首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular palmitoylation dynamics are regulated by a family of 24 DHHC (aspartate-histidine-histidine-cysteine) palmitoyltransferases, which are localized in a compartment-specific manner. The majority of DHHC proteins localize to endoplasmic reticulum (ER) and Golgi membranes, and a small number target to post-Golgi membranes. To date, there are no reports of the fine mapping of sorting signals in mammalian DHHC proteins; thus, it is unclear how spatial distribution of the DHHC family is achieved. Here, we have identified and characterized lysine-based sorting signals that determine the restricted localization of DHHC4 and DHHC6 to ER membranes. The ER targeting signal in DHHC6 conforms to a KKXX motif, whereas the signal in DHHC4 is a distinct KXX motif. The identified dilysine signals are sufficient to specify ER localization as adding the C-terminal pentapeptide sequences from DHHC4 or DHHC6, which contain these KXX and KKXX motifs, to the C terminus of DHHC3, redistributes this palmitoyltransferase from Golgi to ER membranes. Recent work proposed that palmitoylation of newly synthesized peripheral membrane proteins occurs predominantly at the Golgi. Indeed, previous analyses of the peripheral membrane proteins, SNAP25 and cysteine string protein, are fully consistent with their initial palmitoylation being mediated by Golgi-localized DHHC proteins. Interestingly, ER-localized DHHC3 is able to palmitoylate SNAP25 and cysteine string protein to a similar level as wild-type Golgi-localized DHHC3 in co-expression studies. These results suggest that targeting of intrinsically active DHHC proteins to defined membrane compartments is an important factor contributing to spatially restricted patterns of substrate palmitoylation.  相似文献   

2.
Fukata M  Fukata Y  Adesnik H  Nicoll RA  Bredt DS 《Neuron》2004,44(6):987-996
Palmitoylation is a lipid modification that plays a critical role in protein trafficking and function throughout the nervous system. Palmitoylation of PSD-95 is essential for its regulation of AMPA receptors and synaptic plasticity. The enzymes that mediate palmitoyl acyl transfer to PSD-95 have not yet been identified; however, proteins containing a DHHC cysteine-rich domain mediate palmitoyl acyl transferase activity in yeast. Here, we isolated 23 mammalian DHHC proteins and found that a subset specifically palmitoylated PSD-95 in vitro and in vivo. These PSD-95 palmitoyl transferases (P-PATs) showed substrate specificity, as they did not all enhance palmitoylation of Lck, SNAP-25b, Galpha(s), or H-Ras in cultured cells. Inhibition of P-PAT activity in neurons reduced palmitoylation and synaptic clustering of PSD-95 and diminished AMPA receptor-mediated neurotransmission. This study suggests that P-PATs regulate synaptic function through PSD-95 palmitoylation.  相似文献   

3.
Intracellular palmitoylation dynamics are regulated by a large family of DHHC (Asp-His-His-Cys) palmitoyl transferases. The majority of DHHC proteins associate with endoplasmic reticulum (ER) or Golgi membranes, but an interesting exception is DHHC2, which localizes to dendritic vesicles of unknown origin in neurons, where it regulates dynamic palmitoylation of PSD95. Dendritic targeting of newly synthesized PSD95 is likely preceded by palmitoylation on Golgi membranes by DHHC3 and/or DHHC15. The precise intracellular distribution of DHHC2 is presently unclear, and there is very little known in general about how DHHC proteins achieve their respective localizations. In this study, membrane targeting of DHHC2 in live and fixed neuroendocrine cells was investigated and mutational analysis employed to define regions of DHHC2 that regulate targeting. We report that DHHC2 associates with the plasma membrane, Rab11-positive recycling endosomes, and vesicular structures. Plasma membrane integration of DHHC2 was confirmed by labeling of an extrafacial HA epitope in nonpermeabilized cells. Antibody-uptake experiments suggested that DHHC2 traffics between the plasma membrane and intracellular membranes. This dynamic localization was confirmed using fluorescence recovery after photo-bleaching analysis, which revealed constitutive refilling of the recycling endosome (RE) pool of DHHC2. The cytoplasmic C-terminus of DHHC2 regulates membrane targeting and a mutant lacking this domain was associated with the ER. Although DHHC2 is closely related to DHHC15, these proteins populate distinct membrane compartments. Construction of chimeric DHHC2/DHHC15 proteins revealed that this difference in localization is a consequence of divergent sequences within their C-terminal tails. This study is the first to highlight dynamic cycling of a mammalian DHHC protein between clearly defined membrane compartments, and to identify domains that specify membrane targeting of this protein family.  相似文献   

4.
SNAP25 plays an essential role in neuronal exocytosis pathways. SNAP25a and SNAP25b are alternatively spliced isoforms differing by only nine amino acids, three of which occur within the palmitoylated cysteine-rich domain. SNAP23 is 60% identical to SNAP25 and has a distinct cysteine-rich domain to both SNAP25a and SNAP25b. Despite the conspicuous differences within the palmitoylated domains of these secretory proteins, there is no information on their comparative interactions with palmitoyl transferases. We report that membrane association of all SNAP25/23 proteins is enhanced by Golgi-localized DHHC3, DHHC7, and DHHC17. In contrast, DHHC15 promoted a statistically significant increase in membrane association of only SNAP25b. To investigate the underlying cause of this differential specificity, we examined a SNAP23 point mutant (C79F) designed to mimic the cysteine-rich domain of SNAP25b. DHHC15 promoted a marked increase in membrane binding and palmitoylation of this SNAP23 mutant, demonstrating that the distinct cysteine-rich domains of SNAP25/23 contribute to differential interactions with DHHC15. The lack of activity of DHHC15 toward wild-type SNAP23 was not overcome by replacing its DHHC domain with that from DHHC3, suggesting that substrate specificity is not determined by the DHHC domain alone. Interestingly, DHHC2, which is closely related to DHHC15, associates with the plasma membrane in PC12 cells and can palmitoylate all SNAP25 isoforms. DHHC2 is, thus, a candidate enzyme to regulate SNAP25/23 palmitoylation dynamics at the plasma membrane. Finally, we demonstrate that overexpression of specific Golgi-localized DHHC proteins active against SNAP25/23 proteins perturbs the normal secretion of human growth hormone from PC12 cells.  相似文献   

5.
Roth AF  Wan J  Bailey AO  Sun B  Kuchar JA  Green WN  Phinney BS  Yates JR  Davis NG 《Cell》2006,125(5):1003-1013
Protein palmitoylation is a reversible lipid modification that regulates membrane tethering for key proteins in cell signaling, cancer, neuronal transmission, and membrane trafficking. Palmitoylation has proven to be a difficult study: Specifying consensuses for predicting palmitoylation remain unavailable, and first-example palmitoylation enzymes--i.e., protein acyltransferases (PATs)--were identified only recently. Here, we use a new proteomic methodology that purifies and identifies palmitoylated proteins to characterize the palmitoyl proteome of the yeast Saccharomyces cerevisiae. Thirty-five new palmitoyl proteins are identified, including many SNARE proteins and amino acid permeases as well as many other participants in cellular signaling and membrane trafficking. Analysis of mutant yeast strains defective for members of the DHHC protein family, a putative PAT family, allows a matching of substrate palmitoyl proteins to modifying PATs and reveals the DHHC family to be a family of diverse PAT specificities responsible for most of the palmitoylation within the cell.  相似文献   

6.
S-palmitoylation occurs on intracellular membranes and, therefore, membrane anchoring of proteins must precede palmitate transfer. However, a number of palmitoylated proteins lack any obvious membrane targeting motifs and it is unclear how this class of proteins become membrane associated before palmitoylation. Cysteine-string protein (CSP), which is extensively palmitoylated on a "string" of 14 cysteine residues, is an example of such a protein. In this study, we have investigated the mechanisms that govern initial membrane targeting, palmitoylation, and membrane trafficking of CSP. We identified a hydrophobic 31 amino acid domain, which includes the cysteine-string, as a membrane-targeting motif that associates predominantly with endoplasmic reticulum (ER) membranes. Cysteine residues in this domain are not merely sites for the addition of palmitate groups, but play an essential role in membrane recognition before palmitoylation. Membrane association of the cysteine-string domain is not sufficient to trigger palmitoylation, which requires additional downstream residues that may regulate the membrane orientation of the cysteine-string domain. CSP palmitoylation-deficient mutants remain "trapped" in the ER, suggesting that palmitoylation may regulate ER exit and correct intracellular sorting of CSP. These results reveal a dual function of the cysteine-string domain: initial membrane binding and palmitoylation-dependent sorting.  相似文献   

7.
Phosphatidylinositol 4-kinase IIα (PI4KIIα) is predominantly Golgi-localized, and it generates >50% of the phosphatidylinositol 4-phosphate in the Golgi. The lipid kinase activity, Golgi localization, and "integral" membrane binding of PI4KIIα and its association with low buoyant density "raft" domains are critically dependent on palmitoylation of its cysteine-rich (173)CCPCC(177) motif and are also highly cholesterol-dependent. Here, we identified the palmitoyl acyltransferases (Asp-His-His-Cys (DHHC) PATs) that palmitoylate PI4KIIα and show for the first time that palmitoylation is cholesterol-dependent. DHHC3 and DHHC7 PATs, which robustly palmitoylated PI4KIIα and were colocalized with PI4KIIα in the trans-Golgi network (TGN), were characterized in detail. Overexpression of DHHC3 or DHHC7 increased PI4KIIα palmitoylation by >3-fold, whereas overexpression of the dominant-negative PATs or PAT silencing by RNA interference decreased PI4KIIα palmitoylation, "integral" membrane association, and Golgi localization. Wild-type and dominant-negative DHHC3 and DHHC7 co-immunoprecipitated with PI4KIIα, whereas non-candidate DHHC18 and DHHC23 did not. The PI4KIIα (173)CCPCC(177) palmitoylation motif is required for interaction because the palmitoylation-defective SSPSS mutant did not co-immunoprecipitate with DHHC3. Cholesterol depletion and repletion with methyl-β-cyclodextrin reversibly altered PI4KIIα association with these DHHCs as well as PI4KIIα localization at the TGN and "integral" membrane association. Significantly, the Golgi phosphatidylinositol 4-phosphate level was altered in parallel with changes in PI4KIIα behavior. Our study uncovered a novel mechanism for the preferential recruitment and activation of PI4KIIα to the TGN by interaction with Golgi- and raft-localized DHHCs in a cholesterol-dependent manner.  相似文献   

8.
S-palmitoylation is a reversible post-translational modification that occurs on diverse cellular proteins. Palmitoylation can affect proteins in many different ways, including regulating membrane attachment, intracellular trafficking, and membrane micro-localisation. Intracellular palmitoylation reactions are mediated by a family of recently identified aspartate-histidine-histidine-cysteine (DHHC) palmitoyl transferases. More than 20 DHHC proteins are encoded by mammalian genomes, and there is now a major effort to identify DHHC-substrate pairings and to determine how interaction specificity is encoded. Recent studies have highlighted how DHHC proteins regulate cell function and influence physiology and pathophysiology.  相似文献   

9.
Mammalian proteins that contain an aspartate-histidine-histidine-cysteine-(DHHC) motif have been recently identified as a group of membrane-associated palmitoyl acyltransferases (PATs). Among the several protein substrates known to become palmitoylated by DHHC PATs are small GTPases prenylated at their carboxy-terminal end, such as H-Ras or N-Ras, eNOS, kinases myristoylated at their N-terminal end, such as Lck, and many transmembrane proteins and channels. We have focused our studies on the product of the human gene DHHC19, a putative palmitoyl transferase that, interestingly, displays a conserved CaaX box at its carboxy-terminal end. We show herein that the amino acid sequence present at the carboxy-terminus of DHHC19 is able to exclude a green fluorescent protein (GFP) reporter from the nucleus and direct it towards perinuclear regions. Transfection of full-length DHHC19 in COS7 cells reveals a perinuclear distribution, in analogy to other palmitoyl transferases, with a strong colocalization with the trans-Golgi markers Gal-T and TGN38. We have tested several small GTPases that are known to be palmitoylated as possible substrates of DHHC19. Although DHHC19 failed to increase the palmitoylation of H-Ras, N-Ras, K-Ras4A, RhoB or Rap2 it increased the palmitoylation of R-Ras approximately two-fold. The increased palmitoylation of R-Ras cotransfected with DHHC19 is accompanied by an augmented association with membranes as well as with rafts/caveolae. Finally, using both wild-type and an activated GTP bound form of R-Ras (G38V), we also show that the increased palmitoylation of R-Ras due to DHHC19 coexpression is accompanied by an enhanced viability of the transfected cells.  相似文献   

10.
Covalent lipid modifications mediate the membrane attachment and biological activity of Ras proteins. All Ras isoforms are farnesylated and carboxyl-methylated at the terminal cysteine; H-Ras and N-Ras are further modified by palmitoylation. Yeast Ras is palmitoylated by the DHHC cysteine-rich domain-containing protein Erf2 in a complex with Erf4. Here we report that H- and N-Ras are palmitoylated by a human protein palmitoyltransferase encoded by the ZDHHC9 and GCP16 genes. DHHC9 is an integral membrane protein that contains a DHHC cysteine-rich domain. GCP16 encodes a Golgi-localized membrane protein that has limited sequence similarity to yeast Erf4. DHHC9 and GCP16 co-distribute in the Golgi apparatus, a location consistent with the site of mammalian Ras palmitoylation in vivo. Like yeast Erf2.Erf4, DHHC9 and GCP16 form a protein complex, and DHHC9 requires GCP16 for protein fatty acyltransferase activity and protein stability. Purified DHHC9.GCP16 exhibits substrate specificity, palmitoylating H- and N-Ras but not myristoylated G (alphai1) or GAP-43, proteins with N-terminal palmitoylation motifs. Hence, DHHC9.GCP16 displays the properties of a functional human ortholog of the yeast Ras palmitoyltransferase.  相似文献   

11.
Proteins containing the DHHC motif have been shown to function as palmitoyl transferases. The palmitoylation of proteins has been shown to play an important role in the trafficking of proteins to the proper subcellular location. Herein, we describe a protein containing both ankyrin domains and a DHHC domain that is present in the Golgi of late schizonts of P. falciparum. The timing of expression as well as the location of this protein suggests that it may play an important role in the sorting of proteins to the apical organelles during the development of the asexual stage of the parasite.  相似文献   

12.
The efficacy and success of many cellular processes is dependent on a tight orchestration of proteins trafficking to and from their site(s) of action in a time-controlled fashion. Recently, a dynamic cycle of palmitoylation/de-palmitoylation has been shown to regulate shuttling of several proteins, including the small GTPases H-Ras and N-Ras, and the GABA-synthesizing enzyme GAD65, between the Golgi compartment and either the plasma membrane or synaptic vesicle membranes. These proteins are peripheral membrane proteins that in the depalmitoylated state cycle rapidly on and off the cytosolic face of ER/Golgi membranes. Palmitoylation of one or more cysteines, by a Golgi localized palmitoyl transferase (PAT) results in trapping in Golgi membranes, and sorting to a vesicular pathway in route to the plasma membrane or synaptic vesicles. A depalmitoylation step by an acyl protein thioesterase (APT) releases the protein from membranes in the periphery of the cell resulting in retrograde trafficking back to Golgi membranes by a non-vesicular pathway. The proteins can then enter a new cycle of palmitoylation and depalmitoylation. This inter-compartmental trafficking is orders of magnitude faster than vesicular trafficking. Recent advances in identifying a large family of PATs, their protein substrates, and single PAT mutants with severe phenotypes, reveal their critical importance in development, synaptic transmission, and regulation of signaling cascades. The emerging knowledge of enzymes involved in adding and removing palmitate is that they provide an intricate regulatory network involved in timing of protein function and transport that responds to intracellular and extracellular signals.  相似文献   

13.
Post-translational modifications are refined, rapidly responsive and powerful ways to modulate protein function. Among post-translational modifications, acylation is now emerging as a widespread modification exploited by eukaryotes, bacteria and viruses to control biological processes. Protein palmitoylation involves the attachment of palmitic acid, also known as hexadecanoic acid, to cysteine residues of integral and peripheral membrane proteins and increases their affinity for membranes. Importantly, similar to phosphorylation, palmitoylation is reversible and is becoming recognised as instrumental for the regulation of protein function by modulating protein interactions, stability, folding, trafficking and signalling. Palmitoylation appears to play a central role in the biology of the Apicomplexa, regulating critical processes such as host cell invasion which is vital for parasite survival and dissemination. The recent identification of over 400 palmitoylated proteins in Plasmodium falciparum erythrocytic stages illustrates the broad spread and impact of this modification on parasite biology. The main enzymes responsible for protein palmitoylation are multi-membrane protein S-acyl transferases harbouring a catalytic Asp-His-His-Cys (DHHC) motif. A global functional analysis of the repertoire of protein S-acyl transferases in Toxoplasma gondii and Plasmodium berghei has recently been performed. The essential nature of some of these enzymes illustrates the key roles played by this post-translational modification in the corresponding substrates implicated in fundamental processes such as parasite motility and organelle biogenesis. Toward a better understanding of the depalmitoylation event, a protein with palmitoyl protein thioesterase activity has been identified in T. gondii. TgPPT1/TgASH1 is the main target of specific acyl protein thioesterase inhibitors but is dispensable for parasite survival, suggesting the implication of other genes in depalmitoylation. Palmitoylation/depalmitoylation cycles are now emerging as potential novel regulatory networks and T. gondii represents a superb model organism in which to explore their significance.  相似文献   

14.
The signals involved in axonal trafficking and presynaptic clustering are poorly defined. Here we show that targeting of the gamma-aminobutyric acid-synthesizing enzyme glutamate decarboxylase 65 (GAD65) to presynaptic clusters is mediated by its palmitoylated 60-aa NH(2)-terminal domain and that this region can target other soluble proteins and their associated partners to presynaptic termini. A Golgi localization signal in aa 1-23 followed by a membrane anchoring signal upstream of the palmitoylation motif are required for this process and mediate targeting of GAD65 to the cytosolic leaflet of Golgi membranes, an obligatory first step in axonal sorting. Palmitoylation of a third trafficking signal downstream of the membrane anchoring signal is not required for Golgi targeting. However, palmitoylation of cysteines 30 and 45 is critical for post-Golgi trafficking of GAD65 to presynaptic sites and for its relative dendritic exclusion. Reduction of cellular cholesterol levels resulted in the inhibition of presynaptic clustering of palmitoylated GAD65, suggesting that the selective targeting of the protein to presynaptic termini is dependent on sorting to cholesterol-rich membrane microdomains. The palmitoylated NH(2)-terminal region of GAD65 is the first identified protein region that can target other proteins to presynaptic clusters.  相似文献   

15.
Protein palmitoylation is the post-translational addition of the 16-carbon fatty acid palmitate to specific cysteine residues by a labile thioester linkage. Palmitoylation is mediated by a family of at least 23 palmitoyl acyltransferases (PATs) characterized by an Asp-His-His-Cys (DHHC) motif. Many palmitoylated proteins have been identified, but PAT-substrate relationships are mostly unknown. Here we present a method called palmitoyl-cysteine isolation capture and analysis (or PICA) to identify PAT-substrate relationships in a living vertebrate system and demonstrate its effectiveness by identifying CKAP4/p63 as a substrate of DHHC2, a putative tumor suppressor.  相似文献   

16.
As the Plasmodium parasite transitions between mammalian and mosquito host, it has to adjust quickly to new environments. Palmitoylation, a reversible and dynamic lipid post‐translational modification, plays a central role in regulating this process and has been implicated with functions for parasite morphology, motility and host cell invasion. While proteins associated with the gliding motility machinery have been described to be palmitoylated, no palmitoyl transferase responsible for regulating gliding motility has previously been identified. Here, we characterize two palmityol transferases with gene tagging and gene deletion approaches. We identify DHHC3, a palmitoyl transferase, as a mediator of ookinete development, with a crucial role for gliding motility in ookinetes and sporozoites, and we co‐localize the protein with a marker for the inner membrane complex in the ookinete stage. Ookinetes and sporozoites lacking DHHC3 are impaired in gliding motility and exhibit a strong phenotype in vivo; with ookinetes being significantly less infectious to their mosquito host and sporozoites being non‐infectious to mice. Importantly, genetic complementation of the DHHC3‐ko parasite completely restored virulence. We generated parasites lacking both DHHC3, as well as the palmitoyl transferase DHHC9, and found an enhanced phenotype for these double knockout parasites, allowing insights into the functional overlap and compensational nature of the large family of PbDHHCs. These findings contribute to our understanding of the organization and mechanism of the gliding motility machinery, which as is becoming increasingly clear, is mediated by palmitoylation.  相似文献   

17.
Protein palmitoylation, a common post-translational lipid modification, plays an important role in protein trafficking and functions. Recently developed palmitoyl-proteomic methods identified many novel substrates. However, the whole picture of palmitoyl substrates has not been clarified. Here, we performed global in silico screening using the CSS-Palm 2.0 program, free software for prediction of palmitoylation sites, and selected 17 candidates as novel palmitoyl substrates. Of the 17 candidates, 10 proteins, including 6 synaptic proteins (Syd-1, transmembrane AMPA receptor regulatory protein (TARP) γ-2, TARP γ-8, cornichon-2, Ca2+/calmodulin-dependent protein kinase IIα, and neurochondrin (Ncdn)/norbin), one focal adhesion protein (zyxin), two ion channels (TRPM8 and TRPC1), and one G-protein-coupled receptor (orexin 2 receptor), were palmitoylated. Using the DHHC palmitoylating enzyme library, we found that all tested substrates were palmitoylated by the Golgi-localized DHHC3/7 subfamily. Ncdn, a regulator for neurite outgrowth and synaptic plasticity, was robustly palmitoylated by the DHHC1/10 (zDHHC1/11; z1/11) subfamily, whose substrate has not yet been reported. As predicted by CSS-Palm 2.0, Cys-3 and Cys-4 are the palmitoylation sites for Ncdn. Ncdn was specifically localized in somato-dendritic regions, not in the axon of rat cultured neurons. Stimulated emission depletion microscopy revealed that Ncdn was localized to Rab5-positive early endosomes in a palmitoylation-dependent manner, where DHHC1/10 (z1/11) were also distributed. Knockdown of DHHC1, -3, or -10 (z11) resulted in the loss of Ncdn from Rab5-positive endosomes. Thus, through in silico screening, we demonstrate that Ncdn and the DHHC1/10 (z1/11) and DHHC3/7 subfamilies are novel palmitoyl substrate-enzyme pairs and that Ncdn palmitoylation plays an essential role in its specific endosomal targeting.  相似文献   

18.
《Molecular membrane biology》2013,30(2-3):123-136
Abstract

Palmitoylation is required for the activities of several cancer-associated proteins, making the palmitoyl acyltransferase (PAT) enzymes that catalyze these reactions potential targets for anticancer therapeutics. In this study, we sought to identify and characterize a human PAT with activity toward N-terminally myristoylated and palmitoylated proteins. NIH/3t3 cells were stably transfected with vectors containing no insert, wild type human DHHC20, or a serine-substituted DHHS20 mutant. Compared with control cells, cells overexpressing wild-type DHHC20 displayed an increase in palmitoylation activity toward a peptide that mimics the N-terminus of myristoylated and palmitoylated proteins, but had no change in activity toward a peptide that mimics the C-terminus of farnesylated and palmitoylated proteins. Cells expressing DHHS20 had no significant change in activity toward either peptide. Overexpression of DHHC20 also caused phenotypic changes consistent with cellular transformation, including colony formation in soft agar, decreased contact inhibition of growth, and increased proliferation under low-serum conditions. Quantitative polymerase chain reaction analyses of human tissues demonstrated that DHHC20 is expressed in a tissue-specific manner, and is overexpressed in several types of human tumors, including ovarian, breast and prostate. Overall, these results demonstrate that DHHC20 is a human N-terminal-myristoyl-directed PAT involved in cellular transformation, that may play a role in cancer.  相似文献   

19.
Palmitoylation is emerging as an important and dynamic regulator of ion channel function; however, the specificity with which the large family of acyl palmitoyltransferases (zinc finger Asp-His-His-Cys type-containing acyl palmitoyltransferase (DHHCs)) control channel palmitoylation is poorly understood. We have previously demonstrated that the alternatively spliced stress-regulated exon (STREX) variant of the intracellular C-terminal domain of the large conductance calcium- and voltage-activated potassium (BK) channels is palmitoylated and targets the STREX domain to the plasma membrane. Using a combined imaging, biochemical, and functional approach coupled with loss-of-function (small interfering RNA knockdown of endogenous DHHCs) and gain-of-function (overexpression of recombinant DHHCs) assays, we demonstrate that multiple DHHCs control palmitoylation of the C terminus of STREX channels, the association of the STREX domain with the plasma membrane, and functional channel regulation. Cysteine residues 12 and 13 within the STREX insert were the only endogenously palmitoylated residues in the entire C terminus of the STREX channel. Palmitoylation of this dicysteine motif was controlled by DHHCs 3, 5, 7, 9, and 17, although DHHC17 showed the greatest specificity for this site upon overexpression of the cognate DHHC. DHHCs that palmitoylated the channel also co-assembled with the channel in co-immunoprecipitation experiments, and knockdown of any of these DHHCs blocked regulation of the channel by protein kinase A-dependent phosphorylation. Taken together our data reveal that a subset of DHHCs controls STREX palmitoylation and function and suggest that DHHC17 may preferentially target cysteine-rich domains. Finally, our approach may prove useful in elucidating the specificity of DHHC palmitoylation of intracellular domains of other ion channels and transmembrane proteins.  相似文献   

20.
Protein palmitoylation is a reversible lipid modification that plays critical roles in protein sorting and targeting to specific cellular compartments. The neuronal microtubule-regulatory phosphoproteins of the stathmin family (SCG10/stathmin 2, SCLIP/stathmin 3, and RB3/stathmin 4) are peripheral proteins that fulfill specific and complementary roles in the formation and maturation of the nervous system. All neuronal stathmins are localized at the Golgi complex and at vesicles along axons and dendrites. Their membrane anchoring results from palmitoylation of two close cysteine residues present within their homologous N-terminal targeting domains. By preventing palmitoylation with 2-bromopalmitate or disrupting the integrity of the Golgi with brefeldin A, we were able to show that palmitoylation of stathmins 2 and 3 likely occurs at the Golgi and is crucial for their specific subcellular localization and trafficking. In addition, this membrane binding is promoted by a specific set of palmitoyl transferases that localize with stathmins 2 and 3 at the Golgi, directly interact with them, and enhance their membrane association. The subcellular membrane-associated microtubule-regulatory activity of stathmins might then be fine-tuned by extracellular stimuli controlling their reversible palmitoylation, which can be viewed as a crucial regulatory process for specific and local functions of stathmins in neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号