首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteasome (multicatalytic protease complex), a high molecular weight protein complex, has been purified from spinach leaves by successive chromatography on DEAE-cellulose, Bio-Gel A-1.5m, DEAE-TOYOPEARL 650C, and DEAE-5PW. The molecular mass was estimated to be 850 kDa by gel filtration. Polyacrylamide gel electrophoresis of the proteasome gave a single protein band under nondenaturing conditions and at least 10 bands in the range of 21-32 kDa in the presence of sodium dodecyl sulfate. By electron microscopy after negative staining with uranyl acetate, the proteasome from spinach appeared as symmetrical ring-shaped particles. The substrate specificity of proteasomes indicates that they contain at least three types of activity, namely, chymotrypsin-like, Staphylococcus aureus V8 protease-like, and trypsin-like activities. The former two activities were enhanced by poly-L-lysine or sodium dodecyl sulfate. Moreover, we examined the immunological reactivities of proteasomes from various eukaryotes. As a result, cross-immunoreactivities of some subunits were observed. These properties of the proteasome are similar to those of proteasomes isolated from various other eukaryotic sources.  相似文献   

2.
Yeast tRNA-splicing endonuclease is a heterotrimeric enzyme   总被引:12,自引:0,他引:12  
tRNA-splicing endonuclease from the yeast Saccharomyces cerevisiae was purified to homogeneity greater than 5000-fold over a crude Triton X-100 extract of yeast total membranes, with 5% overall yield. This nuclear enzyme has the unusual heterotrimeric subunit structure alpha beta gamma (alpha = 31 kDa, beta = 42 kDa, and gamma = 51 kDa), as determined by sodium dodecyl sulfate gel electrophoresis, and has a molecular mass close to the sum of the three subunits, as determined by gel filtration of the native enzyme. From the purification, we estimate that there are approximately 100 molecules of endonuclease/cell.  相似文献   

3.
Three major polypeptides are found in purified DNA polymerase alpha from rat liver: 160, 77 and 58 kDa. The electrophoretic analysis has identified polypeptide 160 kDa as the catalytically active subunit of DNA polymerase alpha. The other two polypeptides showed no DNA polymerase activity. Individual polypeptide p77 kDa purified by sodium dodecyl sulfate polyacrylamide gel electrophoresis was used to produce antibodies in rabbits. Immunoblot analysis indicated that the complex DNA polymerase alpha-3'-5'-exonuclease contained polypeptide p77 kDa. To elucidate the function of the p77 kDa protein we have prepared an immunoabsorbent column with antibodies against the p77 kDa polypeptide. The antibody column purified p77 kDa protein was homogeneous according to sodium dodecyl sulfate gel electrophoresis. The activity of alpha-polymerase was increased approximately 10-fold as a result of purification of DNA polymerase alpha from the p77 kDa protein. The in vitro experiments showed the identity of the p77 kDa polypeptide to endonuclease. It cleaved both single-stranded and double-stranded DNA. The function of endonuclease p77 kDA in complex with DNA polymerase alpha remains obscure.  相似文献   

4.
A facile and rapid purification procedure, based upon the heat denaturation of extraneous proteins and GMP-Sepharose affinity chromatography, has been used to purify hypoxanthine phosphoribosyltransferase from human brain. A homogeneous enzyme preparation, as judged by sodium dodecyl sulfate and gradient polyacrylamide gel electrophoresis, was obtained. The subunit molecular weight of the enzyme was estimated as 24,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The native molecular weight, determined by gradient gel electrophoresis, was approximately 100,000. These results suggest human brain hypoxanthine phosphoribosyltransferase is a tetramer, consistent with recent results reported for the human erythrocyte enzyme. At least three charge variant forms of the human brain enzyme were distinguished by nondenaturing polyacrylamide gel electrophoresis, electrofocusing, and chromatofocusing. Acidic pI values of approximately 5.7, 5.5, and 5.0 were estimated for the three major species.  相似文献   

5.
N(alpha)-acetylation, catalyzed co-translationally with N(alpha)-acetyltransferase (NAT), is the most common modifications of eukaryotic proteins. In yeast, there are at least three NATs: NAT1, MAK3, and NAT3. The 20 S proteasome subunits were purified from the normal strain and each of the deletion mutants, nat1, mak3, and nat3. The electrophoretic mobility of these subunits was compared by two-dimensional gel electrophoresis. Shifts toward the alkaline side of the gel and unblocking of the N terminus of certain of the subunits in one or another of the mutants indicated that the alpha1, alpha2, alpha3, alpha4, alpha7, and beta3 subunits were acetylated with NAT1, the alpha5 and alpha6 subunits were acetylated with MAK3, and the beta4 subunit was acetylated with NAT3. Furthermore, the Ac-Met-Phe-Leu and Ac-Met-Phe-Arg termini of the alpha5 and alpha6 subunits, respectively, extended the known types of MAK3 substrates. Thus, nine subunits were N (alpha)-acetylated, whereas the remaining five were processed, resulting in the loss of the N-terminal region. The 20 S proteasomes derived from either the nat1 mutant or the normal strain were similar in respect to chymotrypsin-like, trypsin-like, and peptidylglutamyl peptide hydrolyzing activities in vitro, suggesting that N(alpha)-acetylation does not play a major functional role in these activities. However, the chymotrypsin-like activity in the absence of sodium dodecyl sulfate was slightly higher in the nat1 mutant than in the normal strain.  相似文献   

6.
Casein kinase G purified from bovine tissue is an oligomeric cyclic nucleotide-independent protein kinase made of two different monomers, namely an alpha (Mr = 38 kilodaltons) and a self-phosphorylatable beta (Mr = 27 kilodaltons) subunit. Treatment of the native enzyme under denaturing conditions (0.5 M NaCl, 4 M LiCl, and 20 to 35% formamide) resulted in a progressive selective removal of the beta subunit following gel filtration and a correlated loss of activity of the corresponding renatured enzyme. Mild digestion with papain resulted in a proteolytic alteration limited to the beta monomer with a concomitant partial loss of the enzyme activity. Isolation of the alpha and beta casein kinase G subunits was achieved by preparative reversed polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Renaturation of the proteins following sodium dodecyl sulfate removal by acetone and/or Triton X-100 treatment allowed reconstitution of a functional casein kinase G. Whereas the isolated alpha subunit was found to exhibit a weak catalytic activity, addition of the beta subunit was required for recovery of a maximal casein kinase activity. The process was dose-dependent and reached a plateau for an alpha:beta subunit molar ratio of approximately 1 to 1. These data suggest that while the casein kinase G alpha subunit bears the catalytic site, stoichiometric combination with the beta subunit is required for optimal enzymatic activity. A possible role of the beta subunit as a regulatory component of casein kinase G activity in the intact cell remains to be examined.  相似文献   

7.
Many neurodegenerative diseases are characterized by ubiquitin-positive protein aggregates or inclusion bodies. Ubiquitin-conjugated proteins are degraded by the 20/26S proteasome, and reduced proteasome peptidase activities in brain homogenates have been reported in pathologic lesions of Parkinson's and Alzheimer's diseases. However, it is unknown whether crude extracts of human brain contain other proteases having peptidase activities. We found a novel protease of molecular weight of approximately 105 kDa in normal human brain, which exhibited trypsin-like (T-L) and chymotrypsin-like (ChT-L) activities (corresponding to 52% and 21% of the total activities in crude extracts) but not peptidyl glutamyl peptide hydrolase activity. Both T-L and ChT-L activities of this protease were partially inhibited by proteasome inhibitors (MG132, lactacystin) and, in contrast to those of the proteasome, also by sodium dodecyl sulfate. A simple method to obtain a brain fraction specific to the 20/26S proteasome was developed. Our human brain data suggest that T-L and ChT-L activity levels of the proteasome reported previously may include those of the 105 kDa protease, an enzyme of as yet unknown biological significance, and that it is necessary to separate the proteasome from this protease to evaluate the actual status of the ubiquitin-proteasome system in neurodegenerative disorders.  相似文献   

8.
Insulin receptors from rat liver membranes were labelled with a 125I-labelled photoreactive insulin analogue or by iodination using lactoperoxidase and analysed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Under nonreducing conditions different receptor forms with Mr 400,000 (alpha 2 beta 2), 360,000 (alpha 2 beta beta'), 330,000 (alpha 2 beta' beta'), 320,000 (alpha 2 beta), 280,000 (alpha 2 beta'), 240,000 (alpha 2), 210,000 (alpha beta), 165,000 (alpha beta') and 115,000 (alpha) were detected. The subunit composition of these receptor forms was determined by two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis in the absence and presence of dithioerythritol. During denaturation in sodium dodecyl sulfate in the absence of reductants, the Mr 400,000 receptor form (alpha 2 beta 2) was converted into the Mr 320,000 (alpha 2 beta) and Mr 240,000 (alpha 2) receptor form. This conversion was prevented either by N-ethylmaleimide, oxidants, or low pH. In contrast, alkylation of the receptor with N-ethylmaleimide under non-denaturing conditions did not prevent the appearance of intermediate-sized receptor forms. Furthermore, the inhibition of receptor cleavage by N-ethylmaleimide during denaturation was also observed when the amount of free sulfhydryl groups was reconstituted by the addition of an unlabelled and non-alkylated receptor sample to the alkylated and photoaffinity-labelled receptor. These results suggest, that the generation of different oligomeric receptor forms detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis is due at least in part to the cleavage of one or both beta-subunits from the insulin receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Histidine decarboxylase was purified from mouse mastocytoma P-815 cells to electrophoretic homogeneity by ammonium sulfate fractionation, dialyses at pH 7.5 and 6.0, chromatographies on DEAE-Sepharose CL-6B, Phenyl-Sepharose CL-4B and Hydroxylapatite, Phenyl-Superose HPLC, Mono Q HPLC, and Diol-200 gel filtration HPLC. Under the assay conditions used, the pure enzyme exhibited a specific activity of 800 nmol/min/mg, which constituted 12,500-fold purification compared to the crude extract, with a 7% yield. The two-step dialysis turned out to be essential for removing the factor(s) which interfered with the enzyme purification. The optimum pH for the enzyme reaction was 6.6 and the isoelectric point of the enzyme was pH 5.4. The molecular mass of the enzyme was found to be approximately 53 kDa on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, 110 kDa on gel filtration, and 115 kDa on polyacrylamide gradient gel electrophoresis in the absence of sodium dodecyl sulfate. The Km value for histidine was estimated to be 0.26 mM at pH 6.8.  相似文献   

10.
J R Carias  R Julien 《Biochimie》1976,58(3):253-259
From wheat germ, a phenylalanyl-tRNA synthetase (E.C.6.1.1.20) has been isolated and purified 187 fold by means of ammonium sulfate fractionation (40-50 per cent) followed by Sephadex G-200 gel filtration, chromatographies on DEAE-cellulose and hydroxyapatite. The enzyme appears to be homogeneous on Sephadex G-200 molecular filtration and polyacrylamide gel electrophoresis. Molecular weight determinations by sucrose gradient centrifugation, gel filtration and gel electrophoresis give an average of 250 00 daltons. The enzyme is dissociated in 1 per cent sodium dodecyl sulfate into two different equimolar components of 80 000 and 50 000 daltons ; this result suggests that the phenylalanyl-tRNA synthetase has a subunit structure : alpha2 beta2. Dissociation with sodium dodecyl sulfate and dithiothreitol gives four other components, probably resulting from the breakdown of the subunits. Optima values of pH, Mg2+ and K+ concentrations, effect of SH-compnents, kinetic parameters have been determined in the aminoacylation reaction. Physical and catalytic properties of wheat germ phenylalanyl-tRNA synthetase appear very similar to those of the yeast and E. coli enzymes.  相似文献   

11.
12.
T H Cromartie  C T Walsh 《Biochemistry》1975,14(12):2588-2596
L-alpha-Hydroxy acid oxidase (listed as EC 1.4.3.2, L-amino acid: O2 oxidoreductase) has been purified 100-fold from rat kidney to apparent homogeneity by gel electrophoresis. A subunit molecular weight of 47,500 was found by sodium dodecyl sulfate gel electrophoresis, but in contrast to previous reports, the enzyme has been found to have a molecular weight of ca. 200,000 by Sephadex gel filtration and by dodecyl sulfate gel electrophoresis of the enzyme cross-linked with dimethyl suberimidate. A somewhat higher value was found by sedimentation equilibrium, but a tetrameric structure for the active enzyme is definitely established. The enzyme was found to contain the FMN coenzyme at a concentration of one FMN/102,000 daltons or one flavine/two subunits, a highly unusual finding. This ratio was determined from spectroscopic analysis of the FMN in lyophilized samples of the enzyme and by titration of the coenzyme with the flavine specific enzyme inactivator 2-hydroxy-3-butynoate. The enzyme has the same specific activity as a crystalline sample of the enzyme reported to have twice as much flavine/milligram.  相似文献   

13.
A high yield purification scheme for monoamine oxidase A from human placental mitochondria is described. The enzyme is solubilized by a combination of treatment with phospholipase A and C and extraction with Triton X-100 and further purified by partitioning between dextran and polyethylene glycol polymers. The enzyme was obtained in 35% yield and high purity on DEAE-Sepharose CL-6B chromatography. This product, 90% catalytically active, showed a single major and several minor bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Further purification could be achieved by additional chromatography using Bio-Gel HTP, but concomitant loss of catalytic activity occurred (enzyme remained about 60% active). The difference extinction coefficient for flavinox--flavinred at 456 nm was 10,800 +/- 350 m-1 cm-1. A sulfhydryl to flavin ratio of 7.5 was obtained when enzyme was denatured with sodium dodecyl sulfate, reduced with 2-mercaptoethanol, and titrated with 2,2'-dipyridyl disulfide. Anaerobic titration with 0.5 eq of sodium dithionite gave rise to the red anionic flavin radical, and full reduction was observed on further addition of reagent. The Km value for kynuramine was essentially the same for mitochondria (0.12 mM) and enzyme after DEAE-Sepharose CL-6B chromatography (0.17 mM). The concentration of clorgyline and deprenyl required for 50% inactivation also remained essentially unchanged. Incubation of the enzyme with 2,2'-dipyridyl disulfide caused inactivation in a biphasic manner with apparent second-order rate constants of 1230 M-1 min-1 and 235 M-1 min-1 for the rapid and slow phase, respectively. This inactivation was largely abolished by the inclusion of the competitive inhibitor amphetamine (Ki = 20 microM) in the incubation mixture. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated a subunit molecular mass of 60-64 kDa, about 1.5-2.5 kDa higher than human liver monoamine oxidase B.  相似文献   

14.
In Euglena gracilis the terminal four enzyme activities of the tryptophan biosynthetic pathway were found to be associated with a protein with an estimated molecular weight of 325,000 +/- 20,000. The protein was purified approximately 2,000-fold with relatively proportional recoveries of all four enzyme activities. The purified material was homogeneous by the criteria of analytical disc gel electrophoresis and gel isoelectric focusing. Disc gel electrophoresis after denaturation with sodium dodecyl sulfate gave a single protein band with a molecular weight of 155,000 +/- 5,000. Disc gel electrophoresis in 8 M urea also gave rise to a single protein band. We interpret these results as evidence for a single species of subunit. The pathway in Euglena is the only one known to the present in which the terminal enzyme, tryptophan synthase, is not a separate molecular species.  相似文献   

15.
The two subunits of the nickel-iron hydrogenase from Desulfovibrio gigas have been purified by preparative sodium dodecyl sulfate polyacrylamide gel electrophoresis and their amino acid compositions have been determined. The N-terminal sequences for 15 residues of the large subunit (Mr 62,000) and 25 residues of the small subunit (Mr 26,000), respectively, were established. The occurrence of several cysteine residues in the small subunit is discussed in relation with their possible role in the binding of the redox centers of the enzyme.  相似文献   

16.
Methyl-coenzyme M reductase (MCR) catalyzes the methane-forming step in methanogenic archaebacteria. The reductase has been characterized in detail from Methanobacterium thermoautotrophicum strain Marburg and delta H, which grow on H2 and CO2 as energy source. During purification of the enzyme we have now discovered a second methyl-coenzyme M reductase (MCR II) in the two strains, which elutes at lower salt concentration from anion-exchange columns than the enzyme (MCR I) previously characterized. MCR II is similar to MCR I in that it is also composed of three different subunits alpha, beta, and gamma but distinct from MCR I in that the gamma subunit is 5 kDa smaller, as revealed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The N-terminal amino acid sequences of the alpha, beta, and gamma subunits of MCR II and MCR I were found to be different in several amino acid positions. The respective sequences showed, however, strong similarities indicating that MCR II was not derived from MCR I by limited proteolysis. The relative amounts of MCR I and MCR II present in the cells were affected by the growth conditions. When the cultures were supplied with sufficient H2 and and CO2 and the cells grew exponentially, essentially only MCR II was found. When growth was limited by the gas supply, MCR I predominated.  相似文献   

17.
Choline kinase, the first enzyme in the CDP-choline pathway for phosphatidylcholine biosynthesis, was purified 26,000-fold from rat liver to a specific activity of 143,000 nmol.min-1.mg-1 protein. The subunit molecular mass was 47 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, while the apparent native molecular mass was 160 kDa by size exclusion chromatography, suggesting a tetrameric structure. Two peaks of choline kinase activity were obtained by chromatofocusing. These isoforms eluted at pH 4.7 (CKI) and 4.5 (CKII). CKII appeared to be homogeneous by sodium dodecyl sulfate gel electrophoresis. Peptide mapping of two isoforms indicated a high degree of similarity, although there were peptides not common to both. Ethanolamine kinase activity copurified with both isoforms. The ratio of choline to ethanolamine kinase activity was 3.7 +/- 0.7 throughout the purification procedure. Choline and ethanolamine were mutually competitive inhibitors. The respective Km values, 0.013 and 1.2 mM, were similar to the Ki values of 0.014 and 2.2 mM. An antibody raised against CKII immunoprecipitated both choline and ethanolamine kinase activities from liver cytosol at the same titer. These data suggest that both activities reside on the same protein and occur at the same active site. Similarly, both activities were immunoprecipitated from brain, lung, and kidney cytosols. Western blot analysis showed both purified liver isoforms, as well as brain, lung and kidney enzymes, to have a molecular mass of 47 kDa.  相似文献   

18.
Human placental 17 beta-hydroxysteroid dehydrogenase has been purified with a new rapid procedure based on fast protein liquid chromatography, yielding quantitatively a homogeneous preparation with high specific activity catalyzing the oxidation of 7.2 mumol of estradiol/min/mg of enzyme protein at 23 degrees C, pH 9.2. This preparation was shown to have a subunit mass of 34.5 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis while having a molecular mass of 68 kDa by both Superose-12 gel-filtration and native pore gradient gel electrophoresis. When 17 beta-hydroxysteroid dehydrogenase was expressed in HeLa cells or overproduced in insect cells using the baculovirus expression system, both from its cDNA encoding a protein of 34 kDa, the enzyme had the same migration in native and sodium dodecyl sulfate-gel electrophoresis as the purified one from human placenta and eluted from the Superose-12 column at the same elution volume. Moreover, all the above forms of this enzyme have similar specific activity. These results clearly demonstrate the identity of the three enzyme forms. The enzyme produced from the cDNA is expressed as a dimer, and its two subunits are identical. 17 beta-Hydroxysteroid dehydrogenase subunit identity is thus proved. The NH2-terminal analysis revealed a unique sequence of Ala-Arg-Thr-Val-Val-Leu-Ile for the purified enzyme from placenta, further confirming the above conclusion.  相似文献   

19.
Rat hepatic pyruvate kinase (type L) has been purified to homogeneity by a simple, rapid procedure involving DEAE-cellulose chromatography and elution from a blue Sepharose column. The enzyme was homogeneous by the criteria of sodium dodecyl sulfate disc gel electrophoresis, had a subunit molecular weight of 57,000, and a specific activity of 558 units/mg of protein at 30 degrees. In order to test whether the enzyme is phosphorylated in vivo, rats were injected with radioactive inorganic phosphate. Incorporation into pyruvate kinase was determined after purification of the enzyme to homogeneity as well as after specific immunoprecipitation of the enzyme from partially purified preparations. Sodium dodecyl sulfate disc gel electrophoresis revealed that 32P was incorporated into the enzyme in both cases. Glucagon administration in vivo resulted in a 200 to 300% increase in the incorporation of 32P into the enzyme which was correlated with an inhibition of enzyme activity and an elevation of hepatic levels of cyclic AMP. These results represent the first demonstration of in vivo phosphorylation of a hepatic glycolytic enzyme and strongly support the hypothesis that glucagon regulates pyruvate kinase activity, at least in part, by a phosphorylation mechanism.  相似文献   

20.
A soluble, sodium-nitroprusside-stimulated guanylate cyclase as been purified from bovine lung by DEAE-cellulose chromatography, ammonium sulfate precipitation, chromatography on Blue Sepharose CL-6B and preparative gel electrophoresis. Apparent homogeneity was obtained after at least 7000-fold purification with a yield of 3%. A single stained band (Mr 72000) was observed after gel electrophoresis in the presence of sodium dodecyl sulfate. The purified enzyme migrated as one band also under non-denaturing conditions in acrylamide gels (5-12%). The mobility of this band corresponded to an Mr of 145000. The enzyme sedimented on sucrose gradients with an S20, w of 7.0 S. Gel filtration yielded a Stokes' radius of 4.6 nm. These data suggest that the enzyme has an Mr of approximately 150000 and consists of two, presumably identical, subunits of Mr 72000. Sodium nitroprusside stimulated the purified enzyme 15-fold and 140-fold to specific activities of 8.5 and 15.7 mumol of cGMP formed min-1 mg-1 in the presence of Mn2+ and Mg2+, respectively. Formation of cGMP was proportional to the incubation time and to the amount of enzyme added. The stimulatory effect of sodium nitroprusside was half-maximal at about 2 microM, was observed immediately after addition and could be reversed either by dilution or by removal of sodium nitroprusside on a Sephadex G-25 column. The purified enzyme in the absence of catalase was stimulated by sodium nitroprusside, N-methyl-N'-nitro-N-nitrosoguanidine and 3-morpholino-sydnonimine and in the presence of catalase by sodium nitrite and sodium azide. In the presence of Mn2+ and sodium nitroprusside, the purified enzyme catalyzed the formation of cAMP from ATP at a rate of 0.6 mumol min-1 mg-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号