life stage of aphids fed to larvae, 4th instars yielding the highest survival and shortest developmental time. Development of C. plorabunda was compared on diets of T. citricida and Aphis spiraecola . Only 6.3% of larvae completed development on T. citricida , whereas 37.5% yielded adults on A. spiraecola . Larvae consumed more of the brown T. citricida than the green A. spiraecola in a choice test on a white background, but no preference was evident when aphids were offered on a black background. Two separate field trials were performed in citrus groves with T. citricida infestations in which an average of 275 and 116 C. plorabunda larvae/tree were released, respectively. The rate of T. citricida colony maturation (= survival to alate production) was very low in the first trial, and relatively high in the second trial, but did not differ between control and release trees in either trial. The most apparent cause of aphid colony mortality was predation by the coccinellids Cycloneda sanguinea L. and Harmonia axyridis Pallas. Despite acceptance of T. citricida in the laboratory, very few C. plorabunda larvae were observed feeding on aphid colonies on release trees.  相似文献   

19.
Genetic variation in anti-predator traits has been shown for a variety of species. Aphid alarm pheromone, ( E )-β-farnesene, is released by attacked aphids and causes a variety of behavioral defense reactions in the signal receivers. In pea aphids, Acyrthosiphon pisum Harris (Homoptera: Aphididae), ( E )-β-farnesene mediates the production of winged offspring in the presence of natural enemies. While variation in the propensity for pea aphids to produce winged offspring is well-documented, little quantitative information is available about clonal differences in ( E )-β-farnesene emission or the amount of alarm pheromone released in aphid colonies. We tested the wing induction response of four clones when attacked by a predatory lacewing larva, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), and found that three of the four clones increased the proportion of winged offspring under predator attack. We then investigated the emission of aphid alarm pheromone of these clones of pea aphid under attack. Alarm pheromone emission in aphid colonies of initially 25 adults varied from 81.2 to 10 851.0 ng per aphid colony over 24 h. There were no differences between clones in total emission or in emission per consumption event. These results show that there is substantial variability in alarm pheromone emission within clones and that the propensity to produce winged offspring in some clones is not a simple function of the propensity of alarm pheromone production in these clones.  相似文献   

20.
The cornicle secretion of Myzus persicae reared on artificial diet only elicits an alarm response in plant‐reared conspecifics after the young aphids have been transferred to plants for 7 days. Acetate in the form of 0.32% sodium acetate has been added to the diet as an early step in synthesis of the alarm pheromone, (E)‐β‐farnesene (EBF). The cornicle secretion of diet‐reared aphids then elicits an alarm response. However, there is no difference in internal EBF concentration between plant‐ and diet‐reared aphids. Puncturing aphids, either plant‐ or diet‐reared, with a pin shows that both can elicit an alarm response, whereas it is reduced by half with diet‐reared individuals. Although there is no significant difference in the concentration of EBF produced, the total amount in diet‐reared aphids is increased by acetate in the diet to a level similar to that in plant‐reared individuals: the size of aphids reared on an acetate‐supplemented diet is increased and comparable with the size of those that are plant‐reared. Bioassays with a range of EBF concentrations show a high threshold for the alarm response. It is concluded that the different size of aphids reared on plants and standard diet results in them secreting, respectively, above and below the response threshold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号