首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We have investigated the inhibitory effect of 2-hydroxymethyl-1-naphthol diacetate (TAC) on the respiratory burst of rat neutrophils and the underlying mechanism of action was also assessed in this study. TAC caused concentration-related inhibition of the formylmethionyl-leucyl-phenylalanine (fMLP) plus dihydrocytochalasin B (CB)- and phorbol 12-myristate 13-acetate (PMA)-induced superoxide anion (O2*-) generation (IC50 10.2+/-2.3 and 14.1+/-2.4 microM, respectively) and O2 consumption (IC50 9.6+/-2.9 and 13.3+/-2.7 microM, respectively) of neutrophils. TAC did not scavenge the generated O2*- during dihydroxyfumaric acid autoxidation. TAC inhibited both the transient elevation of [Ca2+]i in the presence or absence of [Ca2+]o (IC50 75.9+/-8.9 and 84.7+/-7.9 microM, respectively) and the generation of inositol trisphosphate (IP3) (IC50 72.0+/-9.7 microM) in response to fMLP. Cytosolic phospholipase C (PLC) activity was also reduced by TAC at a same range of concentrations. The PMA-induced PKC-beta associated to membrane was attenuated by TAC (about 80% inhibition at 30 microM). Upon exposure to fMLP, the cellular cyclic AMP level was decreased in neutrophils pretreated with TAC. TAC attenuated fMLP-induced phosphorylation of mitogen-activated protein kinase (MAPK) p42/44 (IC50 17.4+/-1.7 microM), but not p38. The cellular formation of phosphatidic acid (PA) and, in the presence of ethanol, phosphatidylethanol (PEt) induced by fMLP was inhibited by TAC in a concentration-dependent manner (IC50 25.4+/-2.4 and 25.9+/-1.4 microM, respectively). TAC had no effect on the O2*- generation of PMA-stimulated and arachidonic acid (AA)-stimulated NADPH oxidase preparations. However, TAC caused concentration-related decrease of the membrane associated p47phoX in PMA-stimulated neutrophils (about 80% inhibition at 30 microM). We conclude that inhibition by TAC of the neutrophil respiratory burst is probably attributable to the blockade of the p42/44 MAPK and phospholipase D (PLD) pathways, the membrane translocation of PKC, and to the failure in assembly of a functional NADPH oxidase complex. Blockade of the PLC pathway by TAC probably plays a minor role.  相似文献   

2.
One of the proposed functions of phosphatidic acid (PA) formation from phospholipase D (PLD) activation in neutrophils is to promote degranulation induced by receptor agonists. The present study shows that the time course and dose response of PA formation and degranulation induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP) differed. PLD activation and degranulation also exhibited different dose response to genistein and epigallocatechin gallate (EGCG), inhibitors of protein tyrosine kinases. Genistein inhibited PLD activity with an IC(50) value of 12.2 microM in fMLP- and 107 microM in phorbol myristate acetate (PMA)-stimulated cells. It required higher concentrations of genistein to inhibit degranulation than to inhibit PLD activity induced by fMLP. EGCG in the range of 40-400 microM had no effect on PLD activity but it inhibited the release of beta-glucuronidase and elastase by fMLP-stimulated cells. These results demonstrate differential regulation of PLD activity and degranulation of primary granules by genistein and EGCG in fMLP-stimulated neutrophils.  相似文献   

3.
Mast cells, neutrophils and macrophages are important inflammatory cells that have been implicated in the pathogenesis of acute and chronic inflammatory diseases. To explore a novel anti-inflammatory agent, we have synthesized certain 4-anilinofuro[2,3-b]quinoline and 4-phenoxyfuro[2,3-b]quinoline derivatives and evaluated their anti-inflammatory activities by reaction of 3,4-dichlorofuro[2,3-b]quinoline with appropriate Ar-NH(2) or Ar-OH. Compounds 6a and 15 were proved to be more potent than the reference inhibitor, mepacrine for the inhibition of rat peritoneal mast cell degranulation with IC(50) values of 6.5 and 16.4 microM, respectively. Compounds 2b, 6a, 10, and 15 also showed potent inhibitory activity (IC(50)=7.2-29.4 microM) for the secretion of lysosomal enzyme and beta-glucuronidase from neutrophils. These results also indicated that oxime derivatives are more potent than the respective ketone precursors (6a> or =2a; 7a> or =3), and the substituent such as Me at the oxime decreased inhibitory activity (6a> or =6b; 7a> or =7b). Among these derivatives, compound 6a showed the most potent activity with IC(50) values of 6.5-11.6 microM for the inhibition of mast cell degranulation and neutrophil degranulation.  相似文献   

4.
Protein I, the major outer membrane protein of Neisseria gonorrhoeae, is a voltage-dependent anion channel which can translocate from the gonococcus into human cells. Since granule exocytosis from neutrophils is regulated by ion fluxes, we examined the effect of protein I on neutrophil activation. Pretreatment with protein I (250 nM) impaired degranulation from neutrophils: beta-glucuronidase release decreased to 27 +/- 6% S.E. of cells treated with N-f-Met-Leu-Phe (fMLP, 0.1 microM) and to 13 +/- 4% of cells treated with leukotriene B4 (LTB4, 0.1 microM); lysozyme release decreased to 52 +/- 17% of fMLP-treated cells and 22 +/- 9% of LTB4-treated cells. Morphometric analysis was consistent: control neutrophils increased their surface membrane after fMLP (43.3 +/- 5.6 microns relative perimeter versus 71.4 +/- 3.7 microns) while protein I-treated neutrophils did not (29.4 +/- 2 (S.E.) microns relative perimeter versus 34 +/- 4 microns). Enzyme release after exposure to phorbol myristate acetate was not affected (lysozyme: 86 +/- 27% of control). Cell/cell aggregation in response to fMLP was inhibited by treatment with protein I. However, generation of O2 was not affected. Protein I altered the surface membrane potential (Oxonol V): protein I evoked a transient membrane hyperpolarization which was not inhibited by furosemide. After exposure to fMLP, protein I-treated neutrophils underwent a furosemide-sensitive hyperpolarization rather than the usual depolarization. Protein I did not alter increments in [Ca]i (Fura-2) stimulated by fMLP (460 +/- 99 nM (S.E.) versus 377 +/- 44 nM) nor decrements in [pH]i (7.22 +/- 0.04 S.E. versus 7.22 +/- 0.02, bis-(carboxy-ethyl)carboxyfluorescein). The results suggest that degranulation and O2 generation have separate ionic requirements and that protein I interrupts the activation sequence proximal to activation of protein kinase C.  相似文献   

5.
Chemistry and biological activities of constituents from Morus australis.   总被引:2,自引:0,他引:2  
A novel constituent named australone B (1) was further isolated from the cortex of Morus australis (Moraceae). The structure of 1 has been elucidated by one- and two-dimension spectra. In human citrated platelet-rich plasma, 1 showed strong inhibition of aggregation induced by adrenaline in a concentration-dependent manner with an IC(50) value of about 33.3 microM. Compound 1 (30 microM) also showed inhibitory effects on superoxide anion formation from rat neutrophils stimulated with formyl-Met-Leu-Phe (fMLP)/cytochalasin B (CB). Morusin (2) inhibited superoxide anion formation from rat neutrophils stimulated with phorbol myristate acetate (PMA) in a concentration-dependent manner with an IC(50) value of 66.9+/-2.5 microM.  相似文献   

6.
Mast cells, neutrophils and macrophages are important inflammatory cells that have been implicated in the pathogenesis of acute and chronic inflammatory diseases. To explore a novel anti-inflammatory agent, we have synthesized certain 9-phenoxyacridine and 4-phenoxyfuro[2,3-b]quinoline derivatives and evaluated their anti-inflammatory activities. The title compounds were synthesized by reaction of either 9-chloroacridine or 3,4-dichlorofuro[2,3-b]quinoline with appropriate Ar-OH and their anti-inflammatory activities were studied on inhibitory effects on the activation of mast cells, neutrophils and macrophages. Four 9-(4-formylphenoxy)acridine derivatives 2b-2e were proved to be more potent than the reference inhibitor, mepacrine for the inhibition of rat peritoneal mast cell degranulation with IC(50) values of 6.1, 5.9, 13.5, and 4.7 microM, respectively. Compounds 2c, 3b, 3c, and 5a also showed potent inhibitory activity (IC(50)=4.3-18.3 microM) for the secretion of lysosomal enzyme and beta-glucuronidase from neutrophils. In addition, 2d, 3a, and 4 inhibited TNF-alpha formation from the N9 cells (the brain resident macrophages) with IC(50) vales less then 10 microM. These results indicated that acridine derivatives exhibited more potent anti-inflammatory activities than their respective furo[2,3-b]quinoline counterparts (4 vs 9; 5a vs 10a; 5b vs 10b).  相似文献   

7.
We have investigated the inhibitory activity of compound MK-0591 (3-[1-(4-chlorobenzyl)-3-(t-butylthio)-5-(quinolin-2-yl-methoxy)-i ndol-2- yl]-2,2-dimethyl propanoic acid) on 5-lipoxygenase (5-LO) product synthesis in various human phagocytes stimulated with either the ionophore A23187, opsonized zymosan (OPZ), platelet-activating factor (PAF), or formyl-methionyl-leucyl-phenylalanine (fMLP). The lipoxygenase products were analyzed by reversed-phase HPLC. MK-0591 inhibited the formation of 5-hydroxyeicosatetraenoic acid, leukotriene (LT) B4, its omega-oxidation products, and 6-trans-isomers with IC50 values of 2.8-4.8 nM in A23187-stimulated neutrophils. In these conditions, arachidonic acid at a concentration of 10 microM had no effect on MK-0591 inhibitory activity. In neutrophils stimulated with OPZ, the synthesis of LTB4, its omega-oxidation products, and 6-trans-isomers was inhibited with IC50 values of 9.5-11.0 nM. MK-0591 inhibited 5-LO product synthesis in A23187-stimulated blood monocytes, eosinophils, and alveolar macrophages with IC50 values of 0.3-0.9, 3.7-5.3, and 8.5-17.3 nM, respectively. In neutrophils primed with granulocyte--macrophage colony-stimulating factor and stimulated with PAF, lipoxygenase product synthesis was inhibited with IC50 values of 7.7-8.7 nM. At the concentration of 1 microM, MK-0591 had no inhibitory effect on 15-lipoxygenase activity in human polymorphonuclear leukocytes, nor on human platelet 12-lipoxygenase and cyclooxygenase. In conclusion, MK-0591 is a very potent and specific inhibitor of 5-LO product synthesis in various types of human phagocytes.  相似文献   

8.
A number of 2-(furan-2-yl)-4-phenoxyquinoline derivatives have been synthesized and evaluated for anti-inflammatory evaluation. 4-[(2-Furan-2-yl)quinolin-4-yloxy]benzaldehyde (8), with an IC(50) value of 5.0 microM against beta-glucuronidase release, was more potent than its tricyclic furo[2,3-b]quinoline isomer 3a (>30 microM), its 4'-COMe counterpart 7 (7.5 microM), and its oxime derivative 13a (11.4 microM) and methyloxime derivative 13b (>30 microM). For the inhibition of lysozyme release, however, oxime derivative 12a (8.9 microM) and methyloxime derivative 12b (10.4 microM) are more potent than their ketone precursor 7 and their respective tricyclic furo[2,3-b]quinoline counterparts 4a and 4b. Among them, 4-[4-[(2-furan-2-yl)-quinolin-4-yloxy]phenyl]but-3-en-2-one (10) is the most active against lysozyme release with an IC(50) value of 4.6 microM, while 8 is the most active against beta-glucuronidase release with an IC(50) value of 5.0 microM. (E)-1-[3-[(2-Furan-2-yl)quinolin-4-yloxy]phenyl] ethanone oxime (11a) is capable of inhibiting both lysozyme and beta-glucuronidase release with IC(50) values of 7.1 and 9.5 microM, respectively. For the inhibition of TNF-alpha formation, 1-[3-[(2-furan-2-yl)quinolin-4-yloxy]phenyl]ethanone (6) is the most potent with an IC(50) value of 2.3 microM which is more potent than genistein (9.1 microM). For the inhibitory activity of fMLP-induced superoxide anion generation, 11a (2.7 microM), 11b (2.8 microM), and 13b (2.2 microM) are three of the most active. None of above compounds exhibited significant cytotoxicity.  相似文献   

9.
Some chalcones exert potent anti-inflammatory activities. 2',5'-Dialkoxychalcones and 2',5'-dihydroxy-4-chloro-dihydrochalcone inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)/interferon-gamma (IFN-gamma)-activated N9 microglial cells and in LPS-activated RAW 264.7 macrophage-like cells have been demonstrated in our previous reports. These compounds also suppressed the inducible NO synthase (iNOS) expression and cyclooxygenase-2 (COX-2) activity in RAW 264.7 cells. In an effort to continually develop potent anti-inflammatory agent, a series of chalcones were prepared by Claisen-Schmidt condensation of appropriate acetophenones with appropriate aromatic aldehyde and then evaluated their inhibitory effects on the activation of mast cells, neutrophils, macrophages, and microglial cells. Most of the 2',5'-dihydroxychaclone derivatives exhibited potent inhibitory effects on the release of beta-glucuronidase and lysozyme from rat neutrophils stimulated with formyl-Met-Leu-Phe (fMLP)/cytochalasin B (CB). Some chalcones showed potent inhibitory effects on superoxide anion generation in rat neutrophils in response to fMLP/CB. Compounds 1 and 5 exhibited potent inhibitory effects on NO production in macrophages and microglial cells. Compound 11 showed inhibitory effect on NO production and iNOS protein expression in RAW 264.7 cells. The present results demonstrated that most of the 2',5'-dihydroxychaclones have anti-inflammatory effects. The potent inhibitory effect of 2',5'-dihydroxy-dihydrochaclones on NO production in LPS-activated macrophage, probably through the suppression of iNOS protein expression, is proposed to be useful for the relief of septic shock.  相似文献   

10.
Phytochemical investigations on the alkaloidal fraction of the whole plant of the Isatis tinctoria led to the isolation of the alkaloids 1-6., 3'-Hydroxyepiglucoisatisin (3), Epiglucoisatisin (2) were found to be potent urease inhibitors in a concentration-dependent manner with IC(50) values 25.63 +/- 0.74, 37.01 +/- 0.41 and 31.72 +/- 0.93, 47.33 +/- 0.31 microM against Bacillus pasteurii & Jack bean urease, respectively. Compounds 3 and 2 also showed potent inhibitory potential against alpha-chymotrypsin with IC(50) values of 23.40 +/- 0.21 and 27.45 +/- 0.23 microM, respectively.  相似文献   

11.
Our previous study (Am J Physiol Heart Circ Physiol 288: H1331-H1338, 2005) demonstrated that TNF-alpha induced significant leukocyte adhesion without causing increases in microvessel permeability, and that formyl-Met-Leu-Phe-OH (fMLP)-stimulated neutrophils in the absence of adhesion increased microvessel permeability via released reactive oxygen species (ROS). The objective of our present study is to investigate the mechanisms that regulate neutrophil respiratory burst and the roles of fMLP-stimulated ROS release from adherent leukocytes in microvessel permeability. A technique that combines single-microvessel perfusion with autologous blood perfusion was employed in venular microvessels of rat mesenteries. Leukocyte adhesion was induced by systemic application of TNF-alpha. Microvessel permeability was assessed by measuring hydraulic conductivity (L(p)). The 2-h autologous blood perfusion after TNF-alpha application increased leukocyte adhesion from 1.2 +/- 0.2 to 13.3 +/- 1.6 per 100 microm of vessel length without causing increases in L(p). When fMLP (10 microM) was applied to either perfusate (n = 5) or superfusate (n = 8) in the presence of adherent leukocytes, L(p) transiently increased to 4.9 +/- 0.9 and 4.4 +/- 0.3 times the control value, respectively. Application of superoxide dismutase or an iron chelator, deferoxamine mesylate, after fMLP application prevented or attenuated the L(p) increase. Chemiluminescence measurements in isolated neutrophils demonstrated that TNF-alpha alone did not induce ROS release but that preexposure of neutrophils to TNF-alpha in vivo or in vitro potentiated fMLP-stimulated ROS release. These results suggest a priming role of TNF-alpha in fMLP-stimulated neutrophil respiratory burst and indicate that the released ROS play a key role in leukocyte-mediated permeability increases during acute inflammation.  相似文献   

12.
All of the common cytochalasins activate superoxide anion release and exocytosis of beta-N-acetylglucosaminidase and lysozyme from guinea-pig polymorphonuclear leukocytes (neutrophils) incubated in a buffered sucrose medium. Half-maximal activation of both processes is produced by approx. 0.2 microM cytochalasin A, C greater than 2 microM cytochalasin B greater than or equal to 4-5 microM cytochalasin D, E. While maximal rates of O2- release and extents of exocytosis require extracellular calcium (1-2 mM), replacing sucrose with monovalent cation chlorides is inhibitory to neutrophil activation by cytochalasins. Na+, K+ or choline inhibit either cytochalasin B- or E-stimulated O2- production with IC50 values of 5-10 mM and inhibition occurs whether Cl-, NO3- or SCN- is the anion added with Na+ or K+. Release of beta-N-acetylglucosaminidase in control or cytochalasin B-stimulated cells is inhibited by NaCl(IC50 approximately 10 mM), while cytochalasin E-stimulated exocytosis is reduced less and K+ or choline chloride are ineffective in inhibiting either cytochalasin B- or E-stimulated exocytosis. Release of beta-glucuronidase, myeloperoxidase or acid phosphatase from neutrophils incubated in buffered sucrose is not stimulated by cytochalasin B. Stimulation of either O2- or beta-N-acetylglucosaminidase release by low concentrations of cytochalasin A is followed by inhibition of each at higher concentrations. It appears that all cytochalasins can activate both NAD(P)H oxidase and selective degranulation of neutrophils incubated in salt-restricted media and that differential inhibition of these two processes by monovalent cations and/or anions is produced at some step(s) subsequent to cytochalasin interaction with the cell.  相似文献   

13.
Ko HH  Hung CF  Wang JP  Lin CN 《Phytochemistry》2008,69(1):234-239
The antiinflammatory properties of triterpenoids and steroids from both Ganoderma lucidum and Ganoderma tsugae were studied. Twelve compounds, including ergosta-7,22-dien-3beta-ol (1), ergosta-7,22-dien-3beta-yl palmitate (2), ergosta-7,22-dien-3-one (3), ergosta-7,22-dien-2beta,3alpha,9alpha-triol (4), 5alpha,8alpha-epidioxyergosta-6,22-dien-3beta-ol (5), ganoderal A (6), ganoderal B (7), ganoderic aldehyde A (8), tsugaric acid A (9), 3-oxo-5alpha-lanosta-8,24-dien-21-oic acid (10), 3alpha-acetoxy-5alpha-lanosta-8,24-dien-21-oic acid ester beta-d-glucoside (11), and tsugaric acid B (12), were assessed in vitro by determining their inhibitory effects on the chemical mediators released from mast cells, neutrophils, and macrophages. Compound 10 showed a significant inhibitory effect on the release of beta-glucuronidase from rat neutrophils stimulated with formyl-Met-Leu-Phe (fMLP)/cytochalasin B (CB) whereas compound 9 significantly inhibited superoxide anion formation in fMLP/CB-stimulated rat neutrophils. Compound 10 also exhibited a potent inhibitory effect on NO production in lipopolysaccharide (LPS)/interferon-gamma (IFN-gamma)-stimulated N9 microglial cells. Moreover, compound 9 was also able to protect human keratinocytes against damage induced by ultraviolet B (UV B) light, which indicated 9 could protect keratinocytes from photodamage.  相似文献   

14.
The activity of thymidylate synthase (TS) purified in our laboratory from Lactobacillus leichmannii was inhibited by pergularinine (PGL) and tylophorinidine (TPD) and deoxytubulosine (DTB) isolated from the Indian medicinal plants Pergularia pallida and Alangium lamarckii respectively. Cytotoxicity studies showed that cell growth of L. leichmannii was inhibited (IC50 = 40-45 microM) by all the three alkaloids, the concentrations > 80-90 microM resulting in complete loss of the enzyme activity. Ki values of the enzyme calculated from Lineweaver-Burk and Dixon plots for PGL, TPD and DTB were 10 x 10(-6) M, 9 x 10(-6) M and 7 x 10(-6) M respectively. These are typed as 'non-competitive' inhibitors of TS. All the three alkaloids inhibited (IC50 = 50 microM) the elevated TS activity of leukocytes in cancer patients with clinically diagnosed chronic myelocytic leukemia (n = 10), acute lymphocytic leukemia (n = 8) and metastatic solid tumours (n = 3).  相似文献   

15.
Aristolochic acid and PGBx, two structurally unrelated, protein-targeted inhibitors of isolated phospholipases A2, are effective antagonists of calcium ionophore A23187-stimulated mobilization of [3H]arachidonate from human neutrophils. We now report that preincubation of neutrophils with oleoylacetylglycerol (OAG, 15 microM) substantially reverses the inhibitory effect of 200 microM aristolochic acid (from 70 to 24% inhibition). Similarly, OAG increases the IC50 for PGBx from 2.5 to greater than 20 microM. The effects of OAG on inhibition by either aristolochic acid or PGBx are dose-dependent, with an ED50 of 2.5 microM. Protection against inhibition by either aristolochic acid or PGBx is also observed with phorbol myristate acetate (PMA, ED50 3 nM), but not 4-alpha-phorbol didecanoate. Aristolochic acid and PGBx do not inhibit PMA-stimulated superoxide generation, and are thus not protein kinase C inhibitors. Furthermore, neither aristolochic acid nor PGBx inhibit diglyceride generation through the phospholipase D/phosphatidate phosphohydrolase pathway. A23187-stimulated [3H]arachidonate mobilization is increased by 20-50% when neutrophils are preincubated with OAG or PMA. The present results indicate that OAG and PMA also modulate the A23187-stimulated [3H]arachidonate mobilization so as to render it less sensitive to inhibitors of phospholipase A2.  相似文献   

16.
Protein tyrosine phosphatase 1B inhibitors from Morus root bark   总被引:2,自引:0,他引:2  
An organic layer prepared from the Chinese crude drug 'Sang-Bai-Pi' (Morus root bark) was studied in order to identify the inhibitory compounds for protein tyrosine phosphatase 1B (PTP1B). Bioassay-guided fractionation resulted in the isolation of sanggenon C (1), sanggenon G (2), mulberrofuran C (3) and kuwanon L (4) as PTP1B inhibitors, along with moracin O (5) and moracin P (6). Compounds 1-4 inhibited PTP1B with IC(50) values ranging from 1.6+/-0.3 microM to 16.9+/-1.1 microM.  相似文献   

17.
The antioxidant activity in vitro of three poly(phenylacetyloxy)-substituted 1,1':4',1"-terphenyl compounds from the edible mushroom Thelephora ganbajun were investigated. The IC50 values of compounds 1-3 for lipid peroxidation in rat liver homogenate were 400, 48, 54 microM, respectively. Compounds 1-3 increased superoxide dismutase (SOD) activity with EC50 values of 182, 74, 204 microM. They were also assessed on the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity with EC50 values of 49, 1233, 55 microM.  相似文献   

18.
The tyrosinase inhibitory potential of seventeen synthesized oxazolone derivatives has been evaluated and their structure-activity relationships developed in the present work. All the synthesized derivatives, 3-19, demonstrated excellent in vitro tyrosinase inhibitory properties having IC50 values in the range of 1.23+/-0.37-17.73+/-2.69 microM, whereas standard inhibitors l-mimosine and kojic acid have IC50 values 3.68+/-0.02 and 16.67+/-0.52 microM,, respectively. Compounds 4-8 having IC50 values 3.11+/-0.95, 3.51+/-0.25, 3.23+/-0.66, 1.23 +/- 0.37, and 2.15+/-0.75, respectively, were found to be very active members of the series, even better than both the standard inhibitors. However, compounds 3, 9-11, 13, 14, 16, 17, and 19 were found to be better than kojic acid but not l-mimosine. (2-Methyl-4-[E,2Z)-3-phenyl-2-propenyliden]-1,3-oxazol-5(4H)-one (7) bearing a cinnamyol residue at C-4 of oxazolone moiety and an IC50 = 1.23+/-0.37 microM was found to be the most active one among all tested compounds. These studies reveal that the substitution of functional group (s) at C-4 and C-2 positions plays a vital role in the activity of this series of compounds. It is concluded that compound 7 may act as a potential lead molecule to develop new drugs for the treatment of tyrosinase based disorders.  相似文献   

19.
Paeoninol and paeonin C, oligostilbene and monoterpene galactoside, have been isolated from the methanolic extract of the fruits of Paeonia emodi. Their structures have been assigned on the basis of spectral analysis including 1D and 2D NMR techniques. In addition, 4-hydroxybenzoic acid 3, gallic acid 4 and methyl gallate 5 have also been reported for the first time from this species. Compounds 1 and 2 have displayed potent inhibitory potential against enzyme lipoxygenase in a concentration-dependent fashion with the IC(50) values 0.77 and 99.5 microM, along with ABTS(.+) radical quenching activity with IC(50) values of 147.5 and 498.2 microM, respectively.  相似文献   

20.
Phytochemical investigations on the alkaloidal fraction of the whole plant of the Isatis tinctoria led to the isolation of the alkaloids 1-6. Compounds 3, 2 were found to be potent butyrylcholinesterase and lipoxygenase enzymes inhibitors in a concentration-dependent manner with the IC(50) values 16.3 +/- 0.06 and 19.7 +/- 0.03 microM against BChE and 30.6 +/- 0.02 and 33.7 +/- 0.05 microM against LOX, respectively. The compounds (1-6) showed significant antifungal activity against Trichophyton schoen leinii, Aspergillus niger, Candida albicans, Trichophyton simii, and Macrophomina phaseolina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号