首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dilution of an intravenous bolus dose of [13C]bicarbonate is used as an estimate for the metabolic rate under certain conditions. It is a consistent finding in all studies that the total amount of intravenous [13C]bicarbonate cannot be recovered as breath 13CO2. In this study, we used a breath-by-breath analysis of 13CO2 to depict the washout of 13CO2 at a high temporal resolution to analyze the extent to which a probable first-pass effect is responsible for the reduced recovery. Eight healthy men were tested at seated rest and with bicycle exercise at a constant load relative to 40 and 75% maximal O2 consumption VO2 max). [13C]bicarbonate (0.0125 g/kg body wt) was administered as an intravenous bolus in each test. Respiratory mass spectrometry was used to derive the course of the end-tidal 13CO2-to-12CO2 ratio from the breath-by-breath data. Approximately 2 min after 13C administration, the washout curve could be fitted well by a two-exponential curve describing a two-compartment mammillary model. Immediately after administration of the bolus dose, an excess peak in the end-tidal 13CO2-to-12CO2 ratio appeared. This peak could not be included in the two-exponential fitting. The area under the first peak resulted in 3.8 +/- 1.3% of the total [13C]bicarbonate dose at rest, 11.5 +/- 2.9% at moderate exercise (40% VO2 max), and 16.9 +/- 4.0% at intensive exercise (75% VO2 max). The first-pass effect had an increasing impact of up to about two-thirds of the lacking bicarbonate with higher exercise intensity. The "loss" of tracer via this first-pass effect must be considered when the results of studies with parenteral administration of [13C]bicarbonate are considered, especially when it is given as a bolus dose and during exercise.  相似文献   

2.
We show that an animal's past and present diet can be distinguished through the delta(13)C of exhaled CO(2). The exhaled delta(13)C of 12 pigeons fed solely corn (a C(4) plant) for 30 days was -13.63 per thousand (+/-0.30). We then fed six pigeons wheat (a C(3) plant) and continued to feed the other six corn. After 48 h the exhaled delta(13)C from the corn-fed pigeons was unchanged; that from the wheat-fed pigeons was -20.5 per thousand. We then fasted three of the wheat-fed pigeons for 3 days, after which their exhaled delta(13)C was -14.96 per thousand, while it was -13.57 per thousand in corn-fed pigeons, and -22.22 per thousand in pigeons that continued on wheat. Thus, we could infer diet from the (13)C/(12)C ratios of exhaled CO(2). Significantly, breath samples from fasted pigeons also revealed that they had eaten corn when their lipid stores were formed. We also showed that the change in the (13)C/(12)C of exhaled CO(2) had a half-life of approximately 3.5 h, and a time constant of approximately 6.7 h. Thus one can infer past and present diet from exhaled delta(13)C alone, if the initial breath sample is followed by a fasted breath sample, without harming the animal or having to recapture it successively.  相似文献   

3.
We have described a technique whereby the time necessary to reach an equilibrium enrichment of expired CO2 during a primed-constant infusion of [U-13C]glucose was shortened from 7 to 8 h to 1 hour or less. We applied the theory of the primed-constant infusion technique to the bicarbonate pool, with the "constant infusion" of labeled carbon dioxide originating from oxidation of the infused [13C]glucose rather than from a labeled infusion of bicarbonate.  相似文献   

4.
We investigated the energy source fuelling the post-feeding metabolic upregulation (specific dynamic action, SDA) in pythons (Python regius). Our goal was to distinguish between two alternatives: (i) snakes fuel SDA by metabolizing energy depots from their tissues; or (ii) snakes fuel SDA by metabolizing their prey. To characterize the postprandial response of pythons we used transcutaneous ultrasonography to measure organ-size changes and respirometry to record oxygen consumption. To discriminate unequivocally between the two hypotheses, we enriched mice (= prey) with the stable isotope of carbon (13C). For two weeks after feeding we quantified the CO2 exhaled by pythons and determined its isotopic 13C/12C signature. Ultrasonography and respirometry showed typical postprandial responses in pythons. After feeding, the isotope ratio of the exhaled breath changed rapidly to values that characterized enriched mouse tissue, followed by a very slow change towards less enriched values over a period of two weeks after feeding. We conclude that pythons metabolize their prey to fuel SDA. The slowly declining delta13C values indicate that less enriched tissues (bone, cartilage and collagen) from the mouse become available after several days of digestion.  相似文献   

5.
BACKGROUND: The nondispersive isotope-selective infrared spectroscopy (NDIRS) is a valid method for the measurement of the 13CO2:12CO2 ratio in breath samples. Methodical influences have to be considered to obtain valid results. AIM: To evaluate the effect of oxygen supply to patients on the measurement of 13C:12C ratio in breath samples by NDIRS. METHODS: Breath samples of 26 healthy volunteers were taken before, immediately after, and 5 minutes after inhalation of 100% oxygen via a continuous positive air pressure (CPAP) mask. Analysis of breath samples was performed by NDIRS. RESULTS: Delta per thousand before oxygen inhalation was -25.8 +/- 0.2. Immediately after 5 minutes of 100% oxygen inhalation, delta per thousand increased to -14.8 +/- 0.5 (delta over baseline [DOB] 11.0 +/- 0.4) and after additional 5 minutes of room air inhalation, delta per thousand normalized to -25.6 +/- 0.2 (DOB 0.2 +/- 0.1). CONCLUSIONS: Oxygen supply to patients and, therefore, changes in gas composition in breath samples clearly influence 13CO2 measurement by NDIRS. This has to be taken into account in the clinical setting. Thus, oxygen supply during measurement of exhaled 13CO2 by NDIRS has to be avoided or maintained at a strictly constant level.  相似文献   

6.
Gas chromatographic/mass spectrometric methods for the measurement of the flux through the de novo pyrimidine biosynthetic pathway by quantitating the incorporation of [13C]bicarbonate and 13CO2 into the uracil nucleotide pool in L1210 tumors are reported. Simultaneous measurements of the incorporation of [13C]bicarbonate and the more commonly used [14C]bicarbonate into uridine of L1210 cells in vitro showed that the two methods were comparable. A modification of the method was applied to in vivo studies where the incorporation of 13CO2 into the uracil nucleotide pool of L1210 tumors in mice was quantitated. The measurements were used to determine changes in the flux through the de novo pyrimidine pathway in animals pretreated with known inhibitors of the pathway. A comparison of control animals with those pretreated with 6-azauridine, acivicin, and pyrazofurin resulted in mean percentage inhibitions of 87, 95, and 94%, respectively. This technique should allow investigation of the respective contributions of salvage and de novo synthesis in the formation of pyrimidines in vivo and the effects of agents designed as enzyme inhibitors of the de novo pathway.  相似文献   

7.
Use of 13C-labeled glucose for estimating in vivo rates of glucose oxidation faces several difficulties, particularly the accurate determination of the output of 13C in expired air. In an investigation of wholebody glucose metabolism in healthy adult humans, using a continuous intravenous infusion of D-[U-13C]glucose, we found that a precise estimate of the rate of glucose oxidation was difficult to achieve when the study included infusions with unlabeled glucose. Problems arose 1) as a result of the slow rate at which the 13CO2 released by glucose oxidation reaches an equilibrium in expired air CO2 and 2) due to the contribution to 13CO2 output by the natural 13C in the unlabeled glucose that was infused. In a subsequent series of experiments in healthy young adults, we found that the entry of 13CO2 released by the tissues into the bicarbonate pool and into the expired air is relatively slow and a tracer infusion protocol of approximately 6 h is required for determination of glucose oxidation. This applies when metabolic states are changed acutely during the experiment or when unlabeled glucose is infused. However, for resting subjects in the basal postabsorptive state we confirmed that the time required to achieve a steady state in the 13C enrichment of expired air can be shortened significantly by the use of a NaH13CO3 priming dose, even when this dose varies from the ideal.  相似文献   

8.
For estimating the oxidation rates (Rox) of glucose and other substrates by use of (13)C-labeled tracers, we obtained correction factors to account for label dilution in endogenous bicarbonate pools and TCA cycle exchange reactions. Fractional recoveries of (13)C label in respiratory gases were determined during 225 min of rest and 90 min of leg cycle ergometry at 45 and 65% peak oxygen uptake (VO(2 peak)) after continuous infusions of [1-(13)C]acetate, [2-(13)C]acetate, or NaH(13)CO(3). In parallel trials, [6,6-(2)H]glucose and [1-(13)C]glucose were given. Experiments were conducted after an overnight fast with exercise commencing 12 h after the last meal. During the transition from rest to exercise, CO(2) production increased (P < 0.05) in an intensity-dependent manner. Significant differences were observed in the fractional recoveries of (13)C label as (13)CO(2) at rest (NaH(13)CO(3), 77.5 +/- 2.8%; [1-(13)C]acetate, 49.8 +/- 2.4%; [2-(13)C]acetate, 26.1 +/- 1.4%). During exercise, fractional recoveries of (13)C label from [1-(13)C]acetate, [2-(13)C]acetate, and NaH(13)CO(3) were increased compared with rest. Magnitudes of label recoveries during both exercise intensities were tracer specific (NaH(13)CO(3), 93%; [1-(13)C]acetate, 80%; [2-(13)C]acetate, 65%). Use of an acetate-derived correction factor for estimating glucose oxidation resulted in Rox values in excess (P < 0.05) of glucose rate of disappearance during hard exercise. We conclude that, after an overnight fast: 1) recovery of (13)C label as (13)CO(2) from [(13)C]acetate is decreased compared with bicarbonate; 2) the position of (13)C acetate label affects carbon dilution estimations; 3) recovery of (13)C label increases in the transition from rest to exercise in an isotope-dependent manner; and 4) application of an acetate correction factor in glucose oxidation measurements results in oxidation rates in excess of glucose disappearance during exercise at 65% of VO(2 peak). Therefore, bicarbonate, not acetate, correction factors are advocated for estimating glucose oxidation from carbon tracers in exercising men.  相似文献   

9.
The detection of 12CO2 emission from leaves in air containing 13CO2 allows simple and fast determination of the CO2 emitted by different sources, which are separated on the basis of their labelling velocity. This technique was exploited to investigate the controversial effect of CO2 concentration on mitochondrial respiration. The 12CO2 emission was measured in illuminated and darkened leaves of one C4 plant and three C3 plants maintained at low (30-50 ppm), atmospheric (350-400 ppm) and elevated (700-800 ppm) CO2 concentration. In C3 leaves, the 12CO2 emission in the light (Rd) was low at ambient CO2 and was further quenched in elevated CO2, when it was often only 20-30% of the 12CO2 emission in the dark, interpreted as the mitochondrial respiration in the dark (Rn). Rn was also reduced in elevated CO2. At low CO2, Rd was often 70-80% of Rn, and a burst of 12CO2 was observed on darkening leaves of Mentha sativa and Phragmites australis after exposure for 4 min to 13CO2 in the light. The burst was partially removed at low oxygen and was never observed in C4 leaves, suggesting that it may be caused by incomplete labelling of the photorespiratory pool at low CO2. This pool may be low in sclerophyllous leaves, as in Quercus ilex where no burst was observed. Rd was inversely associated with photosynthesis, suggesting that the Rd/Rn ratio reflects the refixation of respiratory CO2 by photosynthesizing leaves rather than the inhibition of mitochondrial respiration in the light, and that CO2 produced by mitochondrial respiration in the light is mostly emitted at low CO2, and mostly refixed at elevated CO2. In the leaves of the C4 species Zea mays, the 12CO2 emission in the light also remained low at low CO2, suggesting efficient CO2 refixation associated with sustained photosynthesis in non-photorespiratory conditions. However, Rn was inhibited in CO2-free air, and the velocity of 12CO2 emission after darkening was inversely associated with the CO2 concentration. The emission may be modulated by the presence of post-illumination CO2 uptake deriving from temporary imbalance between C3 and C4 metabolism. These experiments suggest that this uptake lasts longer at low CO2 and that the imbalance is persistent once it has been generated by exposure to low CO2.  相似文献   

10.
Expired 13CO2 recovery from an oral l-[1-13C]phenylalanine ([13C]Phe) dose has been used to quantify liver function. This parameter, however, does not depend solely on liver function but also on total CO2 production, Phe turnover, and initial tracer distribution. Therefore, we evaluated the impact of these factors on breath test values. Nine ethyl-toxic cirrhotic patients and nine control subjects received intravenously 2 mg/kg of [13C]Phe, and breath and blood samples were collected over 4 h. CO2 production was measured by indirect calorimetry. The exhaled 13CO2 enrichments were analyzed by isotope ratio mass spectrometry and the [13C]Phe and l-[1-13C]tyrosine enrichments by gas chromatography-mass spectrometry. The cumulative 13CO2 recovery was significantly lower in cirrhotic patients (7 vs. 12%; P < 0.01), in part due to lower total CO2 production rates. Phe turnover in cirrhotic patients was significantly lower (33 vs. 44 micro mol. kg(-1). h(-1); P < 0.05). When these extrahepatic factors were considered in the calculation of the Phe oxidation rate, the intergroup differences were even more pronounced (3 vs. 7 micro mol. kg(-1). h(-1)) than those for 13CO2 recovery data. Also, the Phe-to-Tyr conversion rate, another indicator of Phe oxidation, was significantly reduced (0.7 vs. 3.0 micro mol. kg(-1). h(-1)).  相似文献   

11.
The substrate supply system for respiration of the shoot and root of perennial ryegrass (Lolium perenne) was characterized in terms of component pools and the pools' functional properties: size, half-life, and contribution to respiration of the root and shoot. These investigations were performed with perennial ryegrass growing in constant conditions with continuous light. Plants were labeled with (13)CO(2)/(12)CO(2) for periods ranging from 1 to 600 h, followed by measurements of the rates and (13)C/(12)C ratios of CO(2) respired by shoots and roots in the dark. Label appearance in roots was delayed by approximately 1 h relative to shoots; otherwise, the tracer time course was very similar in both organs. Compartmental analysis of respiratory tracer kinetics indicated that, in both organs, three pools supplied 95% of all respired carbon (a very slow pool whose kinetics could not be characterized provided the remaining 5%). The pools' half-lives and relative sizes were also nearly identical in shoot and root (half-life < 15 min, approximately 3 h, and 33 h). An important role of short-term storage in supplying respiration was apparent in both organs: only 43% of respiration was supplied by current photosynthate (fixed carbon transferred directly to centers of respiration via the two fastest pools). The residence time of carbon in the respiratory supply system was practically the same in shoot and root. From this and other evidence, we argue that both organs were supplied by the same pools and that the residence time was controlled by the shoot via current photosynthate and storage deposition/mobilization fluxes.  相似文献   

12.
[1,2-(13)C(2)]glutamine and [ring-(2)H(5)]phenylalanine were infused for 7 h into five postabsorptive healthy subjects on two occasions. On one occasion, the tracers were infused intravenously for 3.5 h and then by a nasogastric tube for 3.5 h. The order of infusion was reversed on the other occasion. From the plasma tracer enrichment measurements at plateau during the intravenous and nasogastric infusion periods, we determined that 27 +/- 2% of the enterally delivered phenylalanine and 64 +/- 2% of the glutamine were removed on the first pass by the splanchnic bed. Glutamine flux was 303 +/- 8 micromol. kg(-1). h(-1). Of the enterally delivered [(13)C]glutamine tracer, 73 +/- 2% was recovered as exhaled CO(2) compared with 58 +/- 1% of the intravenously infused tracer. The fraction of the enterally delivered tracer that was oxidized specifically on the first pass by the splanchnic bed was 53 +/- 2%, comprising 83% of the total tracer extracted. From the appearance of (13)C in plasma glucose, we estimated that 7 and 10% of the intravenously and nasogastrically infused glutamine tracers, respectively, were converted to glucose. The results for glutamine flux and first-pass extraction were similar to our previously reported values when a [2-(15)N]glutamine tracer [Matthews DE, Morano MA, and Campbell RG, Am J Physiol Endocrinol Metab 264: E848-E854, 1993] was used. The results of [(13)C]glutamine tracer disposal demonstrate that the major fate of enteral glutamine extraction is for oxidation and that only a minor portion is used for gluconeogenesis.  相似文献   

13.
Summary

The inorganic C supply to macroalgae in two acid pools in a highland wetheath was analysed using 13C/12C natural abundance measurements. The inorganic C in the pools (pH 3.9 – 4.5) is all present as CO2, and is more than three times the air-equilibrium concentration. The 13C/12C value of the pool CO2 was predicted from the 13C/12C of rainwater CO2 and that of CO 2derived from terrestrial plant (peat) respiration in a quantity adequate to account for the over- saturation of CO2. This 13C/12C value, at least in one pool, is lower than the measured value; this could relate to preferential removal of 12CO2 in submerged photosynthesis and methanogenesis in producing the measured CO2 concentration and 13C/12C in the pool. The algae Batrachospermum keratophytum and Mougeotia capucina appear to be dependent on CO2 diffusion followed by C3 biochemistry; the algal 13C/12C ratio relative to pool CO2 13C/ 12C predicts a fractional limitation of photosynthesis by CO2 diffusion of 0.85 – 0.96. This is much higher than the limitation of photosynthesis by CO2 diffusing in algae in lotic environments with similar CO2 oversaturation values, presumably due to the thicker diffusion boundary layers in the lentic pool environment.  相似文献   

14.
Omnivorous animals feed on several food items that often differ in macronutrient and isotopic composition. Macronutrients can be used for either metabolism or body tissue synthesis and, therefore, stable C isotope ratios of exhaled breath (delta(13)C(breath)) and tissue may differ. To study nutrient routing in omnivorous animals, we measured delta(13)C(breath) in 20-g Carollia perspicillata that either ate an isotopically homogeneous carbohydrate diet or an isotopically heterogeneous protein-carbohydrate mixture. The delta(13)C(breath) converged to the delta(13)C of the ingested carbohydrates irrespective of whether proteins had been added or not. On average, delta(13)C(breath) was depleted in (13)C by only ca. -2 per thousand in relation to the delta(13)C of the dietary carbohydrates and was enriched by +8.2 per thousand in relation to the dietary proteins, suggesting that C. perspicillata may have routed most ingested proteins to body synthesis and not to metabolism. We next compared the delta(13)C(breath) with that of wing tissue (delta(13)C(tissue)) in 12 free-ranging, mostly omnivorous phyllostomid bat species. We predicted that species with a more insect biased diet--as indicated by the N isotope ratio in wing membrane tissue (delta(15)N(tissue))--should have higher delta(13)C(tissue) than delta(13)C(breath) values, since we expected body tissue to stem mostly from insect proteins and exhaled CO(2) to stem from the combustion of fruit carbohydrates. Accordingly, delta(13)C(tissue) and delta(13)C(breath) should be more similar in species that feed predominantly on plant products. The species-specific differences between delta(13)C(tissue) and delta(13)C(breath) increased with increasing delta(15)N(tissue), i.e. species with a plant-dominated diet had similar delta(13)C(tissue) and delta(13)C(breath) values, whereas species feeding at a higher trophic level had higher delta(13)C(tissue) than delta(13)C(breath) values. Our study shows that delta(13)C(breath) reflect the isotope ratio of ingested carbohydrates, whereas delta(13)C of body tissue reflect the isotope ratio of ingested proteins, namely insects, supporting the idea of isotopic routing in omnivorous animals.  相似文献   

15.
Because the natural enrichment of carbohydrate with 13C is greater than that of lipid, we hypothesized that the natural enrichment of exhaled CO2 with 13C (EN) could be used to gauge endogenous substrate utilization in exercising human subjects. To test this, EN and the respiratory exchange ratio (R) which equals the respiratory quotient (RQ) in the steady state, were measured simultaneously in seven subjects. Rest and exercise protocols, performed under conditions of room air (sea level) and hypoxic (inspired O2 fraction = 0.15) breathing, were chosen to cause a variety of patterns of oxidative substrate utilization. Work rates were performed both below and above the subject's lactate threshold (LT). Work above the LT was expected to cause the greatest increase in EN reflecting greater utilization of glucose. There was significant intersubject (P less than 0.05) but not intrasubject variability in resting EN. By 40 min of exercise, EN increased significantly (P less than 0.05) over resting values in all exercise protocols during both room air and hypoxia conditions. In the room air studies, we found no difference in EN during the below-LT work, even though there were significant increases in O2 uptake (VO2). In contrast, above-LT work resulted in significantly greater increases in EN by 20 and 40 min of exercise (P less than 0.05). Contrary to our expectations, we observed no separate effect by hypoxia on the EN during exercise. Both EN and R tended to increase from rest to exercise, but during exercise there was no overall correlation between R and the EN. EN reflects changes in endogenous substrate utilization over relatively long periods of time such as at rest, but delays in the appearance of 13CO2 at the mouth due to dilution in body CO2 pools, and possibly isotopic fractionation, preclude the usefulness of EN as an indicator of endogenous fuel mix during short-term exercise.  相似文献   

16.
Measurements of the volume of CO2 exhaled per breath (VCO2/br) are preferable to end-tidal PCO2, when the exhaled flow and CO2 waveforms may be changing during unsteady states, such as during alterations in positive end-expiratory pressure or alterations in cardiac output. We describe computer algorithms that determine VCO2/br from digital measurements of exhaled flow (including discontinuous signals common in anesthesia circuits) and CO2 concentration at the airway opening. Fractional concentration of CO2 is normally corrected for dynamic response and transport delay (TD), measured in a separate procedure. Instead, we determine an on-line adjusted TD during baseline ventilation. In six anesthetized dogs, we compared the determination of VCO2/br with a value measured in a simultaneous collection of expired gas. Over a wide range of tidal volume (180-700 ml), respiratory rate (3-30 min-1), and positive end-expiratory pressure (0-14 cmH2O), VCO2/br was more accurate with use of the adjusted TD than the measured TD (P less than 0.05).  相似文献   

17.
Calcifying vesicles play an important role in the mechanism of aortic calcification induced by dietary cholesterol interventions. This study was initiated to test the hypothesis that alterations in the ratio of bicarbonate/CO2, which is a main physiological buffer, could affect vesicle-mediated calcification. Using rabbits as a model, in vitro calcification of vesicles isolated from aortas was performed to study the effect of the bicarbonate buffer on the mineralization process. When Tris buffer was initially used to maintain pH of the media, ATP-dependent vesicle calcification increased with pH of calcifying media. By replacing Tris with physiological bicarbonate/CO2 buffer, ATP-dependent vesicle calcification increased rapidly with increased ratios of bicarbonate/CO2. The increase appears to be a result of elevated levels of pH through the alteration in the ratios of bicarbonate/CO2. The effect of the physiological concentration of bicarbonate (30 mM) on pH of calcifying media was remarkable since 50 mM of Tris buffer at pH 7.6 failed to prevent a rapid rise in pH under atmospheric CO2. The effect of bicarbonate and CO2 on vesicle calcification was dependent on the ratio of the surface area to the volume of calcifying media, since the ratio profoundly affects the exchange rate between the gas and liquid phases of CO2. Although the pathological conditions that alter the pH remain unknown, it is conceivable that blockage in the supply of blood CO2 to the media by intimal thickening in the lesions could contribute to focal calcification. We conclude that bicarbonate buffer could provide a dynamic and rapid transitional increase in pH of extracellular fluids, thereby creating a favorable condition for the initiation of vesicle-mediated calcification under pathological conditions.  相似文献   

18.
The chemoautotrophic symbiosis Riftia pachyptila has extremely 13C-enriched delta13C values. Neither isotopic discrimination by the RubisCO enzyme of their bacterial endosymbionts, nor the delta13C value of CO2 at their hydrothermal vent habitat, suffice to explain biomass delta13C values in this organism, which range from - 9 to - 16 per thousand. However, these 13C-enriched delta13C values are consistent with the presence of 13C-enriched CO2 within the symbiont cytoplasm. Such a 13C-enriched pool of CO2 is expected when the rate of CO2 fixation by RubisCO, which fixes 12CO2 more rapidly than 13CO2, approaches the rate of exchange between intracellular and extracellular CO2 pools. Rapid CO2 fixation rates will also generate concentration gradients between these two pools. In order to estimate the size of these concentration gradients, an equation was derived, which describes the delta13C of tubeworm biomass in terms of the size of the CO2 gradient between the hydrothermal vent environment and the symbiont cytoplasm. Using mass balance equations for CO2 exchange and fixation by the symbionts and the tubeworm host, this model predicts that a CO2 concentration gradient of up to 17-fold between the symbiont cytoplasm and the environment is sufficient to explain even the most 13C-enriched R. pachyptila biomass. This model illustrates how both physical and enzymatic factors can act to influence the delta13C of intracellular CO2, which, in turn, highlights the danger of assigning a carbon fixation pathway to an autotroph based solely on its biomass delta13C value.  相似文献   

19.
Stable isotopes are becoming an increasingly powerful tool forstudying the physiological ecology of animals. The 13C/12C ratiosof animal tissues are frequently used to reconstruct the dietof animals. This usually requires killing the subjects. Whilethere is an extensive medical literature on measuring the 13C/12Cratio of exhaled CO2 to determine substrate digestion and oxidation,we found little evidence that animal physiologists or physiologicalecologists have applied 13C/12C breath analysis in their studies.The analysis breath 13C/12C ratios has the advantage of beingnon-invasive and non-destructive and can be repeatedly usedon the same individual. Herein we briefly discuss the medicalliterature. We then discuss research which shows that, not onlycan the breath13C/12C ratio indicate what an animal is currentlyeating, but also the animal's diet in the past, and any changesin diet have occurred over time. We show that naturally occurring13C/12C ratios in exhaled CO2 provides quantitative measureof the relative contribution of carbohydrates and lipids toflight metabolism. This technique is ripe for application tofield research, and we encourage physiological ecologists toadd this technique to their toolbox.  相似文献   

20.
During exercise, less additional CO2 is stored per kilogram body weight in children than in adults, suggesting that children have a smaller capacity to store metabolically produced CO2. To examine this, tracer doses of [13C]bicarbonate were administered orally to 10 children (8-12 yr) and 12 adults (25-40 yr) at rest. Washout of 13CO2 in breath was analyzed to estimate recovery of tracer, mean residence time (MRT), and size of CO2 stores. CO2 production (VCO2) was also measured breath by breath using gas exchange techniques. Recovery did not differ significantly between children [73 +/- 13% (SD)] and adults (71 +/- 9%). MRT was shorter in children (42 +/- 7 min) compared with adults (66 +/- 15 min, P less than 0.001). VCO2 per kilogram was higher in the children (5.4 +/- 0.9 ml.min-1.kg-1) compared with adults (3.1 +/- 0.5, P less than 0.0001). Tracer estimate of CO2 production was correlated to VCO2 (r = 0.86, P less than 0.0001) and when corrected for mean recovery accurately predicted the VCO2 to within 3 +/- 14%. There was no difference in the estimate of resting CO2 stores between children (222 +/- 52 ml CO2/kg) and adults (203 +/- 42 ml CO2/kg). We conclude that orally administered [13C]bicarbonate can be used to assess CO2 transport dynamics. The data do not support the hypothesis of lower CO2 stores under resting conditions in children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号