首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We report here the in vivo expression of the synthetic transposase gene himar1(a) in Streptomyces coelicolor M145 and Streptomyces albus. Using the synthetic himar1(a) gene adapted for Streptomyces codon usage, we showed random insertion of the transposon into the streptomycetes genome. The insertion frequency for the Himar1-derived minitransposons is nearly 100 % of transformed Streptomyces cells, and insertions are stably inherited in the absence of an antibiotic selection. The minitransposons contain different antibiotic resistance selection markers (apramycin, hygromycin, and spectinomycin), site-specific recombinase target sites (rox and/or loxP), I-SceI meganuclease target sites, and an R6Kγ origin of replication for transposon rescue. We identified transposon insertion loci by random sequencing of more than 100 rescue plasmids. The majority of insertions were mapped to putative open-reading frames on the S. coelicolor M145 and S. albus chromosomes. These insertions included several new regulatory genes affecting S. coelicolor M145 growth and actinorhodin biosynthesis.  相似文献   

4.
This paper describes the effects of increased expression of the cell division genes ftsZ, ftsQ, and ssgA on the development of both solid- and liquid-grown mycelium of Streptomyces coelicolor and Streptomyces lividans. Over-expression of ftsZ in S. coelicolor M145 inhibited aerial mycelium formation and blocked sporulation. Such deficient sporulation was also observed for the ftsZ mutant. Over-expression of ftsZ also inhibited morphological differentiation in S. lividans 1326, although aerial mycelium formation was less reduced. Furthermore, antibiotic production was increased in both strains, and in particular the otherwise dormant actinorhodin biosynthesis cluster of S. lividans was activated in liquid- and solid-grown cultures. No significant alterations were observed when the gene dosage of ftsQ was increased. Analysis by transmission electron microscopy of an S. coelicolor strain over-expressing ssgA showed that septum formation had strongly increased in comparison to wild-type S. coelicolor, showing that SsgA clearly influences Streptomyces cell division. The morphology of the hyphae was affected such that irregular septa were produced with a significantly wider diameter, thereby forming spore-like compartments. This suggests that ssgA can induce a process similar to submerged sporulation in Streptomyces strains that otherwise fail to do so. A working model is proposed for the regulation of septum formation and of submerged sporulation.  相似文献   

5.
6.
7.
Phosphomannomutase (ManB), whose main function is the conversion of mannose-6-phosphate to mannose-1-phosphate, is involved in biosynthesis of GDP-mannose for numerous processes such as synthesis of structural carbohydrates, production of alginates and ascorbic acid, and post-translational modification of proteins in prokaryotes and eukaryotes. ManB isolated from Streptomyces coelicolor was shown to have both phosphomannomutase and phosphoglucomutase activities. Deletion of manB in S. coelicolor caused a dramatic increase in actinorhodin (ACT) production in the low-glucose Difco nutrient (DN) medium, whereas the wild-type strain did not produce ACT on this medium. Experiments involving complementation of the manB deletion showed that increased ACT production in DN media was due to blockage of phosphomannomutase activity rather than phosphoglucomutase activity. This result therefore provides useful information for the design of strategies that enhance antibiotic production through the control of carbon flux.  相似文献   

8.
Influence of cloned regulatory genes on nogalamycin biosynthesis by Streptomyces nogalater LV65 strain has been studied. Gene snorA from the S. nogalater genome was cloned in multicopy replicative plasmid pSOKA and integrative plasmid pR3A. Introduction of these plasmids into S. nogalater wild type cells resulted in enhanced nogalamicin biosynthesis. A similar effect was observed at heterologous expression of gene (p)ppGpp-synthetase gene relA cloned from Streptomyces coelicolor A3(2). Heterologous expression of genes absA2 from Streptomyces ghanaensis ATCC14672 and lndYR from genome Streptomyces globisporus 1912 decreased synthesis of antibiotic. The study results indicate the presence of homologs of these genes in chromosome of S. nogalater, their possible participation in regulation of nogalamicin biosynthesis, and provide us with a possibility for genetic design of the strains with higher synthesis of this antibiotic.  相似文献   

9.
10.
11.
《Gene》1996,169(1):91-95
A-factor (2-isocapryloyl-3R-hydroxymethyl-γ-butyrolactone) is essential for aerial mycelium formation and streptomycin (Sm) production in Streptomyces griseus. A protein Ser/Thr kinase (AfsK), the product of the Streptomyces coelicolor A3(2) afsK gene, controlling secondary metabolism in this strain, reversed the aerial mycelium-negative phenotype of an A-factor-deficient mutant strain, S. griseus HH1, and induced sporulation without affecting A-factor productivity or Sm production. A mutant AfsK protein lacking kinase activity failed to induce aerial mycelium formation which indicates the importance of the kinase activity for suppression in S. griseus. These data suggest that a Ser/Thr kinase functionally similar to S. coelicolor A3(2) AfsK plays a regulatory role in aerial mycelium formation in S. griseus, either as a member in the A-factor regulatory network or independently of this network  相似文献   

12.
NdgR (regulator for nitrogen source-dependent growth and antibiotic production), an IclR-like regulator, has been initially identified as a binding protein to the promoters of doxorubicin biosynthetic genes in Streptomcyes peucetius by DNA affinity capture assay method. NdgR is well conserved throughout the Streptomcyes species and many other bacteria such as Mycobacteria and Corynebacteria. In Streptomcyes coelicolor, ndgR deletion mutant showed slow cell growth and defects in differentiation and enhances the production of actinorhodin (ACT) in minimal media containing certain amino acids where wild-type strain could not produce ACT. Although deletion mutant of ndgR showed different antibiotic production in minimal media containing Leu or Gln, it only showed reduced mRNA expression levels of the genes involved in leucine metabolism. Neither NdgR-dependent expression of glnA nor direct binding of NdgR protein to glnA, glnII, and glnR promoters was observed. However, ScbR, which is governed by NdgR shown by gel mobility shift assay, binds to promoter of glnR, suggesting indirect regulation of glutamine metabolism by NdgR. NdgR protein binds to intergenic region of ndgR–leuC, and scbR–scbA involved in γ-butyrolactone. Two-dimensional gel analysis has shown a global effect of ndgR deletion in protein expression, including up-regulated proteins involved in ACT synthesis and down-regulation of chaperones such as GroEL, GroES, and DnaK. These results suggest a global regulatory role for NdgR in amino acid metabolisms, quorum sensing, morphological changes, antibiotic production, and expression of chaperonines in S. coelicolor. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.
This paper reports the in vivo expression of the synthetic transposase gene tnp(a) from a hyperactive Tn5 tnp gene mutant in Streptomyces coelicolor. Using the synthetic tnp(a) gene adapted for Streptomyces codon usage, we showed random insertion of the transposon into the Streptomycetes genome. The insertion frequency for the hyperactive Tn5 derivative is 98% of transformed S. coelicolor cells. The random transposition has been confirmed by the recovery of ~1.1% of auxotrophs. The Tn5 insertions are stably inherited in the absence of apramycin selection. The transposon contains an apramycin resistance selection marker and an R6Kγ origin of replication for transposon rescue. We identified the transposon insertion loci by random sequencing of 14 rescue plasmids. The majority of insertions (12 of 14) were mapped to putative open-reading frames on the S. coelicolor chromosome. These included two new regulatory genes affecting S. coelicolor growth and actinorhodin biosynthesis.  相似文献   

15.
16.
Summary Sequence analysis of the actVA region of the actinorhodin biosynthetic gene cluster of Streptomyces coelicolor revealed a succession of six open reading frames (ORFs), all running in the same direction and extending over 5.32 kb. The protein product of actVA-ORF1 strongly resembles that of another gene, elsewhere in the act cluster (actII-ORF2), which codes for a trans-membrane protein previously implicated in actinorhodin export from the mycelium. This suggests that the two gene products may co-operate in actinorhodin export, perhaps being sufficient for self-protection of the organism against suicide. At least four of the other five ORFs are implicated in the control of the C-6 and C-8 ring-hydroxylation reactions, lacking in actVA mutants, that occur at middle to late stages in the actinorhodin biosynthetic pathway. This conclusion was reached by genetic mapping of actVA mutants to actVA-ORF3 and-ORF5 (and perhaps -ORF4), and by the finding of strong resemblances between the protein products of actVA-ORF2 and -ORF6 and the products of genes of the oxytetracycline or tetracenomycin gene clusters that have been implicated in ring-hydroxylation reactions in the biosynthesis of these other aromatic polyketide antibiotics.  相似文献   

17.
In actinomycetes, the onset of secondary metabolite biosynthesis is often triggered by the quorum-sensing signal γ-butyrolactones (GBLs) via specific binding to their cognate receptors. However, the presence of multiple putative GBL receptor homologues in the genome suggests the existence of an alternative regulatory mechanism. Here, in the model streptomycete Streptomyces coelicolor, ScbR2 (SCO6286, a homologue of GBL receptor) is shown not to bind the endogenous GBL molecule SCB1, hence designated “pseudo” GBL receptor. Intriguingly, it could bind the endogenous antibiotics actinorhodin and undecylprodigiosin as ligands, leading to the derepression of KasO, an activator of a cryptic type I polyketide synthase gene cluster. Likewise, JadR2 is also a putative GBL receptor homologue in Streptomyces venezuelae, the producer of chloramphenicol and cryptic antibiotic jadomycin. It is shown to coordinate their biosynthesis via direct repression of JadR1, which activates jadomycin biosynthesis while repressing chloramphenicol biosynthesis directly. Like ScbR2, JadR2 could also bind these two disparate antibiotics, and the interactions lead to the derepression of jadR1. The antibiotic responding activities of these pseudo GBL receptors were further demonstrated in vivo using the lux reporter system. Overall, these results suggest that pseudo GBL receptors play a novel role to coordinate antibiotic biosynthesis by binding and responding to antibiotics signals. Such an antibiotic-mediated regulatory mechanism could be a general strategy to coordinate antibiotic biosynthesis in the producing bacteria.  相似文献   

18.
The DraR/DraK two-component system was found to be involved in the differential regulation of antibiotic biosynthesis in a medium-dependent manner; however, its function and signaling and sensing mechanisms remain unclear. Here, we describe the solution structure of the extracellular sensor domain of DraK and suggest a mechanism for the pH-dependent conformational change of the protein. The structure contains a mixed alpha-beta fold, adopting a fold similar to the ubiquitous sensor domain of histidine kinase. A biophysical study demonstrates that the E83, E105, and E107 residues have abnormally high pKa values and that they drive the pH-dependent conformational change for the extracellular sensor domain of DraK. We found that a triple mutant (E83L/E105L/E107A) is pH independent and mimics the low pH structure. An in vivo study showed that DraK is essential for the recovery of the pH of Streptomyces coelicolor growth medium after acid shock. Our findings suggest that the DraR/DraK two-component system plays an important role in the pH regulation of S. coelicolor growth medium. This study provides a foundation for the regulation and the production of secondary metabolites in Streptomyces.  相似文献   

19.

Background  

Regulation of production of the translational apparatus via the stringent factor ppGpp in response to amino acid starvation is conserved in many bacteria. However, in addition to this core function, it is clear that ppGpp also exhibits genus-specific regulatory effects. In this study we used Affymetrix GeneChips to more fully characterize the regulatory influence of ppGpp synthesis on the biology of Streptomyces coelicolor A3(2), with emphasis on the control of antibiotic biosynthesis and morphological differentiation.  相似文献   

20.
为了解赤桉(Eucalyptus camaldulensis)肌动蛋白(Actin)在生长发育过程中的功能,根据赤桉幼苗转录组数据库中的肌动蛋白基因序列,从赤桉嫩叶中克隆了2条Actin基因片段,并利用RACE技术获得Actin基因的全长cDNA,分别命名为ECACT1和EC-ACT2基因。生物信息学分析表明,这两条基因的全长cDNA分别为1533 bp和1387 bp,均含有1个编码377个氨基酸的开放阅读框。经比对分析,赤桉Actin蛋白的氨基酸序列与其他植物Actin蛋白的具有较高的相似性,并且具有Actin蛋白特有的保守序列和相关特征。因此推测这两条基因对桉树的生长发育具有一定的调控作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号