首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maximum biomass in iron-limited photosynthetic batch cultures of chlorella increased as the logarithm of the iron concentration. The growth yield from iron (Y x/Fe) showed a marked inverse relation to the specific growth rate. The maximum biomass yield, g dry biomass/g iron consumed, was 7.5x103 with specific growth rate 0.108 h-1; the minimum was 0.79×103 with specific growth rate 0.145 h-1. The maximum specific growth rate in the exponential phase of Fe limited cultures varied as the initial Fe concentration. Fe-limited growth made the cells adhere to a glass surface.Abbreviation O.D. optical density  相似文献   

2.
The effect of individual environmental conditions (pH, pO2, temperature, salinity, concentration of ethanol, propanol, tryptone and yeast extract) on the specific growth rate as well as ethanol and glycerol production rate of Saccharomyces cerevisiae S288C was mapped during the fermentative growth in aerobic auxo-accelerostat cultures. The obtained steady-state values of the glycerol to ethanol formation ratio (0.1 mol mol−1) corresponding to those predicted from the stoichiometric model of fermentative yeast growth showed that the complete repression of respiration was obtained in auxostat culture and that the model is suitable for calculation of Y ATP and Q ATP values for the aerobic fermentative growth. Smooth decrease in the culture pH and dissolved oxygen concentration (pO2) down to the critical values of 2.3 and 0.8%, respectively, resulted in decrease in growth yield (Y ATP) and specific growth rate, however the specific ATP production rate (Q ATP) stayed almost constant. Increase in the concentration of biomass (>0.8 g dwt l−1), propanol (>2 g l−1) or NaCl (>15 g l−1) lead at first to the decrease in the specific growth rate and Q ATP, while Y ATP was affected only at higher concentrations. The observed decrease in Q ATP was caused by indirect rather than direct inhibition of glycolysis. The increase in tryptone concentration resulted in an increase in the specific growth rate from 0.44 to 0.62 h−1 and Y ATP from 12.5 to 18.5 mol ATP g dwt−1. This study demonstrates that the auxo-accelerostat method, besides being an efficient tool for obtaining the culture characteristics, provides also decent conditions for the experiments elucidating the control mechanisms of cell growth.  相似文献   

3.
The growth and photosynthesis of Alexandrium tamarense (Lebour) Balech in different nutrient conditions were investigated. Low nitrate level (0.0882 mmol/L) resulted in the highest average growth rate from day 0 to day 10 (4.58 × 102 cells mL?1 d?1), but the lowest cell yield (5420 cells mL?1) in three nitrate level cultures. High nitrate‐grown cells showed lower levels of chlorophyll a‐specific and cell‐specific light‐saturated photosynthetic rate (Pmchl a and Pmcell), dark respiration rate (Rdchla and Rdcell) and chlorophyll a‐specific apparent photosynthetic efficiency (αchla) than was seen for low nitrate‐grown cells; whereas the cells became light saturated at higher irradiance at low nitrate condition. When cultures at low nitrate were supplemented with nitrate at 0.7938 mmol/L in late exponential growth phase, or with nitrate at 0.7938 mmol/L and phosphate at 0.072 mmol/L in stationary growth phase, the cell yield was drastically enhanced, a 7–9 times increase compared with non‐supplemented control culture, achieving 43 540 cells mL?1 and 52 300 cells mL?1, respectively; however, supplementation with nitrate in the stationary growth phase or with nitrate and phosphate in the late exponential growth phase increased the cell yield by no more than 2 times. The results suggested that continuous low level of nitrate with sufficient supply of phosphate may facilitate the growth of A. tamarense.  相似文献   

4.
Recombinant hG-CSF was expressed in Pichia pastoris under the control of the AOX1 promoter. In this study, the glycerol feeding rate was adjusted to achieve the maximum attainable specific growth rate before induction. Using a two-stage glycerol feeding method, the specific growth rate was changed from a maximum value of 0.21 h−1 (at the beginning of feeding) to 0.15 h−1 prior to induction. With this approach, the final dry cell wt and rhG-CSF yield achieved was close to 120 g l−1 and 320 mg l−1, respectively. Our study found that the two-stage feeding method allowed the overall productivity of rhG-CSF to increase 2.9 times that of the conventional fed-batch method.  相似文献   

5.
The effect of growth rate on the physiology of Beneckea natriegens was studied in chemostat culture. The molar growth yields (Y) from glucose and oxygen, the specific rates of oxygen (q O 2) and glucose (q glc) consumption and the specific rate of CO2 production (q CO 2) were linearly dependent on the growth rate over the dilution rate 0.17 h-1 to 0.60 h-1. Further increase in the dilution rate resulted in a decrease in growth yield and respiration rate and these changes were coincident with increases in the specific rate of glucose utilisation and of acetate production. The affinity of Beneckea natriegens for glucose was similar when measured either directly in chemostat culture or in a closed oxygen electrode system using harvested bacteria. The total content of cytochromes decreased with increasing growth rate. However, the quantity of CO-binding cytochromes remained independent of growth rate and correlated with the potential respiration rate.  相似文献   

6.
A simple, accurate model capable of predicting cell growth and methanol utilization during the mixed substrate fed-batch fermentation of MutS recombinant Pichia pastoris was developed and was used to design an exponential feeding strategy for mixed substrate fed-batch fermentation at a constant specific growth rate. Mixed substrate feeding has been shown to boost productivity in recombinant fed-batch culture of P. pastoris, while fixed growth rate exponential feeding during fed-batch culture is a useful tool in process optimization and control.  相似文献   

7.
Growth experiments measured the effects of an initial starvation period followed by a single nutrient pulse. Nutrient pulses were conducted at four different N-levels (65, 1514, 2900, and 6080 μg N L-1) and four different P-levels (84, 281, 639, and 849 μg P L-1) using isolates of Bostrychia moritziana (Sonder ex Kutzing) J.Agardh and Caloglossa leprieurii (Mon-tagne) G.Martens. Specific growth rates (% day-1) in primary axis length (6. moritziana only) and surface area were measured using digital imaging. Results showed that the specific growth rates of both algae were highly dependent on the N-levels of the seawater (P < 0.001–0.05). Specific growth rates for the B. moritziana were approximately 3.5% day-1 at t = 7 days declining to approximately 1.0–1.5% day-1 at t = 49 days for the primary axis length, and approximately 8–9% day-1 declining to approximately 2–3% day-1 for surface area. The specific growth rate declined more rapidly with decreasing N initially added to the medium. In C. leprieurii, the specific growth rates for all four conditions at t = 8 days were approximately 11–13% day-1, but N/O declined to approximately 3% day-1 whereas the others declined to only approximately 7–8% day-1 by t = 49 days. The effects of initial P-levels on growth varied, but generally indicated a direct relationship with specific growth rate. In C. leprieurii, the number of nodes and blades per plant was also measured via digital imaging and were found to increase with increasing N-levels, whereas P-levels had no influence. It was concluded that B. moritziana and C. leprieurii are prone to N-limitation, but P-limitation is less prone. Using digital imaging to measure the specific growth rate in total surface area and primary axis length provided a significantly more accurate depiction of the rate of growth than some of the more conventional means of measuring growth rate.  相似文献   

8.
Microorganism kinetic growth characterized by substrate inhibition was investigated by means of a continuous stirred tank reactor equipped with a feedback controller of the medium feeding flow rate. The aerobic growth of Pseudomonas sp. OX1 with phenol as carbon/energy source was adopted as a case study to test a new control strategy using dissolved oxygen concentration as a state variable. The controller was successful in steadily operating bioconversion under intrinsically unstable conditions. A simple model of the controlled system was proposed to set the feedback controller.The specific growth rate of Pseudomonas sp. OX1 was successfully described by means of the Haldane model. The regression of the experimental data yielded μM = 0.26 h−1, KPh = 5 × 10−3 g/L and KI = 0.2 g/L. The biomass-to-substrate fractional yield as a function of the specific growth rate did not change moving from substrate-inhibited to substrate-deficient state. The data was modelled according to the Pirt model: m = 1.7 × 10−2 g/(g h), . The specific growth rates calculated for batch and continuous growth were compared.  相似文献   

9.
Summary The growth of Clostridium acetobutylicum was studied by three ways. 1. In batch fermentation, referred to as the control. 2. Fermentation in dialysis which permits elimination of all the products of metabolism: acids, solvents and gases. In order to test the toxic effect of acids, cultures were dialysed against 2 g l-1 acetic acid or 2 g l-1 butyric acid. 3. To test the toxic effect of gases only, batch fermentations were carried out under vacuum or with a continuous bubbling of nitrogen. The first method resulted in a productivity of 1.2 g l-1 dry cell weight and a maximal specific growth rate of 0.2 h-1; the second, 20 g l-1 dry cell weight and a constant maximum specific growth rate (μ=0.39 h-1) between 14 and 20 h. The toxic effect of acetic and butyric acids, starts at low concentrations and about 4 g l-1 of both acids results in a decrease of 50% of maximal specific growth rate. The third series of experiments showed that gases produced by the bacteria have a high toxic effect, comparable to that of 5 g l-1 of acid.  相似文献   

10.
Fan DD  Luo Y  Mi Y  Ma XX  Shang L 《Biotechnology letters》2005,27(12):865-870
Fed-batch cultures of recombinant Escherichia coli BL21 for producing human-like collagen were performed at different specific growth rates (0.1~0.25 h−1) before induction and at a constant value of 0.05 h−1 after induction by the method of pseudo-exponential feeding. Although the final biomass (around 69 g l−1) was almost the same in all fed-batch cultures, the highest product concentration (13.6 g l−1) was achieved at the specific growth rate of 0.15 h−1 and the lowest (9.6 g l−1) at 0.25 h−1. The mean productivity of human-like collagen was the highest at 0.15 h−1 (0.57 g l−1 h−1) and the lowest at 0.1 h−1 (0.35 g l−1 h−1). In the phase before induction, the cell yield coefficient (YX/S) decreased when the specific growth rate increased, while the formation of acetic acid increased upto 2.5 g l−1 at 0.25 h−1. The mean product yield coefficient (YP/S) also decreased with specific growth rate increasing. The respiration quotient (RQ) increased slightly with specific growth rate increasing before induction, and the mean value of RQ was around 72%. The optimum growth rate for human-like collagen production was 0.15~0.2 h−1.  相似文献   

11.
By complementing a non-fermentative Escherichia coli (ldhA pflB ) strain with the recombinant Zymomonas mobilis ethanol pathway (pdc, adhB), we evaluated the effect of different levels of enzymatic activity on growth rate demonstrating that there is a direct relationship between anaerobic growth rate and the total specific activity of pyruvate decarboxylase, which is the limiting enzyme of this specific fermentative NAD+ regenerating pathway. This relationship was proved to be useful to establish a selection strategy based on growth rate for the analysis of lctE libraries, which encode lactate dehydrogenase from Bacillus subtilis.  相似文献   

12.
Summary The effect of dissolved carbon dioxide concentration in the anaerobic growth of Escherichia coli was investigated. E. coli was grown anaerobically with the dissolved CO2 concentration controlled over the range from 8x10-6 M to 3.7x10-2 M in the liquid phase. The maximum specific growth rate was 0.75h-1 at 1.3x10-3 M CO2 and the maximum yield of cells on glucose was 0.32 at 1.75x10-4 M CO2. The maximum specific growth rate occurs close to the concentration of CO2 prevalent in the mammalian gut where E. coli naturally resides.Alberta Research Council contribution, paper 1364  相似文献   

13.
High-cell-density production of recombinant growth hormone of Lateolabrax japonicus (rljGH) expressed intracellularly in Pichia pastoris was investigated. In the regular strategy of induction at a cell density of 160 g l−1, short duration of intracellular rljGH accumulation (17 h) resulted in a low final cell density of 226 g l−1. Thus, a novel strategy of induction at a cell density of 320 g l−1 was investigated. In this strategy, the preinduction glycerol-feeding scheme had a significant effect on the post-induction production. Constant glycerol feeding led to a decrease of the specific rljGH production and specific production rate because of low preinduction specific growth rate. This decrease was avoided by exponential glycerol feeding to maintain a preinduction specific growth rate of 0.16 h−1. The results from exponential glycerol feeding indicated that the rljGH production depended on the preinduction specific growth rate. Moreover, mixed feeding of methanol and glycerol during induction improved the specific production rate to 0.07 mg g−1 h−1 from 0.043 mg g−1 h−1. Consequently, both high cell density (428 g l−1) and high rljGH production could be achieved by the novel strategy: growing the cells at the specific growth rate of 0.16 h−1 to the cell density of 320 g l−1 and inducing the expression by mixed feeding.  相似文献   

14.
The kinetics of nisin production was studied in batch cultures using a construct of Lactococcuslactis subsp. lactis C2SmPrt, containing a transposon (TnNip) that encodes nisin production. The introduction of TnNip into C2SmPrtsignificantly lowered the specific growth rate and the maximum A 620 reached was reduced from 15.2 to 11.0. The effect of nisin concentration and nutrient depletion on nisin production of the construct, C2SmPrt(TnNip), was examined. Nisin production was found to be inhibited by high concentrations of nisin, when grown in excess nutrient, even though growth of the culture continued because nutrient limitation was not operating. However, in low nutrient concentrations nisin production was limited by nutrient depletion. The specific growth rate of C2SmPrt(TnNip) was altered, by using different nutrient concentrations and different sugars, in order to examine the relationship between nisin production and growth. Nisin production was shown to be growth-associated for most of growth, but near the end of growth, when the specific growth rate was 0.05 h−1 or less, the production ceased. Received: 20 March 1997 / Received revision: 10 June 1997 / Accepted: 14 June 1997  相似文献   

15.
Four fed-batch control strategies were evaluated to improve the specific lactase activity of Kluyveromyces fragilis. Control strategies tested included DO-stat control, exponential feeding, exponential feeding with manual feedback control and corrected feed-forward control. Each was implemented with standard sensors (i.e., temperature, dissolved oxygen and pH sensors) commonly installed in fermenters. The highest specific activity was obtained using the corrected feed-forward control strategy, a strategy incorporating a novel method for on-line estimation of specific growth rate. The control strategy was able to operate effectively to a final cell density of 69 g dry wt l–1 with a specific lactase activity of 2 U mg–1 cell dry wt.  相似文献   

16.
The over-expression of Bcl-2 has greatly improved the culture period, specific growth rate, and maximum viable cell density of NS0 cells culture under low serum condition. Further analysis of these data suggests that a saturation model of the Monod type can be used to represent the relationships of specific growth rate and initial serum concentration. The μmax andK s for the Bcl-2 cell line is 0.927 day−1 and 0.947% (v/v) respectively, which are 21% greater and 7% lower respectively than its control counterpart. Study on the amino acid supplementation revealed that Bcl-2 cell lines possess greater improvement in the specific growth rate and maximum viable cell density compared to the control cell lines. A further increase in the amino acid supplementation has resulted a 17% decrease in specific growth rate and no improvement in maximum viable cell density in the control culture. However, the Bcl-2 cell line exhibited a better growth characteristic in this culture condition compared to that of control cell lines. The higher specific growth rate and maximum viable cell density of the Bcl-2 cell line in medium fortified with serum and MEM EAA suggested a more efficient nutrient metabolism compared to that in the control cell line. The low serum and amino acid utilisation rate and the higher cell yield may prove to be important in the development of serum/protein free culture.  相似文献   

17.
Strains carrying deletions in theatp genes, encoding the H+-ATPase, were unable to grow on nonfermentable substrates such as succinate, whereas with glucose as the substrate the growth rate of anatp deletion mutant was surprisingly high (some 75–80% of wild-type growth rate). The rate of glucose and oxygen consumption of these mutants was increased compared to the wild-type rates. In order to analyze the importance of the H+-ATPase at its physiological level, the cellular concentration of H+-ATPase was modulated around the wild-type level, using genetically manipulated strains. The control coefficient by the H+-ATPase with respect to growth rate and catabolic fluxes was measured. Control on growth rate was absent at the wild-type concentration of H+-ATPase, independent of whether the substrate for growth was glucose or succinate. Control by the H+-ATPase on the catabolic fluxes, including respiration, was negative at the wild-type H+-ATPase level. Moreover, the turnover number of the individual H+-ATPase enzymes increased as the H+-ATPase concentration was lowered. The negative control by the H+-ATPase on catabolism may thus be involved in a homeostatic control of ATP synthesis and, to some extent, explain the zero control by the H+-ATPase onE. coli growth rate.  相似文献   

18.
The kinetics of xanthan formation in Xanthomonas campestris continuous and fed-batch fermentations was studied along with metabolic changes due to growth rate variation. A maximum growth rate within the range 0.11–0.12 h–1 was obtained from the continuous culture data in defined medium, producing xanthan at rates up to 0.36 g l–1 h–1 corresponding to a maximum 67% glucose conversion at a dilution rate (D) of 0.05 h–1. Comparatively, fed-batch cultivation was more efficient, producing maximum xanthan at 0.75 g l–1 h–1 and 63% glucose conversion at 0.1 h–1. When reaching D=0.062 h–1 in continuous cultures, a change was observed and the values of the specific rate of substrate consumption shifted, initiating an uncoupled growth region expressing a lack of balance of the catabolic and anabolic reactions. The deviation was not accompanied by a change in specific xanthan production indicating that xanthan metabolism was not affected by D. For fed-batch-grown X. campestris cells within the range D=0.03–0.1 h–1, both metabolic parameters changed linearly with the growth rate showing a wide region coupled to growth. Outside that range, glucose accumulated and the specific xanthan production dropped, suggesting substrate inhibition. Correspondence to: J. C. Roseiro  相似文献   

19.
Several entomopathogenic fungi produce toxins that could be used as bioinsecticides in integrated pest management programs. Paecilomyces fumosoroseus is currently used for the biological control of the whiteflies Bemisia tabaci and B. argentifolii. Supernatants from submerged batch culture, where the fungus produced abundant dispersed mycelium, conidia and blastospores, were toxic to the whitefly nymphs. The most abundant metabolite was purified by HPLC and identified by mass spectrometry and NMR as dipicolinic acid. Both the dipicolinic acid produced by the fungus and the chemically synthesized compound had insecticidal activity against third-instar nymphs of the insect. Dipicolinic acid was toxic to the whitefly nymphs in bioassays involving topical applications. In submerged culture, the specific growth rate of P. fumosoroseus was 0.054 h−1, the specific glucose consumption rate was 0.1195 g g−1 h−1 and the specific dipicolinic acid production rate was 0.00012 g g−1 h−1. Dipicolinic acid was detected after 24 h when the fungus started growing; and dipicolinic acid production was directly correlated with fungal growth. Nevertheless, the yield was low and the maximal concentration was only 0.041 g l−1. The maximal concentrations of conidia and blastospores (per milliliter) were 1.4×108 and 7×107, respectively.  相似文献   

20.
Summary Two newly isolated strains of Methanosarcina, strains JKAD and DALS, were grown in monoculture and in mixed culture in combination with Acetobacterium woodii WB1. Methanosarcina strains convert acetate into methane and carbon dioxide while Acetobacterium woodii grows on fructose, producing acetate via homoacetate fermentation. Monocultures of A. woodii in continuous culture consumed up to 6 mmoles g-1 dry weight (dw) h-1 of fructose and produced up to 12.9 mmoles g-1 dw h-1 of acetate at a dilution rate (D) of 0.13 h-1. In batch growth the methanogenic bacteria produced up to 12.1 mmoles g-1 dw h-1 of CH4 at a specific growth rate of 0.043 h-1. In continuous cultivation the specific growth rate and the specific methane production of Methanosarcina were lower than in batch cultures, with values of 0.031 h-1 and 3.1 mmoles g-1 dw h-1 of methane, respectively. In combination, A. woodii and Methanosarcina strain DALS in batch cultures completely converted fructose to methane and carbon dioxide with a maximum specific methane production rate of 1.9 mmoles g-1 dw h-1 of methane. In continuous cultivation these mixed cultures produced between 1.2 and 2 mmoles g-1 dw h-1 of CH4 at a dilution rate of up to 0.043 h-1. The methanogens were washed out at D values higher than 0.043 h-1 for A. woodii and Methanosarcina strain JKAD, and higher than 0.05 h-1 for A. woodii and Methanosarcina strain DALS. Data obtained from defined mixed cultures allow one to follow interactions in a mixed population of two species with different growth constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号