首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anaerobic treatment of sulphate-rich wastewaters   总被引:6,自引:0,他引:6  
Until recently, biological treatment of sulphate-rich wastewater was rather unpopular because of the production of H2S under anaerobic conditions. Gaseous and dissolved sulphides cause physical-chemical (corrosion, odour, increased effluent chemical oxygen demand) or biological (toxicity) constraints, which may lead to process failure. Anaerobic treatment of sulphate-rich wastewater can nevertheless be applied successfully provided a proper treatment strategy is selected. The strategies currently available are discussed in relation to the aim of the treatment: i) removal of organic matter, ii) removal of sulphate or iii) removal of both. Also a whole spectrum of new biotechnological applications (removal of organic chemical oxygen demand, sulphur, nitrogen and heavy metals), recently developed based on a better insight in sulphur transformations, are discussed.  相似文献   

2.
Aims: The aim of the study was to investigate the feasibility of a continuous reactor for psychrophilic anaerobic wastewater treatment by using the sludge from cold natural environment. Methods and Results: Six sludge samples (S1–S6) were collected from different cold natural locations to select sludge with high anaerobic microbial activity under low temperatures. After a 225‐day incubation, the maximum specific methane production rate of a waterfowl lake sediment (S1) at 15°C (70·5 mLCH4 gVSS?1 day?1) was much higher than all other samples. S1 was thus chosen as the seed sludge for the reactor treating synthetic brewery wastewater at 15°C, by immobilizing the micro‐organisms on polyurethane foam carriers. The chemical oxygen demand (COD) removal efficiency reached over 80% after 240‐day operation at an organic loading rate of 5·3 kg m?3 day?1, and significant enrichment of biomass was observed. Clone libraries of the microbial communities in the inoculum had high diversities for both archaea and bacteria. Along with a decrease in microbial community diversities, the dominant bacteria (79·5%) at the end of the operation represented the phylum Firmicutes, while the dominant archaeon (41·5%) showed a similarity of 98% with the psychrotolerant methanogen Methanosarcina lacustris. Conclusions: The possibility of using anaerobic micro‐organisms from cold environments in anaerobic wastewater treatment under psychrophilic conditions is supported by these findings. Significance and Impact of the Study: This study enriches the theory on microbial community and the application on anaerobic treatment of sludge from cold natural environments.  相似文献   

3.
Biological treatment of saline wastewater by conventional activated sludge culture usually results in low removal of chemical oxygen demand (COD) because of plasmolysis of the organisms at high salt concentrations. Since salt removal operations by physicochemical processes before biological treatment are costly, a salt-tolerant organism (Halobacter halobium) was used for effective biological treatment of saline wastewater in this study. Halobacter halobium was used in activated sludge culture for COD removal from saline wastewater (1–5% salt) by fed-batch operation of an aeration tank. Inclusion of Halobacter halobium into activated sludge culture improved the rate and extent of COD removals especially with salt above 2% (w/v).  相似文献   

4.
Aims: Anaerobic sludge granules underpin high‐rate waste‐to‐energy bioreactors. Granulation is a microbiological phenomenon involving the self‐immobilization of several trophic groups. Low‐temperature anaerobic digestion of wastes is of intense interest because of the economic advantages of unheated bioenergy production technologies. However, low‐temperature granulation of anaerobic sludge has not yet been demonstrated. The aims of this study were to (i) investigate the feasibility of anaerobic sludge granulation in cold (15°C) bioreactors and (ii) observe the development of methanogenic activity and microbial community structure in developing cold granules. Methods and Results: One mesophilic (R1; 37°C) and two low‐temperature (R2 and R3, 15°C) laboratory‐scale, expanded granular sludge bed bioreactors were seeded with crushed (diameter <0·4 mm) granules and were fed a glucose‐based wastewater for 194 days. Bioreactor performance was assessed by chemical oxygen demand removal, biogas production, granule growth and temporal methanogenic activity. Granulation was observed in R2 and R3 (up to 33% of the sludge). Elevated hydrogenotrophic methanogenesis was observed in psychrophilically cultivated biomass, but acetoclastic methanogenic activity was also retained. Denaturing gradient gel electrophoresis of archaeal 16S rRNA gene fragments indicated that a distinct community was associated with developing and mature granules in the low‐temperature (LT) bioreactors. Conclusions: Granulation was observed at 15°C in anaerobic bioreactors and was associated with H2/CO2‐mediated methanogenesis and distinct community structure development. Significance and Impact of the Study: Granulation underpins high‐rate anaerobic waste treatment bioreactors. Most LT bioreactor trials have employed mesophilic seed sludge, and granulation <20°C was not previously documented.  相似文献   

5.
The feasibility of a new flowchart describing simultaneous hydrogen sulfide removal from biogas and nitrogen removal from wastewater was investigated. It took 30 days for the reactor inoculated with aerobic sludge to attain a removal rate of 60% for H2S and NOx–N simultaneously. It took 34 and 48 days to attain the same removal rate for the reactor without inoculated sludge and the reactor inoculated with anaerobic sludge respectively. The reactor without inoculated sludge still operated successfully, despite requiring a slightly longer startup time. The packing material was capable of enhancing the removal efficiency of reactors. Based on the concentration of NOx–N and H2S in the effluent, the loading rate and the ability of the system to resist shock loading, the performance of the reactor filled with hollow plastic balls was greater than that of the reactor filled with elastic packing and the reactor filled with Pall rings.  相似文献   

6.
Thermophilic anaerobic treatment of sulphur-rich paper mill wastewater (0.8-3.1 gCOD/l, 340–850 mgSO4/l; COD:SO4 3.4-5.3) was studied in three laboratory-scale, upflow anaerobic sludge blanket (UASB) reactors and in bioassays. The reactors were inoculated with non-adapted thermophilic granular sludge. In the bioassays, no inhibition of the inoculum was detected and about 62% COD removal (sulphide stripped) was obtained. About 70 to 80% of the removed COD was methanised. In the reactors, up to 60–74% COD removal (effluent sulphide stripped) was obtained at loading rates up to 10–30 kgCOD/m3d and hydraulic retention times down to 6 to 2 hours. The effluent total sulphide was up to 150–250 mg/l. Sulphide inhibition could not be confirmed from the reactor performances. The results from bioassays suggested that both the inoculum and sludge from the UASB reactor used acetate mainly for methane production, while sulphide was produced from hydrogen or its precursors.  相似文献   

7.
AIMS: To compare Thiobacillus thioparus population dynamics in a control and a test activated sludge (AS) bioreactor, used for hydrogen sulfide (H(2)S) degradation. METHODS AND RESULTS: Denaturing gradient gel electrophoresis (DGGE) was used to confirm the presence of T. thioparus, and real-time PCR was used to quantify the level of this bacterium in the AS samples. The DGGE analysis showed a band for T. thioparus in all samples, with the band being more prominent in the test sample with H(2)S diffusion. It also showed that although a change occurred in the diversity of the microbial population in the test sludge after 6 weeks of H(2)S diffusion, the microbial community structure of the test and control was still similar. Thiobacillus thioparus-specific PCR primers confirmed that 50% of the isolates from both the test and control bioreactors were T. thioparus. The thiobacilli population became more efficient at degrading the diffused H(2)S. This increase in efficiency was confirmed by a significant increase in the number of isolates from the test sludge compared with those from the control sludge, when they were grown in a thiosulfate-rich liquid medium. CONCLUSIONS: It was concluded that the use of AS process for H(2)S removal encourages the population of T. thioparus to increase even at times when the total biomass concentration shows a decrease. SIGNIFICANCE AND IMPACT OF THE STUDY: The research results give an insight into the dynamics of the microbial population in an AS pilot plant used in a dual role, to treat the wastewater and H(2)S.  相似文献   

8.
Thiobacillus sp. HA43 as a dominant strain was isolated from a H2S-acclimated peat biofilter seeded with aerobically-digested sludge of night soil. Strain IIA43 degraded both H2S and methanethiol (MT) without lag-time, but degraded neither dimethy sulphide (DMS) nor dimethyl disulphide (DMDS). The removal characteristics for sulphur compounds (H2S, MT, DMS and DMDS) by strain HA43 well reflected the removal behaviour of the H2S-acclimated peat biofilter where this strain was isolated. The specific H2S and MT uptake rates of strain HA43 in batch culture were determined as 1.22 × 10−12 and 8.53 × 10−14 g-S·cell−1·h−1, respectively. The maximum removal rates (Vm = g-S·kg-dry peat−1·d−1) for H2S and MT by peat biofilter inoculated by strain HA43 were obtained as follows: Vm(H2S)− 11.3, Vm(MT) = 0.21 in sterilized peat; Vm(H2S) = 12.4, Vm(MT)− 0.27 in non-sterilized peat; Vm(H2S) = 33.0, Vm(MT) = 0.27 in peat with aerobically-digested sludge of night soil. The peat biofilter inoculated with strain HA43 enhanced the maximum removal rate for H2S 6-fold compared with the biofilter without strain HA43.  相似文献   

9.
Aerobic granulation technology has become a novel biotechnology for wastewater treatment. However, the distinct properties and characteristics of phosphorus removal between granules and flocculent sludge are still sparse in enhanced biological phosphorus removal process. Two identical sequencing batch reactors (SBRs) were operated to compare phosphorus removal performance with granular sludge (R1) and flocculate activated sludge (R2). Results indicated that the start-up period was shorter in R2 than R1 for phosphorus removal, which made R2 reach the steady-state condition on day 21, while R1 was on day 25, and R2 released and took up more phosphorus than R1. As a result, the phosphorus removal was around 90% in R2 while 80% in R1 at the steady-state system. The special phosphorus release rate and special phosphorus uptake rate were 8.818 mg P/g volatile suspended solids (VSS)/h and 9.921 mg P/g VSS/h in R2, which were consistently greater than those (0.999 and 3.016 mg P/g VSS/h) in R1. The chemical oxygen demand removal in two reactors was similar. The granular SBR had better solid-separation performance and higher removal efficiency of NH4+–N than flocculent SBR. Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA fragment analysis revealed that the diversity and the level of phosphorus-accumulating bacteria in flocculent sludge were much more than those in the granular sludge.  相似文献   

10.
During the treatment of raw domestic wastewater in the upflow anaerobic sludge blanket (UASB) reactor, the suspended solids (SS) present in the wastewater tend to influence negatively the methanogenic activity and the chemical oxygen demand (COD) conversion efficiency. These problems led to the emergence of various anaerobic sludge bed systems such as the expanded granular sludge bed (EGSB), the upflow anaerobic sludge blanket (UASB)-septic tank, the hydrolysis upflow sludge bed (HUSB), the two-stage reactor and the anaerobic hybrid (AH) reactor. However, these systems have, like the UASB reactor, limited performance with regard to complete treatment (e.g., removal of pathogens). In this respect, a new integrated approach for the anaerobic treatment of domestic wastewater is suggested. This approach combines a UASB reactor and a conventional completely stirred tank reactor (CSTR) for the treatment of the wastewater low in SS and sedimented primary sludge, respectively. The principal advantages of the proposed system are energy recovery from organic waste in an environmentally friendly way; lowering the negative effect of suspended solids in the UASB reactor; production of a high quality effluent for irrigation; and prevention of odour problems.  相似文献   

11.
Latex rubber sheet wastewater (non sterile wastewater: RAW) was treated efficiently using a stimulated Rhodopseudomonas palustris P1 inoculum with added fermented pineapple extract (FPE) under microaerobic light conditions. Optimization of wastewater treatment conditions using a central composite design (CCD) found that a 3 % stimulated P1 inoculum with 0.9 % added FPE and a 4-day retention time (RT) were the most suitable conditions. Calculations from CCD experiments predicted that a chemical oxygen demand (COD) of 3,005 mg/L could be 98 % removed, together with 79 % of suspended solids (SS) and 72 % of total sulfide (TtS). No H2S was detected, production costs were low and single cell protein (SCP) was a by-product. The results of the verification test had an error of only 4–8 % and confirmed removal of COD (initial COD 2,742 mg/L), SS and TtS at 94 %, 75 % and 66 %, respectively. These values were less than the best set obtained from the CCD experiment (2 % stimulated P1 inoculum, 0.75 % FPE and 4 days RT); upon repeating, this set could reduce 96 % of the COD, 78 % SS and 71 % TtS. The treated wastewater met the standard guidelines for irrigation use and no H2S was detected. The biomass obtaining after wastewater treatment from the best set consisted mostly of R. palustris P1; the biomass of this set had 65 % protein, 3 % fat, 8 % carbohydrate, 14 % ash and 10 % moisture. The results demonstrated that an inoculum of stimulated P1 grew well in RAW supplemented with FPE and could be considered to be an appropriate technology for effectively treating wastewater, with SCP as a by-product.  相似文献   

12.
Pollution from concentrated animal feeding operations (CAFOs) are the most serious pollution source in China now, and swine wastewater contains high concentrations of nutrients such as chemical oxygen demand (COD), biochemical oxygen demand 5 (BOD5), ammonium, and emergent contaminants related to public health. Biological processes are the most popular treatment methods for COD and ammonium removal. Considering the low operation cost, easy maintenance and high removal rate of contaminants in recent years, nitrogen removal via nitrite and real-time control processes using oxidation-reduction potential (ORP) and/or pH as parameters to control the aerobic and anaerobic cycles of a system has received much attention for animal wastewater treatment. During the biological treatment process, the emergent contaminants such as estrogen, antibiotics, and disinfection reagents have been the focus of research recently, and degradation bacteria and resistance bacteria have also been extracted from activated sludge. The microbial analysis technique is also advancement in the field of biodegradation bacteria and resistance bacteria. All of these advancements in research serve to improve wastewater treatment and decrease environmental hazards, especially for using manure as a fertilizer source for crop production.  相似文献   

13.
《Process Biochemistry》2004,39(10):1249-1256
The granulation process using synthetic wastewater containing pentachlorophenol (PCP) in four 1.1 l laboratory scale upflow anaerobic sludge blanket (UASB) reactors was studied, and the anaerobic biotransformation of PCP during the granulation process investigated. After 110 days granular sludge was developed and up to 160 and 180 mg/l of PCP was added into the reactors R1 and R2, respectively, when they were inoculated with acclimated anaerobic sludge from an anaerobic digester of a citric acid plant. The inoculum was predominately composed of bacilli and filamentous bacteria. Granulation did not occur in reactors R3 and R4 which were inoculated with acclimated anaerobic sludge from aerobic sludge of the municipal sewage treatment plant which consisted mainly of cocci. Despite similar bacilli in the granule, the filamentous bacteria from reactor R1 were thicker than those of reactor R2. The granular sludge had a maximum diameter of 2.5 and 2.2 mm, and SMA of 1.44 and 1.32 gCOD/gTVS per day for reactors R1 and R2, respectively. Over 98% chemical oxygen demand (COD) removal rate and 99% of PCP removal rate were achieved when reactors R1 and R2 were operated at PCP and COD loading rates of 150 and 7.5 g/l per day, respectively. H2-producing acetogens were the dominant anaerobes in the granular sludge.  相似文献   

14.
【背景】养猪废水作为高浓度有机废水,是导致我国农业面源污染的主要因素之一。目前采用菌藻共生系统处理养猪废水越来越受到关注,与传统序批式反应器(Sequencing Batch Reactor,SBR)相比,藻辅助SBR具有提高脱氮除磷效果、增加污泥活性和降低能源消耗的特点。【目的】针对SBR中菌藻共生系统对养猪废水脱氮除磷效能的影响,比较分析菌藻共生系统与常规SBR系统中污泥特性及微生物群落结构特征差异。【方法】在室温条件下分别平行运行SBR+微藻(R1)和作为对照系统不添加微藻的SBR(R2)。监测R1和R2系统废水处理效果,污泥的粒径、沉降性和代谢产物等污泥特性。利用变性梯度凝胶电泳(Denaturing Gradient Gel Electrophoresis,DGGE)技术分析R1和R2系统中的微生物种类和分布。【结果】与对照R2反应器相比,R1的化学需氧量(Chemical Oxygen Demand,COD)去除率提高了5.1%,NH4+-N提高了20.3%,总氮(Total Nitrogen,TN)提高了19.4%,总磷(Total Phosphorus,TP)提高了23.9%。进一步对反应器中的污泥特性进行分析发现,与R2相比,R1的胞外聚合物(ExtracellularPolymericSubstances,EPS)平均含量提高3.7%,可溶性微生物产物(Soluble MicrobialProduct,SMP)平均增加了38.5%。同时R1的污泥粒径较R2提高了14.8%,污泥体积指数(Sludge Volume Index,SVI)值较R2降低了11.7%,污泥的好氧呼吸速率(Specific Oxygen Uptake Rate,SOUR)较R2提高了64.8%,而且稳定的菌藻共生系统的形成进一步减少反应器出水中的悬浮固体浓度,表明藻类的添加对R1污泥特性具有改良作用【结论】R1反应器形成的菌藻共生体系可进一步优化微生物群落结构,其中放线菌纲(Actinobacteria)、α-变形菌纲(Alphaproteobacteria)和γ-变形菌纲(Gammaproteobacteria)为R1反应器的主要菌群,对养猪废水的处理起到重要作用。R1反应器中的藻类主要为链带藻属(Desmodesmus)和尖带藻属(Acutodesmus),对养猪废水的脱氮除磷起到重要作用。  相似文献   

15.
Acetate is thought to be an important substrate for phosphate removal in anaerobic/aerobic activated sludge (AS) processes. The acetate content in municipal wastewater is low, and the main organic compounds in such wastewater are particulate organic matters (POMs) that are converted to endogenous substrates in AS processes when municipal wastewater is introduced into AS reactors. The question which then arises is which substrate, acetate or POM, is important for phosphate removal in full‐scale AS plants. The rates of phosphate release and substrate uptake were determined using AS harvested from a full‐scale anaerobic/aerobic AS plant and also AS acclimated to peptone under alternate anaerobic and aerobic conditions for 26 months. The rate of phosphate release upon POM addition per AS concentration per unit of time was about 0.84 mg PO4‐P/(g MLSS·h) irrespective of the wastewater quality. This value was about 0.05 in the case of AS acclimated to peptone for 26 months. When the AS concentration is 2.5 g/L and the mixed liquor retention time is 2 h in the anaerobic zone, about 4.2 mg/L PO4‐P is released upon POM addition. Hence, phosphate can be removed from municipal wastewater using full‐scale AS plants running under these conditions.  相似文献   

16.
Characterization and biological treatment of pickling industry wastewater   总被引:2,自引:0,他引:2  
Pickling industry wastewaters present unique difficulties in biological treatment because of high salt content (3–6% salt). Conventional activated sludge cultures disintegrate or loose microbial activity as a result of plasmolysis at salt concentrations above 1%. In order to overcome adverse effects of salt in pickling wastewater, salt tolerant bacteria (Halobacter halobium) was added to activated sludge culture and used in biological treatment of the wastewater in an activated sludge unit. After characterization and nutrient balancing of the wastewater, an activated sludge unit was used in laboratory to investigate the effects of major process variables such as sludge age and hydraulic residence time on performance of the system. Single stage and two stage activated processes were used for the treatment of the pickling wastewater. More than 95% of COD removal was obtained with a single stage process at a sludge age of θc=10?d and hydraulic residence time of θH=30?h. Similar results were obtained with the two stage process, when sludge ages and hydraulic residence times for each stage were θc1c2=10?d, and θH1H2=15?h, respectively. Kinetic coefficients were determined and the design equations were developed by using the experimental data.  相似文献   

17.
Biological treatment is an emerging and prevalent technology for treating off-gases from wastewater treatment plants. The most commonly reported odorous compound in off-gases is hydrogen sulfide (H2S), which has a very low odor threshold. A self-designed, bench-scale, cross-flow horizontal biotrickling filter (HBF) operated with bacteria immobilized activated carbon (termed biological activated carbon—BAC), was applied for the treatment of H2S. A mixed culture of sulfide-oxidizing bacteria dominated by Acidithiobacillus thiooxidans acclimated from activated sludge was used as bacterial seed and the biofilm was developed by culturing the bacteria in the presence of carbon pellets in mineral medium. HBF performance was evaluated systematically over 120 days, depending on a series of changing factors including inlet H2S concentration, gas retention time (GRT), pH of recirculation solution, upset and recovery, sulfate accumulation, pressure drop, gas-liquid ratio, and shock loading. The biotrickling filter system can operate at high efficiency from the first day of operation. At a volumetric loading of 900 m3 m–3 h–1 (at 92 ppmv H2S inlet concentration), the BAC exhibited maximum elimination capacity (113 g H2S/m–3 h–1) and a removal efficiency of 96% was observed. If the inlet concentration was kept at around 20 ppmv, high H2S removal (over 98%) was achieved at a GRT of 4 s, a value comparable with those currently reported for biotrickling filters. The bacterial population in the acidic biofilter demonstrated capacity for removal of H2S over a broad pH range (pH 1–7). A preliminary investigation into the different effects of bacterial biodegradation and carbon adsorption on system performance was also conducted. This study shows the HBF to be a feasible and economic alternative to physical and chemical treatments for the removal of H2S.  相似文献   

18.
Li Y  Zhou W  Hu B  Min M  Chen P  Ruan RR 《Bioresource technology》2011,102(23):10861-10867
The objectives of this study are to find the robust strains for the centrate cultivation system and to evaluate the effect of environmental factors including light intensity, light–dark cycle, and exogenous CO2 concentration on biomass accumulation, wastewater nutrient removal and biodiesel production. The results showed that all 14 algae strains from the genus of Chlorella, Haematococcus, Scenedesmus, Chlamydomonas, and Chloroccum were able to grow on centrate. The highest net biomass accumulation (2.01 g/L) was observed with Chlorella kessleri followed by Chlorella protothecoides (1.31 g/L), and both of them were proved to be capable of mixotrophic growth when cultivated on centrate. Environmental factors had significant effect on algal biomass accumulation, wastewater nutrients removal and biodiesel production. Higher light intensity and exogenous CO2 concentration with longer lighting period promote biomass accumulation, biodiesel production, as well as the removal of chemical oxygen demand and nitrogen, while, lower exogenous CO2 concentration promotes phosphorus removal.  相似文献   

19.
Activated sludge from a wastewater treatment plant consists of a consortium of microbes that utilize various organic molecules including persistent organic pollutants for their survival. Phenolic compounds and their derivatives along with dibenzofuran (DBF) are found as dominating pollutants in distillery waste. The acclimatization process leads to selective enrichment of the microbial community; and in this study, we report the acclimatizing effect of phenol on improving the treatment efficiency of two different distillery sludges—sludge from conventional aeration tanks (CAT), and from an extended aeration tank (EAT). The adaptation-dependent performance of activated biomass was studied by monitoring the increase in colony-forming units (CFUs) on mineral media and the utilization pattern for phenol (300×103 and 530×103 CFU for CAT and EAT sludge, respectively) and DBF (260×103 and 430×103 CFU for CAT and EAT sludge, respectively). The study showed that the acclimatization process remarkably improved the performance sludge for treatment of distillery wastewater. There was an improvement in chemical oxygen demand (COD) removal efficiency from 19% (unacclimatized sludge) to 31% in the case of acclimatized sludge (raw wastewater), which improved further to 82% and 87% with dilution of wastewater by 10 times (0.1×) and by 50 times (0.02×), respectively. Highest growth yields were observed with 0.1× wastewater (0.324 and 0.308 g g−1 d−1 for CAT and EAT sludges, respectively), while lower values are reported for the remaining two forms of wastewater. The study proposes that acclimatization step could be included as part of a treatment plant where the activated biomass could be intermittently metabolically charged by exposing it to selected molecules to increase treatment efficiency.  相似文献   

20.
Enhanced biological nitrogen removal processes are necessarily required to cope with more stringent wastewater discharging regulations, especially for wastewater with low level of organic carbon to nitrogen ratios. The intermittent aeration activated sludge process has been received comprehensive attention over the past decades, due to its excellent performance in nitrogen removal and remarkable reduction of energy consumption. Recent advances for this technology was reviewed from aspects of characteristics of system, factors affecting nitrogen removal, nitrous oxide (N2O) emission and its control, and application of the technology and its operation control. Finally, future development was proposed. In the intermittent aeration activated sludge process, aeration duration should be controlled for adequate nitrification and non-aeration duration should be adequate for complete denitrification, and these would benefit both nitrogen removal and N2O mitigation. The step feed strategy could be applied to enhance the better utilization of influent organic carbon for nitrogen removal. Dissolved oxygen (DO) and aerobic duration both affected nitrogen removal in particular that via nitrite in the intermittent aeration process. Nitrite should be removed efficiently to avoid a high N2O emission under both anoxic and aerobic conditions. Intermittent aeration activated sludge process has been applied in the treatment of various wastewaters, such as municipal wastewater, swine wastewater, anaerobic effluents and landfill leachate. For practical application, DO, pH and oxidation–reduction potential could be used as indices for controlling nitrogen removal and N2O mitigation. Microbial ecology in the intermittent aeration activated sludge process should be specifically focused in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号