首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of NADPH with ferric complexes to catalyze microsomal generation of reactive oxygen intermediates has been well studied. Experiments were carried out to characterize the ability of NADH to interact with various ferric chelates to promote microsomal lipid peroxidation and generation of .OH-like species. In the presence of NADH and iron, microsomes produced .OH as assessed by the oxidation of a variety of .OH scavenging agents. Rates of NADH-dependent .OH production were 50 to 80% those of the NADPH-catalyzed reaction. The oxidation of dimethyl sulfoxide or t-butyl alcohol was inhibited by catalase and competitive .OH scavengers but not by superoxide dismutase or carbon monoxide. NADH-dependent .OH production was effectively catalyzed by ferric-EDTA and ferric-diethylenetriaminepentaacetic acid (DTPA), whereas ferric-ATP and ferric-citrate were poor catalysts. All these ferric chelates were reduced by microsomes in the presence of NADH (and NADPH). H2O2 was produced in the presence of NADH in a reaction stimulated by the addition of ferric-EDTA, consistent with the increase in .OH production. The latter appeared to be limited by the rate of H2O2 generation rather than the rate of reduction of the ferric chelate. NADH-dependent lipid peroxidation was much lower than the NADPH-catalyzed reaction and showed an opposite response to catalysis by ferric complexes compared to .OH generation as production of thiobarbituric acid-reactive material was increased with ferric-ATP and -citrate, but not with ferric-EDTA or- DTPA, and was not affected by catalase, SOD, or .OH scavengers. These results indicate that NADH can support microsomal reduction of ferric chelates, with the subsequent production of .OH-like species and peroxidation of lipids. The pattern of response of the NADH-dependent reactions with respect to catalytic effectiveness of ferric chelates and sensitivity to radical scavengers is similar to that found with NADPH. Many of the metabolic actions of ethanol have been ascribed to production of NADH as a consequence of oxidation by alcohol dehydrogenase. Since the cytosol normally maintains a highly oxidized NAD+/NADH redox ratio, it is interesting to speculate that increased availability of NADH from the oxidation of ethanol may support microsomal reduction of iron complexes, with the subsequent generation of reactive oxygen intermediates.  相似文献   

2.
The production of potent oxygen radicals by microsomal reaction systems has been well characterized. Relatively little attention has been paid to generation of oxygen radicals by liver nuclei, or to the interaction of nuclei with different ferric complexes to catalyze NADH- or NADPH-dependent production of reactive oxygen intermediates. Intact rat liver nuclei were capable of catalyzing an iron-dependent production of .OH as reflected by the oxidation of .OH scavenging agents such as 2-keto-4-thiomethylbutyrate, dimethyl sulfoxide, and t-butyl alcohol. Inhibition of .OH production by catalase implicates H2O2 as the precursor of .OH generated by the nuclei, whereas superoxide dismutase had only a partially inhibitory effect. The production of .OH with either cofactor was striking increased by addition of ferric-EDTA or ferric-diethylenetriamine-pentaacetic acid (DTPA) whereas ferric-ATP and ferric-citrate were not effective catalysts. All these ferric complexes were reduced by the nuclei in the presence of either NADPH or NADH. The pattern of iron chelate effectiveness in catalyzing lipid peroxidation by nuclei was opposite to that of .OH production; with either NADH or NADPH, nuclear lipid peroxidation was increased by the addition of ferric ammonium sulfate, ferric-ATP, or ferric-citrate, but not by ferric-EDTA or ferric-DTPA. NADPH-dependent nuclear lipid peroxidation was insensitive to catalase, superoxide dismutase, or .OH scavengers; the NADH-dependent reaction showed a partial sensitivity (30 to 40%) to these additions. The overall patterns of .OH production and lipid peroxidation by the nuclei are similar to those shown by microsomes, e.g., effect of ferric complexes, sensitivity to antioxidants; however, rates with the nuclei are less than 20% those of microsomes, which reflect the lower activities of NADPH- and NADH-cytochrome c reductase in the nuclei. The potential for nuclei to reduce ferric complexes and catalyze production of .OH-like species may play a role in the susceptibility of the genetic material to oxidative damage under certain conditions since such radicals would be produced site-directed and not exposed to cellular antioxidants.  相似文献   

3.
Rifamycins are antibacterial antibiotics which are especially useful for the treatment of tuberculosis. Reactive oxygen intermediates are produced in the presence of rifamycin SV and metals such as copper or manganese. Experiments were carried out to evaluate the interaction of rifamycin SV with rat liver microsomes to catalyze the production of reactive oxygen species. At a concentration of 1 mM, rifamycin SV increased microsomal production of superoxide with NADPH as cofactor 3-fold, and with NADH as reductant by more than 5-fold. Rifamycin SV increased rates of H2O2 production by the microsomes twofold with NADPH, and 4- to 8-fold with NADH. In the presence of various iron complexes, microsomes generated hydroxyl radical-like (.OH) species. Rifamycin SV had no effect on NADPH-dependent microsomal .OH production, irrespective of the iron chelate. A striking stimulation of .OH production was found with NADH as the reductant, ranging from 2- to 4-fold with catalyst such as ferric-EDTA and ferric-DTPA to more than 10-fold with ferric-ATP, -citrate, or -histidine. Catalase and competitive .OH scavengers lowered rates of .OH production (chemical scavenger oxidation) and prevented the stimulation by rifamycin. Superoxide dismutase had no effect on the NADH-dependent rifamycin stimulation of .OH production with ferric-EDTA or -DTPA, but was inhibitory with the other ferric complexes. In contrast to the stimulatory effects on production of O2-., H2O2, and .OH, rifamycin SV was a potent inhibitor of microsomal lipid peroxidation. These results show that rifamycin SV stimulates microsomal production of reactive oxygen intermediates, and in contrast to results with other redox cycling agents, is especially effective with NADH as the microsomal reductant. These interactions may contribute to the hepatotoxicity associated with use of rifamycin, and, since alcohol metabolism increases NADH availability, play a role in the elevated toxic actions of rifamycin plus alcohol.  相似文献   

4.
The effect of inducing the rat liver nuclear mixed-function oxidase system by phenobarbital or 3-methylcholanthrene on NADPH- and NADH-dependent production of reactive oxygen intermediates was evaluated. The inducing agents produced a 2-fold increase in cytochrome P-450, a 50 to 70% increase in NADPH-cytochrome c reductase activity, and a 20 to 30% increase in NADH-cytochrome c reductase activity. Associated with these increases was a corresponding increase in NADPH- and NADH-dependent production of hydroxyl radical (.OH)-like species and of H2O2. Rates of .OH production were inhibited by catalase and partially sensitive to superoxide dismutase. The increase in nuclear production of .OH-like species after drug treatment appears to be due a corresponding increase in H2O2 generation. In contrast to H2O2 and .OH generation, production of thiobarbituric acid-reactive material by nuclei was not increased by the phenobarbital or 3-methylcholanthrene treatment. Redox cycling agents such as menadione and paraquat increased oxygen radical generation to similar extents in the control and the induced nuclei. These results indicate that induction of the nuclear mixed-function oxidase system by phenobarbital or 3-methylcholanthrene can result in a subsequent increase in production of reactive oxygen intermediates in the presence of either NADPH or NADH.  相似文献   

5.
Redox cycling agents such as paraquat and menadione increase the generation of reactive oxygen species in biological systems. The ability of NADPH and NADH to catalyze the generation of oxygen radicals from the metabolism of these redox cycling agents by rat liver nuclei was determined. The oxidation of hydroxyl radical scavenging agents by the nuclei was increased in the presence of menadione or paraquat, especially with NADPH as the reductant. Paraquat, even at high concentrations, was relatively ineffective with NADH. The highest rates of generation of .OH-like species occurred with ferric-EDTA as the iron catalyst. Certain ferric complexes such as ferric-ATP, ferric-citrate, or ferric ammonium sulfate, which were ineffective catalysts for .OH generation in the absence of paraquat or menadione, were reactive in the presence of the redox cycling agents. Oxidation of .OH scavengers was sensitive to catalase and competitive .OH-scavenging agents under all conditions. The redox cycling agents increased NADPH-dependent nuclear generation of H2O2; stimulation of H2O2 production may play a role in the increase in .OH generation by menadione and paraquat. Menadione inhibited nuclear lipid peroxidation, whereas paraquat and adriamycin were stimulatory. The nuclear lipid peroxidation with either NADPH or NADH plus the redox cycling agents was not sensitive to catalase or .OH scavengers. These results indicate that the interaction of rat liver nuclei with redox cycling agents and iron leads to the production of potent oxidants which initiate lipid peroxidation or oxidize .OH scavengers. Although NADPH is more effective, NADH can also participate in catalyzing the production of reactive oxygen intermediates from the interaction of quinone redox cycling agents with nuclei. The ability of redox cycling agents to interact with various ferric complexes to catalyze nuclear generation of potent oxidizing species with either NADPH or NADH as reductants may contribute to the oxidative stress, toxicity, and mutagenicity of these agents in biological systems.  相似文献   

6.
The generation of reactive oxygen intermediates by microsomes from ethanol-fed rats and pair-fed controls was determined by assaying for NADPH-dependent chemiluminescence. In the absence or presence of added ferric complexes, microsomal light emission was elevated several-fold after chronic ethanol consumption. Iron complexes such as ferric-citrate or ferric-ATP stimulated, while ferric-EDTA, inhibited microsomal chemiluminescence. Freeze-thawing the microsomes to elevate their content of lipid hydroperoxides resulted in large increases in chemiluminescence; under all conditions, the light emission remained several-fold higher with microsomes from the ethanol-fed rats. Chemiluminescence was not sensitive to superoxide dismutase, catalase, or the hydroxyl radical scavenging agent, dimethyl sulfoxide, but was inhibited by antioxidants and by glutathione. Replacing air with a mixture of 50% nitrogen-50% air or 50% carbon monoxide-50% air had no effect on chemiluminescence by microsomes from the pair-fed controls. However, the chemiluminescent response by microsomes from the ethanol-fed rats was inhibited about 50% by the nitrogen mixture, and was further inhibited (about 75% of values found with 100% air, and 50% of values found with 50% nitrogen-50% air) with the carbon monoxide mixture. The sensitivity to carbon monoxide suggests the possibility that the alcohol-inducible cytochrome P-450 isozyme may contribute, in part, to the elevated light emission produced by microsomes from the ethanol-fed rats. The increase in chemiluminescence by microsomes after chronic ethanol consumption appears to reflect an elevated level of lipid hydroperoxides as well as an increased rate of generation of reactive oxygen species.  相似文献   

7.
The participation of oxygen activated species in the induction of lipid peroxidation (LPO) in the membrane systems containing cytochrome P-450 (liver microsomes) and in the membrane fragments devoid of this hemoprotein (brain and skeletal muscle microsomes) was studied. It was shown that the rate of NADH-dependent LPO does not depend on the presence of hemoproteins and the activity of NADH-specific flavoprotein in the membranes. On the other hand, the microsomal membranes of the liver with high specific contents of b5 and P-450 cytochromes and NADPH-specific flavoprotein, had the highest rates of NADPH-dependent LPO. It was found that the most effective inhibitors of free oxygen activated species in the case of NADPH- and NADH-dependent LPO in the microsomal fractions of liver, brain and skeletal muscles are the superoxide (O ./2) anion radical inhibitors. The singlet oxygen (1O2) quenchers inhibit only NADPH-dependent LPO in the liver, however, in a far lesser degree. The hydroxyl radical (OH) scavengers had no effect on enzymatic LPO in all systems studied.  相似文献   

8.
Organic hydroperoxides can replace NADPH in supporting the oxidation of ethanol by liver microsomes. Experiments were carried out to evaluate the role of hydroxyl radicals in the organic hydroperoxide-catalyzed reaction. Maximum rates of ethanol oxidation occurred in the presence of either 0.5 mM cumene hydroperoxide or 2.5 mM t-butyl hydroperoxide and were linear for 2 to 4 min. The Km for ethanol was about 12 mM and Vmax was about 8 nmol ethanol oxidized/min/mg microsomal protein. Besides ethanol, the organic hydroperoxides supported the oxidation of longer-chain alcohols (1-butanol), and secondary alcohols (isopropanol). The organic hydroperoxide-supported oxidation of alcohols was not affected by several hydroxyl-radical scavengers such as dimethylsulfoxide, mannitol, or 2-keto-4-thiomethylbutyrate which blocked NADPH-dependent oxidation of alcohols by 50% or more. Iron-EDTA, which increases the production of hydroxyl radicals, increased the NADPH-dependent oxidation of ethanol, whereas desferrioxamine, which blocks the production of hydroxyl radicals, inhibited the NADPH-dependent oxidation of ethanol. Neither iron-EDTA nor desferrioxamine had any effect on the organic hydroperoxide-supported oxidation of ethanol. Cumene-and t-butyl hydroperoxide did not support microsomal oxidation of hydroxyl-radical scavengers. These results suggest that, in contrast to the NADPH-dependent oxidation of ethanol, free-hydroxyl radicals do not play a role in the organic hydroperoxide-dependent oxidation of ethanol by microsomes. Ethanol appears to be oxidized by two pathways in microsomes, one which is dependent on hydroxyl radicals, and the other which appears to be independent of these oxygen radicals.  相似文献   

9.
E Dicker  A I Cederbaum 《FASEB journal》1988,2(13):2901-2906
Enzymatic and nonenzymatic mixed-function oxidase systems have been shown to generate an oxidant that catalyzes the inactivation of glutamine synthetase and other metabolic enzymes. Recent studies have shown that microsomes isolated from rats chronically fed ethanol generate reactive oxygen intermediates at elevated rates compared with controls. Microsomes from rats fed ethanol were found to be more effective than control microsomes in catalyzing the inactivation of enzymes added to the incubation system. The enzymes studied were alcohol dehydrogenase, lactic dehydrogenase, and pyruvate kinase. The inactivation process by both types of microsomal preparations was sensitive to catalase and glutathione plus glutathione peroxidase, but was not affected by superoxide dismutase or hydroxyl radical scavengers. Iron was required for the inactivation of the added enzymes; microsomes from the rats fed ethanol remained more effective than control microsomes in catalyzing the inactivation of enzymes in the absence or presence of several ferric complexes. The inactivation of enzymes was enhanced by the addition of menadione or paraquat to the microsomes, and rates of inactivation were higher with the microsomes from the ethanol-fed rats. The enhanced generation of reactive oxygen intermediates and increased inactivation of enzymes by microsomes may contribute toward the hepatotoxic effects associated with ethanol consumption.  相似文献   

10.
Experiments were carried out to evaluate whether the molecular mechanism for ethanol oxidation by microsomes, a minor pathway of alcohol metabolism, involved generation of hydroxyl radical (.OH). Microsomes oxidized chemical .OH scavengers (KMB, DMSO, t-butyl alcohol, benzoate) by a reaction sensitive to catalase, but not SOD. Iron was required for microsomal .OH generation in view of the potent inhibition by desferrioxamine; however, the chelated form of iron was important. Microsomal .OH production was effectively stimulated by ferric EDTA or ferric DTPA, but poorly increased with ferric ATP, ferric citrate, or ferric ammonium sulfate. By contrast, the latter ferric complexes effectively increased microsomal chemiluminescence and lipid peroxidation, whereas ferric EDTA and ferric DTPA were inhibitory. Under conditions that minimize .OH production (absence of EDTA, iron) ethanol was oxidized by a cytochrome P-450-dependent process independent of reactive oxygen intermediates. Under conditions that promote microsomal .OH production, the oxidation of ethanol by .OH becomes more significant in contributing to the overall oxidation of ethanol by microsomes. Experiments with inhibitors and reconstituted systems containing P-450 and NADPH-P-450 reductase indicated that the reductase is the critical enzyme locus for interacting with iron and catalyzing production of reactive oxygen species. Microsomes isolated from rats chronically fed ethanol catalyzed oxidation of .OH scavengers, light emission, and inactivation of added metabolic enzymes at elevated rates, and displayed an increase in ethanol oxidation by a .OH-dependent and a P-450-dependent pathway. It is possible that enhanced generation of reactive oxygen intermediates by microsomes may contribute to the hepatotoxic effects of ethanol.  相似文献   

11.
The hepatic microsomal haem oxygenase activity of rats treated with CoCl2 was studied kinetically by measuring biliverdin, the immediate product of the reaction. Biliverdin was extracted with diethyl ether/ethanol mixture, and was determined by the difference between A690 and A800. The apparent Km value for NADPH (at 50 microM-haematin) was about 0.2 microM when an NADPH-generating system was used, whereas that for NADH was about 630 microM. Essentially the same Vmax. values were obtained for both the NADH- and NADPH-dependent haem oxygenase reactions. No synergism was observed with NADH and NADPH. The NADH-dependent reaction was competitively inhibited by NADP+, with a Ki of about 10 microM. The inhibitoin of the NADH-dependent reaction by the antibody against rat liver microsomal NADPH-cytochrome c reductase was essentially complete, with a pattern similar to that of the NADPH-dependent reaction. The immunochemical experiment and the comparison of the kinetic values with the reported data on isolated NADH-cytochrome b5 reductase and NADPH--cytochrome c reductase indicated the involvement of the latter enzyme in NADH-dependent haem oxygenation by microsomal fraction in situ.  相似文献   

12.
The ethanol-inducible form of cytochrome P-450 (P-450IIE1) has previously been shown to exhibit an unusually high rate of oxidase activity with the subsequent formation of reactive oxygen species, e.g., hydrogen peroxide, and to be the main contributor of microsomal oxidase activity in liver microsomes from acetone-treated rats [Ekstr?m & Ingelman-Sundberg (1989) Biochem. Pharmacol. (in press)]. The results here presented indicate that oxygen exposure of rats causes an about 4-fold induction of P-450IIE1 in rat liver and lung microsomes. The induction in liver was not accompanied by any measurable increase in the P-450IIE1 mRNA levels, but the enhanced amount of P-450IIE1 accounted for 60% of the net 50% increase in the level of hepatic P-450 as determined spectrophotometrically. The induction of P-450IIE1 was maximal after 60 h of O2 exposure, and concomitant increases in the rates of liver microsomal CCl4-dependent lipid peroxidation, O2 consumption, NADPH oxidation, O2- formation, H2O2 production, and NADPH-dependent microsomal lipid peroxidation were seen. Liver microsomes from oxygen-treated rats had very similar properties to those of microsomes isolated from acetone-treated rats with respect to the P-450IIE1 content and catalytic properties, but different from those of thyroxine-treated animals. Treatment of rats with the P-450IIE1 inducer acetone in combination with oxygen exposure caused a potentiation of the NADPH-dependent liver and lung microsomal lipid peroxidation and decreased the survival time of the rats. The results reached indicate a role for cytochrome P-450 and, in particular, for cytochrome P-450IIE1 in oxygen-mediated tissue toxicity.  相似文献   

13.
The effect of Ca2+ or Mg2+ on cytochrome b5 reduction by porcine liver microsomes was examined using trypsin-solubilized cytochrome b5 as a substrate. The reduction of exogenous cytochrome b5 by microsomes was low at 1.2 microM cytochrome b5 (3.9 or 2.7 nmol/min/mg protein, respectively, with NADH or NADPH). The addition of CaCl2 greatly enhanced either NADH-dependent or NADPH-dependent cytochrome b5 reduction. At 2 mM CaCl2, the reduction rate was increased to 23- or 18-fold of control, respectively with NADH or NADPH. The concentration for half-maximal effect (EC50) was 0.5 or 0.6 mM in the NADH or NADPH systems, respectively. MgCl2 also stimulated cytochrome b5 reduction with a EC50 value of 1.0 mM in the NADH system or 0.6 mM in the NADPH system. The comparison with the result with KCl indicated that the activation by CaCl2 or MgCl2 is caused mainly by their divalent cation moiety. The Km value for cytochrome b5 was decreased and the Vmax was increased by calcium with either the NADH- or the NADPH-dependent system. NADH-ferricyanide reductase activity was not affected by calcium, but NADPH-ferricyanide reductase activity was stimulated as well as NADPH-cytochrome c reductase activity. In the presence of Triton X-100, divalent cations were inhibitory in NADH-dependent cytochrome b5 reduction, and in contrast, stimulative in NADPH-dependent reaction. These findings suggest that the activation of cytochrome b5 reduction by divalent cations in the NADH system is mainly due to an increasing accessibility of the substrate, and in the NADPH system, in addition to this, a direct effect of divalent cations on NADPH-cytochrome P450 reductase is also involved.  相似文献   

14.
NADH-dependent 3,4-benzpyrene hydroxylase activity was detected in the purified mitochondrial outer membrane fraction from the livers of rats treated with 3-methylcholanthrene. The specific activity in the outer membrane fraction is nearly equal to that of microsomes, a level too high to be accounted for only by the microsomal contamination. On the other hand, the NADPH-dependent 3,4-benzpyrene hydroxylase activity in the outer membrane fraction is about 50% of that of microsomes. The ratio of the specific activity of NADPH- to NADH-dependent 3,4-benzpyrene hydroxylase in microsomal fraction was about 3.5, while that of the outer membrane fraction was about 1.5. Moreover, it was found that NADH-dependent 3,4-benzpyrene hydroxylase activity in mitochondrial outer membrane from control rat liver was cyanide-insensitive, while that in microsomes was cyanide-sensitive. These results suggest the presence in the mitochondrial outer membrane fraction of aryl hydrocarbon hydroxylase activity which uses as electron donor NADH nearly to the same extent as NADPH. The hydroxylase system is composed of cyanide-insensitive cytochrome P-450 and is inducible markedly by 3-methylcholanthrene treatment. The probable electron transfer pathways in the mitochondrial outer membrane cytochrome P-450 oxidase system are discussed.  相似文献   

15.
1. Both NADH and NADPH supported the oxidation of adrenaline to adrenochrome in bovine heart submitochondrial particles. The reaction was completely inhibited in the presence of superoxide dismutase, suggesting that superoxide anions (O(2) (-)) are responsible for the oxidation. The optimal pH of the reaction with NADPH was at pH7.5, whereas that with NADH was at pH9.0. The reaction was inhibited by treatment of the preparation with p-hydroxymercuribenzoate and stimulated by treatment with rotenone. Antimycin A and cyanide stimulated the reaction to the same extent as rotenone. The NADPH-dependent reaction was inhibited by inorganic salts at high concentrations, whereas the NADH-dependent reaction was stimulated. 2. Production of O(2) (-) by NADH-ubiquinone reductase preparation (Complex I) with NADH or NADPH as an electron donor was assayed by measuring the formation of adrenochrome or the reduction of acetylated cytochrome c which does not react with the respiratory-chain components. p-Hydroxymercuribenzoate inhibited the reaction and rotenone stimulated the reaction. The effects of pH and inorganic salts at high concentrations on the NADH- and NADPH-dependent reactions of Complex I were essentially similar to those on the reactions of submitochondrial particles. 3. These findings suggest that a region between a mercurialsensitive site and the rotenone-sensitive site of the respiratory-chain NADH dehydrogenase is largely responsible for the NADH- and NADPH-dependent O(2) (-) production by the mitochondrial inner membranes.  相似文献   

16.
Increased levels of cytochrome P450 2E1 (CYP2E1) produced by low-molecular-weight compounds is mostly due to stabilization of the enzyme against proteolytic degradation. CYP2E1, in the absence of substrate or ligand, normally has a short half-life, but the factors which regulate CYP2E1 turnover or trigger its rapid degradation are not known. Since CYP2E1 is active in producing reactive oxygen species, experiments were carried out to evaluate whether reactive oxygen species modulated the degradation of CYP2E1. CYP2E1 present in human liver microsomes was very stable. Addition of the cytosol fraction produced degradation of CYP2E1, and this was enhanced when NADPH was present in the reaction system. Antioxidants or iron chelators which prevent lipid peroxidation, prevented the degradation of CYP2E1 by the cytosolic fraction. Similarly, diphenyleneiodonium chloride, which inhibits NADPH-dependent electron transfer, prevented the degradation of CYP2E1, as did 4-methylpyrazole, a ligand which increases the level of CYP2E1. If microsomes were first incubated with NADPH for 30 min, followed by the addition of these agents, there was no protection against CYP2E1 degradation. Lactacystin, an inhibitor of the proteasome, decreased the degradation of CYP2E1. In intact HepG2 cells transduced to express CYP2E1, proteasome inhibitors elevated steady-state levels of CYP2E1. Steady-state levels of CYP2E1 were increased by about 50% when the cells were incubated with trolox. Trolox decreased the rate of loss of CYP2E1 protein when the cells were treated with cycloheximide. These results suggest that NADPH-dependent production of reactive oxygen species may result in oxidative modification of CYP2E1, followed by rapid degradation of the labilized CYP2E1 by the proteasome complex. It is interesting to speculate that one consequence of the high rates of production of reactive oxygen species by CYP2E1 is its own labilization and subsequent rapid degradation, and this may be a regulatory mechanism to prevent high levels of the enzyme from accumulating within the cell.  相似文献   

17.
Effects of chronic alcohol treatment have been investigated on the rates of extramitochondrial NADH utilization by hepatic mitochondria in the presence or absence of “malate-aspartate shuttle,” oxidation of ethanol, α-glycerophosphate, and the activity of succinic dehydrogenase, along with the changes in the intrahepatic distribution of aspartate aminotransferase. The rates of blood alcohol clearance, hepatic alcohol dehydrogenase activity, and NADPH-dependent microsomal ethanol oxidation were also studied after different time intervals of alcohol withdrawal from chronically alcohol-fed animals. Hepatic mitochondria from chronically ethanol-fed mice (ethanol withheld 20 hr before sacrifice) utilized extramitochondrial NADH at rates 25–40% higher than the corresponding pair-fed controls. Addition of malateaspartate shuttle components to mitochondria from control and ethanol-fed groups resulted in 70 and 90% stimulation of NADH utilization, respectively. Mitochondria from both groups showed respiratory control upon ADP addition (state 3). Preincubation with amino-oxyacetate or hydrazine, which inhibit aspartate aminotransferase activity, prevented the stimulatory effect of malate-aspartate shuttle on NADH utilization. Mitochondria from livers of chronic ethanol-fed mice in the presence of reconstituted malate-aspartate shuttle showed 30–40% higher utilization of ethanol than the corresponding pair-fed control animals. The rate of mitochondrial α-glycerophosphate utilization by alcohol-fed animals was significantly higher than the control group. Succinic dehydrogenase activity measured as an index of mitochondrial permeability in the absence of Ca2+ showed 85% higher activity in alcoholtreated group than the control animals. Chronic ethanol feeding for 4 weeks resulted in an increase in the activity of hepatic aspartate aminotransferase in the cytoplasmic fraction and a corresponding decrease in the mitochondrial fraction. Alcohol withdrawal from chronic alcohol-fed animals resulted in a decrease in the blood alcohol clearance rate after 10 days. Furthermore, a lack of correlation was observed between the rates of blood alcohol clearance and the activity of hepatic alcohol dehydrogenase on one hand, and between the rates of blood alcohol clearance and the microsomal ethanol-oxidizing activity on the other.  相似文献   

18.
1. Ethanol metabolism in slices or homogenates of transplantable hepatocellular carcinoma HC-252 (HC-252) was 50 to 60% of the rate found in host liver slices or homogenates when they were expressed per gram of tissue wet weight and 70 to 80% of the liver when the rates were expressed per milligram of tissue protein. At 10 mM ethanol, the activities of alcohol dehydrogenase in tumor and liver supernatants were comparable. 2. Tumor microsomes did not oxidize ethanol in the presence of a NADPH-generating system, indicating the absence of the microsomal ethanol-oxidizing system and catalase-mediated peroxidation of ethanol. The HC-252 microsomes were contaminated with catalase, and acetaldehyde production occurred in the presence of a H2O2-generating system (xanthine oxidase). The virtual absence of ethanol oxidation and drug metabolism (aminopyrine demethylase and aniline hydroxylase) in HC-252 microsomes may be due to the low activities of NADPH-cytochrome c reductase, NADPH oxidase, and NADPH-dependent oxygen uptake. 3. Microsomal oxidation of ethanol was present in Morris hepatoma 5123C, a well-differentiated tumor of intermediate growth rate, while activity was negligible in microsomes from Morris hepatoma 7288CTC, a less differentiated tumor. Microsomal NADPH oxidase was present in the well differentiated tumor 5123C but was lacking in the less differentiated tumor 7288CTC. Several microsomal, mitochondrial, and cytosolic properties of HC-252 are similar to those of Morris hepatoma 7288CTC but differ from those of the more differentiated 5123C tumor and normal liver. 4. The content of mitochondrial protein in HC-252 was only 25% that of liver, and oxygen consumption per gram of tumor was only 28% that of the liver. When corrected for the mitochondrial protein content, oxygen uptake in tumor HC-252 and liver homogenates was comparable. Isolated tumor and liver mitochondria displayed comparable State 4 and 3 rates of oxygen consumption with succinate and glutamate as substrates. The activities of the reconstituted malate-aspartate and alpha-glycerophosphate shuttles were only slightly lower in isolated HC-252 mitochondria compared to liver mitochondria, when shuttles were reconstituted with purified enzymes. 5. Antimycin inhibited alcohol metabolism,and pyruvate stimulated alcohol metabolism, much less in tumor slices than in liver slices, suggesting the presence of an augmented mitochondria-independent, cytosolic mechanism for oxidizing reducing equivalents in the tumor. These factors suggest that oxidation of NADH is the limiting factor in ethanol metabolism. Whereas, in the liver mitochondrial reoxidation is predominant, in HC-252, cytosolic reoxidation of NADH also plays a major role.  相似文献   

19.
We evaluated the effect of "weak" CYP2E1 binders (ethanol, acetone and glycerol) "tight" CYP2E1 binders (4-methylpyrazole, imidazole, isoniazid and pyridine) and CCl4 (suicide substrate of CYP2E1) on the NADPH-dependent production of microsomal reactive oxygen species (ROS), lipid peroxidation (LPO), and subsequent modification of microsomal and CYP2E1 proteins. The oxidation of 2',7'-dichlorofluorescin diacetate (DCFHDA) was used as an index of formation of microsomal ROS and LPO-derived reactive species. Microsomal LPO was determined by malondialdehyde (MDA) HPLC measurement. Addition of NADPH to rat liver microsomes initiated DCFHDA oxidation and MDA formation, leading to further selective modification of microsomal proteins and proteases-independent degradation of CYP2E1 protein. Iron chelators prevented these processes whereas hydroxyl radical scavengers showed weak effects, suggesting an important role of LPO. Among the tested CYP2E1 binders, only isoniazid strongly inhibited NADPH-dependent DCFHDA oxidation, LPO and modification of microsomal proteins. Other CYP2E1 binders showed weak inhibitory effects of these processes. Concerning NADPH-dependent modification of CYP2E1 protein, all of the tested CYP2E1 binders, except glycerol, prevented this process with a different potency (isoniazid > 4-methylpyrazole = imidazole = pyridine 3 > acetone > ethanol). "Tight" binders were more effective than "weak" binders. The CCl4 stimulated the DCFHDA oxidation, LPO and CYP2E1 protein modification. Among the tested CYP2E1 binders, only isoniazid effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals. In microsomes isolated from CYP2E1 transfected HepG2 cells, isoniazid inhibited the CYP2E1-dependent DCFHDA oxidation whereas other CYP2E1 binders did not inhibit this reaction although these compounds strongly inhibited CYP2E1 activity. The present study demonstrates that CYP2E1 binders and isoniazid differentially inhibit LPO-catalyzed oxidative modification of CYP2E1 protein in NADPH-dependent microsomal reactions. It seems that CYP2E1 binders protect CYP2E1 from the oxidative modification mainly by binding to the active site of the enzyme, rather than by blocking the reactive species production. The strong protective effect of isoniazid can be attributed to its ability to scavenge free radicals. These effects of CYP2E1 binders are considered to contribute to the regulation of hepatic CYP2E1 protein levels via stabilization of the protein.  相似文献   

20.
3-Methyl-substituted fatty acids are first oxidatively decarboxylated (alpha-oxidation) before they are degraded further via beta-oxidation. We synthesized [1-14C]phytanic and 3-[1-14C]methylmargaric acids in order to study their alpha-oxidation in isolated rat hepatocytes, rat liver homogenates and subcellular fractions. alpha-Oxidation was measured as the production of radioactive CO2. In isolated hepatocytes, maximal rates of alpha-oxidation amounted to 7 and 10 nmol/min x 10(8) cells with phytanic acid and 3-methylmargaric acid, respectively. At equimolar substrate concentrations, alpha-oxidation of branched fatty acids was approximately 10- to 15-fold slower than the beta-oxidation of the straight chain palmitate. In whole liver homogenates, rates of alpha-oxidation that equaled 60 to 70% of those observed in the hepatocytes were obtained. Optimum rates required O2, NADPH, Fe3+, and ATP. Fe3+ could be replaced by Fe2+ and ATP could be replaced by a number of other phosphorylated nucleosides and even inorganic phosphate without loss of activity. NADH could substitute for NADPH but not always with full restoration of activity. A variety of other cofactors and metal ions was either inhibitory or without effect. Scavengers of reactive oxygen species, known to be formed during the NADPH-dependent microsomal reduction of ferric-phosphate complexes, were without effect on alpha-oxidation. No evidence was found for the accumulation of NADPH-dependent or Fe(3+)-dependent reaction intermediates. Subcellular fractionation of liver homogenates demonstrated that alpha-oxidation was located predominantly, if not exclusively, in the endoplasmic reticulum. alpha-Oxidation, measured in microsomal fractions, was not inhibited by CO, cytochrome c, or ferricyanide, indicating that NADPH cytochrome P450 reductase and cytochrome P450 are not involved in alpha-oxidation. Our results indicate that, contrary to current belief, alpha-oxidation is catalyzed by the endoplasmic reticulum. The cofactor requirements suggest that alpha-oxidation involves the reduction of Fe3+ by electrons from NADPH and that it is stimulated by phosphate ions and nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号