首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用电穿孔法将大鼠酪氨酸羟化酶(Tyrosinehydroxylase,TH)基因转染大鼠L-6TG成肌细胞株,经PCR检测、免疫组织化学和荧光组织化学检测证明,TH基因能在细胞内稳定整合和表达,并在辅因子存在时将酪氨酸转化为多巴.移植于大鼠纹状体后可成活并表达TH。  相似文献   

2.
Bovine papilloma virus type-1 (BPV-1)-based expression plasmids TkBPVTH and CGalBPVTH encoding the rat tyrosine hydroxylase (TH) enzyme have been designed for the development of gene therapy for experimental Parkinson's disease. The aim of the present work was to examine the transfection of BPVTH plasmids to express a dopaminergic transgene in the monkey CV1-P fibroblast, rat C6 glioma and human NHA astrocyte cell cultures. The biological function of the transgene was estimated by analyzing the production of recombinant TH mRNA and protein, and the synthesis of L-dopa and dopamine. The highest transfection efficiency was obtained using TkBPVTH plasmids (5 microg). Furthermore, the expression of TkBPVTH plasmids was associated with significant synthesis of TH enzyme and L-dopa in the C6 and NHA cell cultures.  相似文献   

3.
Neural transplantation, a mode of cellular replacement, has been used as a therapeutic trial for Parkinson's disease. Studies indicate that tonic release of the metabolites from the graft that can be utilized by the host brain, is likely to be the major mechanism responsible for the therapeutic effect. The use of fetal tissue is complicated by ethical controversy and immunological incompatibility. Autografting adult tissue has not been successful mainly due to poor survival. Genetically engineered cells are promising alternative sources of donor cells. We have investigated the potential of primary skin fibroblasts as donor cells for intracerebral grafting. Primary skin fibroblasts survive in the brain and remain in situ. A number of genes (nerve growth factor, tyrosine hydroxylase, glutamic acid decarboxylase, and choline acetyltransferase) have been successfully introduced and expressed in the primary fibroblasts. The L-dopa-secreting primary fibroblasts exhibited a behavioral effect in a rat model of Parkinson's disease up to 8 weeks after being grafted into denervated striatum. Factors that can maximize gene transfer, transgene expression, and fibroblast survival in the brain make up the future direction of investigation.  相似文献   

4.
Vriend J  Dreger L 《Life sciences》2006,78(15):1707-1712
Haloperidol, an antipsychotic drug, was tested for its effects on the in situ activity of nigrostriatal and hypothalamic tyrosine hydroxylase, in control male Syrian hamsters and in those receiving a high daily dose of melatonin. After receiving daily ip injections (1.25 mg/kg ip) of haloperidol for 21 days, the animals were sacrificed and brain tissue collected for analysis of dopamine and metabolites by HPLC with electrochemical detection. In situ activity of tyrosine hydroyxlase (TH) activity was determined by measuring the accumulation of L-Dopa after administration of the L amino acid decarboxylase inhibitor, mhydroxybenzylhydrazine. Tissue content of dopamine and its metabolites, DOPAC and HVA, was depressed in striatum of animals receiving haloperidol, and tyrosine hydroxylase (TH) activity was significantly decreased 20-24 h after the last injection (from 1823 +/- 63 to 1139 +/- 85 pg l-dopa/mg tissue). The decrease in TH activity in striatum was significantly inhibited by daily injections of a high dose of melatonin (2.5 mg/kg ip) (from 1139 +/- 85 to 1560 +/- 116 pg L-dopa/mg tissue). In the substantia nigra and in the hypothalamus, on the other hand, haloperidol significantly increased the activity of tyrosine hydroxylase. Melatonin administration did not significantly influence TH activity in the substantia nigra, but inhibited TH activity in the hypothalamus and in the pontine brainstem. One explanation for these data is that chronic haloperidol administration in Syrian hamsters increases TH activity in hypothalamus and substantia nigra, but decreases TH activity in striatum by a mechanism involving D2 presynaptic receptors and a melatonin sensitive kinase which regulates TH phosphorylation.  相似文献   

5.
永生化胶质细胞介导TH基因的长效基因治疗   总被引:3,自引:0,他引:3  
胶质细胞是脑部疾病基因治疗中的理想载体细胞 ,但细胞来源有限 ,体外培养时间短等因素限制了原代胶质细胞在基因治疗中的应用。以SV4 0大T抗原转化原代大鼠原代胶质细胞得到的永生化胶质细胞 (RGLT)可解决这些问题。在成瘤性检测中 ,RGLT细胞在裸鼠皮下 (观察 4周 )和大鼠纹状体内 (观察 18个月 )均不能成瘤。将大鼠酪氨酸羟化酶 (TH)基因转入RGLT细胞得到RGLT TH细胞后 ,TH免疫组化和HPLC检测表明RGLT TH细胞可表达TH并在体外合成多巴胺。将RGLT TH细胞移值入 6 羟基多巴胺损毁的帕金森病 (PD)大鼠模型的纹状体后 ,可大幅提高纹状体内多巴胺含量并显著缓解PD症状 ,疗效稳定维持超过 18个月。这些结果表明永生化胶质细胞可以安全有效地用于神经退行性疾病的长效基因治疗。  相似文献   

6.
BACKGROUND: Adenoviruses have many advantages as vehicles for gene delivery to the central nervous system (CNS) and retrograde transport of vectors to axonally linked sites has been postulated as a method for targeting neurons in remote brain regions. To investigate optimisation of this we injected different doses of vector and have documented the neuropathological side effects. METHODS: Increasing doses of a first-generation adenoviral vector, expressing the lacZ gene, were inoculated in the rat striatum and beta-galactosidase expression was examined at the primary and secondary sites. Subsequently, at the highest dose of vector, transgene expression, the inflammatory response, tyrosine hydroxylase (TH) expression and the rotational behaviour of animals were studied over time. RESULTS: When a high dose of an adenoviral vector was delivered to the rat striatum, high levels of transgene expression were seen at 5 days in the injection site and in the substantia nigra. Smaller doses gave lower levels of expression with little expression detectable in the substantia nigra. At later time points, with the high dose, a marked reduction in transgene expression was detected and was accompanied by cytopathic damage, a strong inflammatory response and animal weight loss. This was associated with depletion in TH levels and abnormal motor behaviour in animals. CONCLUSIONS: Neuropathological damage in the dopaminergic system, caused by high doses of adenoviral vectors, has not previously been documented. To minimise damage and prolong transgene expression, it is important that the dose of vectors to be delivered is carefully optimised.  相似文献   

7.
Aromatic L-amino acid decarboxylase (AADC) is necessary for conversion of L-DOPA to dopamine. Therefore, AADC gene therapy has been proposed to enhance pharmacological or gene therapies delivering L-DOPA. However, addition of AADC to the grafts of genetically modified cells expressing tyrosine hydroxylase (TH) and GTP cyclohydrolase 1 (GCH1), which produce L-DOPA in parkinsonian rats, resulted in decreased production of L-DOPA and dopamine owing to feedback inhibition of TH by dopamine. End-product feedback inhibition has been shown to be mediated by the regulatory domain of TH, and site-specific mutation of serine 40 makes TH less susceptible to dopamine inhibition. Therefore, we investigated the efficacy of using TH with serine 40 mutated to leucine (mTH) in an ex vivo gene-therapy paradigm. Primary fibroblasts (PF) from Fischer 344 rats were transduced with retrovirus to express mTH or wild-type rat TH cDNA (wtTH). Both cell types were also transduced with GCH1 to provide the obligate TH cofactor, tetrahydrobiopterin. PF transfected with AADC were used as coculture and cografting partners. TH activities and L-DOPA production in culture were comparable between PFwtTHGC and PFmTHGC cells. In cocultures with PFAADC cells, PFmTHGC cells showed significant reduction in the inhibitory effect of dopamine compared with PFwtTHGC cells. In vivo microdialysis measurement showed that cografting PFAADC cells with PFmTHGC cells resulted in smaller decreases in L-DOPA and no reduction in dopamine levels compared with cografts of PFAADC cells with PFwtTHGC cells, which decreased both L-DOPA and dopamine levels. Maintenance of dopamine levels with lower levels of L-DOPA would result in more focused local delivery of dopamine and less potential side-effects arising from L-DOPA diffusion into other structures. These data support the hypothesis that mutation of serine 40 attenuates TH end-product inhibition in vivo and illustrates the importance of careful consideration of biochemical pathways and interactions between multiple genes in gene therapy.  相似文献   

8.
Previous studies from our laboratory showed that subchronic exposure to low levels of Pb resulted in significant decrease in dopamine (DA) content, attenuation of stimulus-induced release of DA in the dopaminergic projection area of nucleus accumbens (NA), and alterations in tyrosine hydroxylase (TH) activity in rat whole brain homogenates. The present study reported here was conducted to assess the functional integrity of DA synthesis in different brain regions of rats subchronically (90-days) exposed to 50 ppm Pb by measuring the activity of the rate limiting enzyme, tyrosine hydroxylase, in seven brain regions. In Pb-exposed rats, TH activity was reduced in two of the seven brain regions investigated, i.e., nucleus accumbens (42% reduction) and frontal cortex (61% reduction) when compared to controls. In contrast, Pb exposure did not affect the TH activity in cerebellum, brainstem, hippocampus, hypothalamus and striatum. The changes in TH activity in nucleus accumbens (NA) and frontal cortex (FC) in Pb-exposed rats were further confirmed by Western blot analysis using TH polyclonal antibody. Collectively, these results indicate that low level subchronic Pb exposure may affect TH protein in these brain regions.  相似文献   

9.
蒋芝华  倪紫美 《生理学报》1997,49(2):141-145
用成年大鼠75只,给右侧黑质区注射6-羟基多巴胺(6-OHDA),损毁黑质多巴胺能神经元,制备偏侧帕金森氏病(PD)鼠模型。四周后,注射阿朴吗啡(APO)诱发大鼠向左侧旋转。旋转数为每分钟7次以上的35只PD鼠作实验用。其中实验组15只,对照组20只。向实验组PD鼠右侧纹状体多点植入含大鼠酪氨酸羟化酶cDNA(THcDNA)的真核表达载体pSVK3-TH和脂质体Lipofectin混合的基因转染复  相似文献   

10.
Changes in homospecific activity (unit of enzyme activity per unit of enzyme protein; Rush, Kindler and Udenfriend, 1974. Biochem. Biophys. Res. Commun., 61, 38) of tyrosine hydroxylase (TH) in the striatum of the brain were examined in MPTP-treated mice and parkinsonian patients. After a single injection of MPTP to mice, TH activity was acutely inhibited onlyin situ without changes in in vitro TH activity (Vmax) and TH protein; TH homospecific activity (TH Vmax/TH protein) did not change. After repeated injection of MPTP to mice for 8 days, in situ TH activity, in vitro TH Vmax, and TH protein were decreased in parallel, and TH homospecific activity did not change The result indicates that the decreases in in situ TH activity and in TH Vmax are due to the decrease in TH protein by nerve degeneration of dopaminergic neurons in MPTP treated mice. However, when MPP+ was infused in the striatum of rats for 3 hours, in vitro TH activity (Vmax) was decreased without changes in TH protein. Thus, TH homospecific activity was decreased. The results indicate that MPP+ inactivates TH protein in the striatum after continued infusion. In contrast, the homospecific activity of TH in post-mortem parkinsonian striatum was increased 3-fold. The increase in homospecific activity of residual TH in parkinsonian brain suggests such molecular changes in TH molecules as result in a compensatory increase in TH activity.Special issue dedicated to Dr. Sidney Udenfriend.  相似文献   

11.
12.
Uninfected neurons of the substantia nigra (SN) degenerate in human immunodeficiency virus (HIV)‐positive patients through an unknown etiology. The HIV envelope glycoprotein 120 (gp120) causes apoptotic neuronal cell death in the rodent striatum, but its primary neurotoxic mechanism is still under investigation. Previous studies have shown that gp120 causes neurotoxicity in the rat striatum by reducing brain‐derived neurotrophic factor (BDNF). Because glial cell line‐derived neurotrophic factor (GDNF) and BDNF are neurotrophic factors crucial for the survival of dopaminergic neurons of the SN, we investigated whether gp120 reduces GDNF and BDNF levels concomitantly to induce apoptosis. Rats received a microinjection of gp120 or vehicle into the striatum and were sacrificed at various time intervals. GDNF but not BDNF immunoreactivity was decreased in the SN by 4 days in gp120‐treated rats. In these animals, a significant increase in the number of caspase‐3‐ positive neurons, both tyrosine hydroxylase (TH)‐positive and ‐negative, was observed. Analysis of TH immunoreactivity revealed fewer TH‐positive neurons and fibers in a medial and lateral portion of cell group A9 of the SN, an area that projects to the striatum, suggesting that gp120 induces retrograde degeneration of nigrostriatal neurons. We propose that dysfunction of the nigrostriatal dopaminergic system associated with HIV may be caused by a reduction of neurotrophic factor expression by gp120. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

13.
MSCs (mesenchymal stem cells) derived from the bone marrow have shown to be a promising source of stem cells in a therapeutic strategy of neurodegenerative disorder. Also, MSCs can enhance the TH (tyrosine hydroxylase) expression and DA (dopamine) content in catecholaminergic cells by in vitro co‐culture system. In the present study, we investigated the effect of intrastriatal grafts of MSCs on TH protein and gene levels and DA content in adult intact rats. When MSCs were transplanted into the striatum of normal rats, the grafted striatum not only had significantly higher TH protein and mRNA levels, but also significantly higher DA content than the untransplanted striatum. Meanwhile, the grafted MSCs differentiated into neurons, astrocytes and oligodendrocytes; however, TH‐positive cells could not be detected in our study. These experimental results offer further evidence that MSCs are a promising candidate for treating neurodegenerative diseases such as Parkinson's disease.  相似文献   

14.
将稳定转染了大鼠酪氨酶羟化酶(Tyrosinehydroxylase,TH)基因的大鼠成肌细胞移植于帕金森病大鼠模型的纹状体,进行基因治疗研究。RT-PCR和免疫组织化学检测都证明转基因细胞可在纹状体内存活并表达TH,动物的不对称旋转行为明显改善,而且疗效可维持半年以上。  相似文献   

15.
16.
Using the supernatant fraction of rat brain homogenates, we investigated several variables which appear to be important in studies of tyrosine hydroxylase (TH) activity. These included the type and pH of the assay buffer, cofactor concentration, and brain region. We observed that the pH optimum for TH activity assayed in Tris-acetate buffer varied with brain region. Among the regions examined, the optima ranged from pH 5.7 (striatum) to pH 6.2 (hippocampus). Similar results were obtained using MES buffer, although TH activity was reduced at certain pH values. The pH optimum was not correlated with the relative proportions of norepinephrine and dopamine in these brain regions. In the presence of a subsaturating concentration of cofactor, incubation of TH under cAMP-dependent protein phosphorylating conditions increased TH activity significantly in both striatum and hippocampus. The increase in TH activity produced by phosphorylating conditions was most pronounced at pH values above the pH optimum. The results are discussed in terms of their implications for in vitro measurement of alterations in TH activity.  相似文献   

17.
Human NT cells derived from the NTera2/D1 cell line express a dopaminergic phenotype making them an attractive vehicle to supply dopamine to the depleted striatum of the Parkinsonian patient. In vitro, hNT neurons express tyrosine hydroxylase (TH), depending on the length of time they are exposed to retinoic acid. This study compared two populations of hNT neurons that exhibit a high yield of TH+ cells, MI-hNT and DA-hNT. The MI-hNT and DA-hNT neurons were intrastriatally transplanted into the 6-OHDA hemiparkinsonian rat. Amelioration in rotational behavior was measured and immunohistochemistry was performed to identify surviving hNT and TH+ hNT neurons. Results indicated that both MI-hNT and DA-hNT neurons can survive in the striatum, however, neither maintained their dopaminergic phenotype in vivo. Other strategies used in conjunction with hNT cell replacement are likely needed to enhance and maintain the dopamine expression in the grafted cells.  相似文献   

18.
19.
Cells expressing a tyrosine hydroxylase (TH) cDNA under control of the promoter of the human glial fibrillary acidic protein (GFAP) gene were tested for therapeutic efficacy in a rat model of Parkinson's disease. The GFAP gene encodes an intermediate filament protein found almost exclusively in astrocytes. Its promoter is of interest for gene therapy as it is expressed in astrocytes throughout postnatal life and is upregulated in response to almost any damage to the central nervous system, including Parkinson's disease. We previously showed that a line of C6 rat glioma cells that expresses a GFAP-TH transgene, C6-THA, displays increased transgene activity when differentiated by forskolin treatment. Accordingly, the effects were investigated of implantation of both undifferentiated and differentiated C6-THA cells into the striatum of rats that had been lesioned with 6-hydroxydopamine. Implantation of either cell type produced significant behavioral recovery one week after transplantation, as judged by the turning response to apomorphine. At two and three weeks after transplantation, the behavioral effect of the undifferentiated cells was no longer statistically significant, whereas that for the forskolin-differentiated cells remained robust. Transgenic TH mRNA and protein could be detected in implants of both cell types, and in agreement with the behavioral results, levels were higher for the differentiated C6-THA cells than for the undifferentiated cells. These results indicate that the GFAP promoter is sufficiently active to enable production of therapeutic levels of dopamine from a GFAP-TH transgene, and suggest the use of astrocytes for gene therapy for Parkinson's disease. They also show that beneficial modifications of cells produced by treatment while in culture may be maintained following implantation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号