首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of microbial biofilms in the phyllosphere of terrestrial plants has recently been demonstrated, but few techniques to study biofilms associated with living plant tissues are available. Here we report a technique to estimate the proportion of the bacterial population on leaves that is assembled in biofilms and to quantitatively isolate bacteria from the biofilm and nonbiofilm (solitary) components of phyllosphere microbial communities. This technique is based on removal of bacteria from leaves by gentle washing, separation of biofilm and solitary bacteria by filtration, and disintegration of biofilms by ultrasonication. The filters used for this technique were evaluated for their nonspecific retention rates of solitary bacteria and for the efficiency of filtration for different concentrations of solitary bacteria in the presence of biofilms and other particles. The lethality and efficiency of disintegration of the sonication conditions used here were also evaluated. Isolation and quantification of bacteria by this technique is based on use of culture media. However, oligonucleotide probes, sera, or epifluorescent stains could also be used for direct characterization of the biofilm and solitary bacteria in the suspensions generated by this technique. Preliminary results from estimates of biofilm abundance in phyllosphere communities show that bacteria in biofilms constitute between about 10 and 40% of the total bacterial population on broad-leaf endive and parsley leaves.  相似文献   

2.
The discovery that biofilms are ubiquitous among the epiphytic microflora of leaves has prompted research about the impact of biofilms on the ecology of epiphytic microorganisms and on the efficiency of strategies to manage these populations for disease control and to ensure food safety. Biofilms are likely to influence the microenvironment and phenotype of the microorganisms they harbor. However, it is also important to determine whether there are differences in the types of bacteria within biofilms compared to those outside of biofilms so as to better target microorganisms via disease control strategies. Broad-leaved endive (Cichorium endivia var. latifolia) harbors biofilms containing fluorescent pseudomonads. These bacteria can cause considerable post-harvest losses when this plant is used for manufacturing minimally processed salads. To determine whether the population structure of the fluorescent pseudomonads in biofilms is different from that outside of biofilms on the same leaves, bacteria were isolated quantitatively from the biofilm and solitary components of the epiphytic population on leaves of field-grown broad-leaved endive. Population structure was determined in terms of taxonomic identities of the bacteria isolated, in terms of genotypic profiles, and in terms of phenotypic traits related to surface colonization and biofilm formation. The results illustrate that there are no systematic differences in the composition and structure of biofilm and solitary populations of fluorescent pseudomonads, in terms of either genotypic profiles or phenotypic profiles of the strains. However, Gram-positive bacteria tended to occur more frequently within biofilms than outside of biofilms. We suggest that leaf colonization by fluorescent pseudomonads involves a flux of cells between biofilm and solitary states. This would allow bacteria to exploit the advantages of these two types of existence; biofilms would favor resistance to stressful conditions, whereas solitary cells could foster spread of bacteria to newly colonizable sites on leaves as environmental conditions fluctuate.  相似文献   

3.
Hildebrandt, A. C, J. C. Wilmar, H. Johns, and A. J. Riker. (U. Wisconsin, Madison.) Growth of edible chlorophyllous plant tissues in vitro, Amer. Jour. Bot. 50(3): 248–254. Illus. 1963.—Plant callus cultures were attempted from roots, stems, leaves or excised embryos of 32 species of plants on a basal mineral salts–sucrose agar medium (T-medium), on T-medium + coconut milk + α-naphthaleneacetic acid + calcium pantothenate (C-medium) and on C-medium + 2,4-dichlorophenoxyacetic acid (D-medium). Embryos on T- or C-medium generally produced normal plants, while on D-medium, they often produced callus only. Fresh isolates of carrot, endive, lettuce, parsley, red kidney bean, and navy bean gave moderate to excellent callus on C-medium. Parsley and navy bean also produced excellent callus on D-medium. Strains of callus from potato, tomato, grape and rose also grew well on C- or D-medium. In the light, red pigmentation developed on rose, parsley, and grape callus. Chlorophyll formation was inhibited on D-medium, but on C-medium more or less chlorophyll was initiated in callus from carrot, endive, lettuce, pea, potato and certain rose varieties. Chlorophyll formation was also strong in endive callus on T-medium supplemented with casein hydrolysate, i-inositol and NAA. The amount and type of sugar used in C-medium influenced the amount of growth and were critical in relation to chlorophyll formation. Carrot tissues in constant light produced abundant chlorophyll and were still growing on media without added sugar after 6 weeks.  相似文献   

4.
Total, fluorescent, and pectolytic epiphytic bacterial population sizes were quantified on leaves of different age groups of broad-leaved endive during field cultivation from leaf emergence until harvest. Greater bacterial population densities (log(inf10) CFU per square centimeter) were observed on outer leaves than on inner leaves of the plants throughout the growing season. These differences were statistically significant for total bacterial populations at all sampling times and were often significant for fluorescent and pectolytic bacterial populations. At harvest, a linear gradient of decreasing densities of epiphytic bacteria from outer (older) to inner (younger) leaves of the head was significant. Leaf age influenced the frequency distribution and variability of bacterial population sizes associated with leaves of broad-leaved endive. Total bacterial population sizes were greater at leaf emergence for leaves emerging during the second half of the cultivation period than for leaves emerging earlier. The size of fluorescent and pectolytic bacterial populations on newly emerged leaves increased throughout the season as plants aged. To assess the importance of plant age on bacterial immigration at leaf emergence, bacterial densities were quantified on leaves emerging simultaneously on plants of different ages. In two of the three experiments, greater bacterial population sizes were observed on leaves emerging on younger plants. This indicates that factors other than an increase in concentration of airborne bacteria can lead to increases in population sizes at leaf emergence as plants age in the field. Results of leaf pruning experiments suggested that adjacent leaves may act as a barrier for immigration of fluorescent bacteria on newly emerged leaves. Survival of an inoculated strain of Pseudomonas fluorescens on newly emerged leaves generally did not vary with the age of plants. However, these effects were not consistent among experiments, suggesting that interactions among micro- and macroenvironmental conditions, physiological condition of leaves, and accessibility of leaves to airborne bacteria are important in controlling epiphytic bacterial population sizes.  相似文献   

5.
Zoonotic pathogens such as Salmonella can cause gastrointestinal illness if they are ingested with food. Foods such as salads pose a greater risk because they are consumed raw and have been the source of major outbreaks of disease from fresh produce. The novel light microscopy methods used in this study allow detailed, high resolution imaging of the leaf surface environment (the phyllosphere) and allow pathogen tracking. Episcopic differential interference contrast microscopy coupled with epifluorescence was used to view the natural microflora in situ on salad leaves and their topographical distribution. Fluorescent nucleic acid staining was used to differentiate between bacterial colonists and inorganic debris. Salmonella enterica serovar Thompson expressing green fluorescent protein was inoculated onto individual spinach leaves for 24 h at 22°C in order to observe spatial and temporal patterning of colonization on the two surfaces of each leaf under different osmotic conditions. The results obtained show that salad leaves are host to high numbers of bacteria, typically 105 per square millimetre. Cells are present in complex three-dimensional aggregations which often have a slimy appearance, suggesting the presence of biofilms. Washing of the leaves had little effect on the number of adherent pathogens, suggesting very strong attachment. Episcopic differential interference contrast microscopy is a rapid alternative to both scanning electron microscopy and confocal laser scanning microscopy for visualizing leaf topography and biofilm formation in the natural state.  相似文献   

6.
Laboratory scale continuous-flow-through chambers (flow cells) facilitate the observation of microbes in a controlled, fully hydrated environment, although these systems often do not simulate the environmental conditions under which microorganisms are found. We developed a flow cell that mimics a subsurface groundwater-saturated rock fracture and is amenable to confocal laser scanning microscopy while allowing for the simple removal of the attached biomass. This flow cell was used to investigate the effect of toluene, a representative contaminant for non-aqueous phase liquids, on groundwater-derived biofilms. Reduced average biofilm biomass and thickness, and diminished diversity of amplifiable 16S rRNA sequences were observed for biofilms that developed in the presence of toluene, compared to the biofilms grown in the absence of toluene. The flow cell also allowed the detection of fluorescent protein-labelled cells.  相似文献   

7.
The study characterized the sessile microbial communities on mortar and stone in Milan University's Richini's Courtyard and investigated the relationship between airborne and surface-associated microbial communities. Active colonization was found in three locations: green and black patinas were present on mortar and black spots on stone. Confocal laser scanning microscopy, scanning electron microscopy and culture-independent molecular methods revealed that the biofilm causing deterioration was dominated by green algae and black fungi. The mortar used for restoration contained acrylic and siloxane resins that could be used by microorganisms as carbon and energy sources thereby causing proliferation of the biofilm. Epifluorescence microscopy and culture-based methods highlighted a variety of airborne microflora. Bacterial and fungal counts were quantitatively similar to those reported in other investigations of urban areas, the exception being fungi during summer (1–2 orders of magnitude higher). For the first time in the cultural heritage field, culture-independent molecular methods were used to resolve the structure of airborne communities near discoloured surfaces, and to investigate the relationship between such communities and surface-associated biofilms.  相似文献   

8.
In some zones of Antarctica's cold and dry desert, the extinction of cryptoendolithic microorganisms leaves behind inorganic traces of microbial life. In this paper, we examine the transition from live microorganisms, through their decay, to microbial fossils using in situ microscopy (transmission electron microscopy, scanning electron microscopy in back-scattered electron mode) and microanalytical (energy dispersive X-ray spectroscopy) techniques. Our results demonstrate that, after their death, endolithic microorganisms inhabiting Commonwealth Glacier sandstone from the Antarctica McMurdo Dry Valleys become mineralized. In some cases, epicellular deposition of minerals and/or simply filling up of empty moulds by minerals leads to the formation of cell-shaped structures that may be considered biomarkers. The continuous deposition of allochthonous clay minerals and sulfate-rich salts fills the sandstone pores. This process can give rise to microbial fossils with distinguishable cell wall structures. Often, fossilized cell interiors were of a different chemical composition to the mineralized cell walls. We propose that the microbial fossil formation observed was induced by mineral precipitation resulting from inorganic processes occurring after the death of cryptoendolithic microorganisms. Nevertheless, it must have been the organic template that provoked the diffusion of mineral elements and gave rise to their characteristic distribution pattern inside the fossilized cells.  相似文献   

9.
Peritoneal dialysis (PD) is a renal substitutive therapy based on the infusion of a dialysate in the peritoneum, which induces through an osmotic gradient the ultrafiltration of water and the clearance of blood stream impurities by the peritoneal membrane. The colonization of Tenckhoff catheters (TCs) used in PD by pathogenic microorganisms can lead to peritonitis, and probably catheter removal. Here, optical microscopy and scanning electron microscopy were applied to study biofilm formation in 11 TCs. Biofilms varied in their morphology and thickness. Short-term catheters (6 months) presented thinner deposits (3 μm) with granular or flat morphologies, either on the intraluminal or external surfaces. Bacterial colonies were found on catheters from infected patients. A tendency was observed for long-term catheters (6–8 years) to present thicker biofilms (30–35 μm). Surprisingly, patients' cells colonized the deep layers of the thicker biofilms, forming a complex multicelullar community. It was concluded that the presence of a biofilm is not necessarily related with peritonitis, and biofilm features may correlate to the therapy time.  相似文献   

10.
Peritoneal dialysis (PD) is a renal substitutive therapy based on the infusion of a dialysate in the peritoneum, which induces through an osmotic gradient the ultrafiltration of water and the clearance of blood stream impurities by the peritoneal membrane. The colonization of Tenckhoff catheters (TCs) used in PD by pathogenic microorganisms can lead to peritonitis, and probably catheter removal. Here, optical microscopy and scanning electron microscopy were applied to study biofilm formation in 11 TCs. Biofilms varied in their morphology and thickness. Short-term catheters (6 months) presented thinner deposits (3 μm) with granular or flat morphologies, either on the intraluminal or external surfaces. Bacterial colonies were found on catheters from infected patients. A tendency was observed for long-term catheters (6-8 years) to present thicker biofilms (30-35 μm). Surprisingly, patients' cells colonized the deep layers of the thicker biofilms, forming a complex multicelullar community. It was concluded that the presence of a biofilm is not necessarily related with peritonitis, and biofilm features may correlate to the therapy time.  相似文献   

11.
The fate of Listeria monocytogenes on green leafy vegetables (broad-leaved endive, curly-leaved endive, butterhead lettuce and lamb's lettuce) was studied. Populations of L. monocytogenes increased by 1.5 log in 7 d at 10°C on broad-leaved endives and butterhead lettuce, by 0.5 log on curly-leaved endives and decreased by 1 log on lamb's lettuce. Growth patterns of the epiphytic microflora were similar among the four salad types.  相似文献   

12.
Enterococcus faecalis is a ubiquitous bacterium of the gut that is observed in persistent periradicular infections. Its pathogenicity is associated with biofilm formation and the ability to survive under nutrient-poor (starvation) conditions. However, characteristics of chemical composition of biofilm cells developed by starved E. faecalis cells remain poorly understood. In this study, E. faecalis cells in exponential, stationary, and starvation phases were prepared and separately cultured to form biofilms. Confocal laser scanning microscopy was performed to verify biofilm formation. Raman microscopy was used to investigate the chemical composition of cells within the biofilms. Compared to cells in exponential or stationary phase, starved cells developed biofilms with fewer culturable cells (P?E. faecalis.  相似文献   

13.
Here, we used an in vitro biofilm approach to study metal resistance and/or tolerance of mixed-species biofilms grown from an oil sand tailings pond in northern Alberta, Canada. Metals can be inhibitory to microbial hydrocarbon degradation. If microorganisms are exposed to metal concentrations above their resistance levels, metabolic activities and hydrocarbon degradation can be slowed significantly, if not inhibited completely. For this reason, bioremediation strategies may be most effective if metal-resistant microorganisms are used. Viability was measured after exposure to a range of concentrations of ions of Cu, Ag, Pb, Ni, Zn, V, Cr, and Sr. Mixed-species biofilms were found to be extremely metal resistant; up to 20 mg/L of Pb, 16 mg/L of Zn, 1,000 mg/L of Sr, and 3.2 mg/L of Ni. Metal mineralization was observed by visualization with scanning electron microscopy with metal crystals of Cu, Ag, Pb, and Sr exuding from the biofilms. Following metal exposure, the mixed-species biofilms were analyzed by molecular methods and were found to maintain high levels of species complexity. A single species isolated from the community (Rhodococcus erythropolis) was used as a comparison against the mixed-community biofilm and was seen to be much less tolerant to metal stress than the community and did not biomineralize the metals.  相似文献   

14.
Confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and soft X-ray scanning transmission X-ray microscopy (STXM) were used to map the distribution of macromolecular subcomponents (e.g., polysaccharides, proteins, lipids, and nucleic acids) of biofilm cells and matrix. The biofilms were developed from river water supplemented with methanol, and although they comprised a complex microbial community, the biofilms were dominated by heterotrophic bacteria. TEM provided the highest-resolution structural imaging, CLSM provided detailed compositional information when used in conjunction with molecular probes, and STXM provided compositional mapping of macromolecule distributions without the addition of probes. By examining exactly the same region of a sample with combinations of these techniques (STXM with CLSM and STXM with TEM), we demonstrate that this combination of multimicroscopy analysis can be used to create a detailed correlative map of biofilm structure and composition. We are using these correlative techniques to improve our understanding of the biochemical basis for biofilm organization and to assist studies intended to investigate and optimize biofilms for environmental remediation applications.  相似文献   

15.
Nematodes recovered from the hindgut of zebras were examined with scanning and transmission electron microscopy for microorganisms. Microorganisms were observed attached to the posterior extremities of two groups of nematodes, atractids and cyathostomes. Novel techniques were used to culture the microorganisms, and these included rinses to reduce contamination from hindgut flora and the design of the culture media. Electron microscopy revealed a flat bacterium not previously observed, as well as small rods and segmented filamentous bacteria. Culturing techniques resulted in isolation of a Propionibacterium species.Offprint requests to: R. C. Krecek.  相似文献   

16.
Confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and soft X-ray scanning transmission X-ray microscopy (STXM) were used to map the distribution of macromolecular subcomponents (e.g., polysaccharides, proteins, lipids, and nucleic acids) of biofilm cells and matrix. The biofilms were developed from river water supplemented with methanol, and although they comprised a complex microbial community, the biofilms were dominated by heterotrophic bacteria. TEM provided the highest-resolution structural imaging, CLSM provided detailed compositional information when used in conjunction with molecular probes, and STXM provided compositional mapping of macromolecule distributions without the addition of probes. By examining exactly the same region of a sample with combinations of these techniques (STXM with CLSM and STXM with TEM), we demonstrate that this combination of multimicroscopy analysis can be used to create a detailed correlative map of biofilm structure and composition. We are using these correlative techniques to improve our understanding of the biochemical basis for biofilm organization and to assist studies intended to investigate and optimize biofilms for environmental remediation applications.  相似文献   

17.
Microbes frequently live within multicellular, solid surface-attached assemblages termed biofilms. These microbial communities have architectural features that contribute to population heterogeneity and consequently to emergent cell functions. Therefore, three-dimensional (3D) features of biofilm structure are important for understanding the physiology and ecology of these microbial systems. This paper details several protocols for scanning electron microscopy and confocal laser scanning microscopy (CLSM) of biofilms grown on polystyrene pegs in the Calgary Biofilm Device (CBD). Furthermore, a procedure is described for image processing of CLSM data stacks using amira™, a virtual reality tool, to create surface and/or volume rendered 3D visualizations of biofilm microorganisms. The combination of microscopy with microbial cultivation in the CBD — an apparatus that was designed for highthroughput susceptibility testing — allows for structure-function analysis of biofilms under multivariate growth and exposure conditions.  相似文献   

18.
We investigated phototrophic microorganisms dwelling on stone walls made of Piperno, a volcanic rock frequently used as construction material in historical buildings in Naples, Italy. Biofilms from three historical buildings in the center of the city and from a natural Piperno quarry located in a suburban area were examined. Light and electron microscopy, and molecular biology techniques allowed the identification of 17 species belonging to Cyanobacteria, Rhodophyta, Bacillariophyta, and Chlorophyta. Cyanobacteria were the dominant components in all the biofilms. No significant differences in microbial composition were observed for biofilms collected in autumn and spring, with minor exceptions for the quarry samples, where environmental conditions were relatively more stable than in the city. Results are discussed in comparison with information on microbial communities dwelling on other kinds of substrata commonly used in historical buildings in the Neapolitan area.  相似文献   

19.
20.
Efficient dissociation of microorganisms from their aggregate matrix is required to study the microorganisms without interaction with their native environment (e.g., biofilms, flocs, granules, etc.) and to assess their community composition through the application of molecular or microscopy techniques. To this end, we combined enzymatic treatments and a cell extraction by density gradient to efficiently recover anaerobic microorganisms from urban wastewater treatment plant sludge. The enzymes employed (amylase, cellulase, DNase, and pectinase) as a pretreatment softly disintegrated the extrapolymeric substances (EPS) interlocked with the microorganisms. The potential damaging effects of the applied procedure on bacterial and archaeal communities were assessed by studying the variations in density (using quantitative PCR), diversity (using capillary electrophoresis single-strand conformation polymorphism fingerprinting [CE-SSCP]), and activity (using a standard anaerobic activity test) of the extracted microorganisms. The protocol preserved the general capacity of the microbial community to produce methane under anaerobic conditions and its diversity; particularly the archaeal community was not affected in terms of either density or structure. This cell extraction procedure from the matrix materials offers interesting perspectives for metabolic, microscopic, and molecular assays of microbial communities present in complex matrices constituted by bioaggregates or biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号