首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In contrast to fast-twitch skeletal muscle fibers of the chicken, slow-twitch fibers are fatigue-resistant. In fast fibers, the fatigue process has been related to KATP channels. In the present study, we investigated the action of glibenclamide (an anti-diabetic sulphonylurea that acts on KATP channels) on fatigued slow skeletal muscle, studying twitch and tetanus tension after inducing the muscle to fatigue by continuous electrical stimulation. Our results showed that glibenclamide (150 μM) increased post-fatigue twitch tension by about 25% with respect to the fatigued condition (P < 0.05). In addition, glibenclamide (150 μM) increased post-fatigue tetanic tension (83.61 ± 15.7% in peak tension, and 85.0 ± 19.0% in tension-time integral, P = 0.02, and 0.04, respectively; n = 3). Moreover, after exposing the muscle to a condition that inhibits mitochondrial ATP formation in order to activate KATP channels with cyanide (10 mM), tension also diminished, but in the presence of glibenclamide the effect produced by cyanide was abolished. To determine a possible increase in intracellular calcium concentration, the effects of glibenclamide on caffeine-evoked contractures were explored. After muscle pre-incubation with glibenclamide (150 μM), tension of caffeine-evoked contractures increased (6.5 ± 1.5% in maximal tension, and 5.9 ± 3.8% in tension-time integral, P < 0.05). These results suggest a possible role of KATP channels in the fatigue process, since glibenclamide increases twitch and tetanus tension in fatigued slow muscle of the chicken and during metabolic inhibition, possibly by increasing intracellular calcium.  相似文献   

2.
We investigated the effects of cannabinoids on acetylcholine (ACh) or choline contractures in slow skeletal muscle fibers from Rana pipiens. Bundles of cruralis muscle fibers were incubated with the cannabinoid receptor 1 (CB1) agonist, arachidonylcyclopropylamide (ACPA), which diminished the maximum isometric tension by 10 % and the total tension by 5 % of the ACh contracture, and 40 and 22 % of the choline contracture, respectively. Preincubation with the CB1 antagonist, AM281, or with pertussis toxin (PTX) completely blocked the effect of ACPA on the ACh contracture. On the other hand, the decrease in choline contracture by ACPA was only partially blocked by AM281 (~16 % decrease), PTX (20 %), or by dantrolene (~46 %). Our results show that ACPA modulates ACh and choline contractures, and suggest that this effect involves the participation of CB1, the ACh receptor, and ?RyR in ACh contractures. For choline contractures, ACPA may also be acting through cannabinoid receptor-independent mechanisms.  相似文献   

3.
In this work, we tested whether L-type Ca2+ channels are involved in the increase of caffeine-evoked tension in frog slow muscle fibers. Simultaneous net Ca2+ fluxes and changes in muscle tension were measured in the presence of caffeine. Isometric tension was recorded by a mechanoelectrical transducer, and net fluxes of Ca2+ were measured noninvasively using ion-selective vibrating microelectrodes. We show that the timing of changes in net fluxes and muscle tension coincided, suggesting interdependence of the two processes. The effects of Ca2+ channel blockers (verapamil and gadolinium) were explored using 6 mm caffeine; both significantly reduced the action of caffeine on tension and on calcium fluxes. Both caffeine-evoked Ca2+ leak and muscle tension were reduced by 75% in the presence of 100 μm GdCl3, which also caused a 92% inhibition of net Ca2+ fluxes in the steady-state condition. Application of 10 μm verapamil to the bath led to 30% and 52% reductions in the Ca2+ leak caused by the presence of caffeine for the peak and steady-state values of net Ca2+ fluxes, respectively. Verapamil (10 μm) caused a 30% reduction in the maximum values of caffeine-evoked muscle tension. Gd3+ was a more potent inhibitor than verapamil. In conclusion, L-type Ca2+ channels appear to play the initial role of trigger in the rather complex mechanism of slow fiber contraction, the latter process being mediated by both positive Ca2+-induced Ca2+ release and negative (Ca2+ removal from cytosol) feedback loops. Lana Shabala and Xóchitl Trujillo contributed equally to this study.  相似文献   

4.
《BBA》2023,1864(3):148973
The mechanisms underlying cigarette smoke-induced mitochondrial dysfunction in skeletal muscle are still poorly understood. Accordingly, this study aimed to examine the effects of cigarette smoke on mitochondrial energy transfer in permeabilized muscle fibers from skeletal muscles with differing metabolic characteristics. The electron transport chain (ETC) capacity, ADP transport, and respiratory control by ADP were assessed in fast- and slow-twitch muscle fibers from C57BL/6 mice (n = 11) acutely exposed to cigarette smoke concentrate (CSC) using high-resolution respirometry. CSC decreased complex I-driven respiration in the white gastrocnemius (CONTROL:45.4 ± 11.2 pmolO2.s−1.mg−1 and CSC:27.5 ± 12.0 pmolO2.s−1.mg−1; p = 0.01) and soleus (CONTROL:63.0 ± 23.8 pmolO2.s−1.mg−1 and CSC:44.6 ± 11.1 pmolO2.s−1.mg−1; p = 0.04). In contrast, the effect of CSC on Complex II-linked respiration increased its relative contribution to muscle respiratory capacity in the white gastrocnemius muscle. The maximal respiratory activity of the ETC was significantly inhibited by CSC in both muscles. Furthermore, the respiration rate dependent on the ADP/ATP transport across the mitochondrial membrane was significantly impaired by CSC in the white gastrocnemius (CONTROL:-70 ± 18 %; CSC:-28 ± 10 %; p < 0.001), but not the soleus (CONTROL:47 ± 16 %; CSC:31 ± 7 %; p = 0.08). CSC also significantly impaired mitochondrial thermodynamic coupling in both muscles. Our findings underscore that acute CSC exposure directly inhibits oxidative phosphorylation in permeabilized muscle fibers. This effect was mediated by significant perturbations of the electron transfer in the respiratory complexes, especially at complex I, in both fast and slow twitch muscles. In contrast, CSC-induced inhibition of the exchange of ADP/ATP across the mitochondrial membrane was fiber-type specific, with a large effect on fast-twitch muscles.  相似文献   

5.
Using polyclonal and monoclonal antibodies to visualize under a confocal microscope type-1 cannabinoid receptors (CB1) and acetylcholine (ACh) receptors, respectively, or α-bungarotoxin conjugated to Alexa-Fluor 555 for Ach receptors, we found that they colocalize on twitch muscle fibers in the frog (Rana pipiens). We show that both the CB1 and ACh receptors are present on the fast skeletal muscle motor end-plate. The CB1 receptor is present along the entire membrane of the muscle fiber, whereas the ACh receptor is expressed primarily at the motor end-plate. Analysis of the colocalization produced a cross-correlation coefficient of 0.519 ± 0.021 (n = 9) for both receptors at the muscle motor end-plate. This study suggests a close proximity between these two types of receptor proteins and that they could interact. CB1 could function at some stage of excitation–contraction coupling in these muscle fibers. However, further investigation is needed in order to clarify these issues.  相似文献   

6.
Chronic obstructive pulmonary disease (COPD) is known to elicit intrinsic abnormalities in male skeletal muscle. However, it is unclear to what extent these changes occur in women and whether they are fiber-type specific. We investigated fiber-type specific differences in selected histochemical properties in muscle obtained from women with moderate to severe COPD compared to healthy control (CON) women. Tissue was obtained from the vastus lateralis in five COPD patients (age 66.9 ± 2.6 years; FEV1 = 43 ± 7%) and eight CON (age 68 ± 4.9 years; FEV1 = 113 ± 4.2%). Compared to CON, the distribution (30.6 ± 5.2 vs. 57.9 ± 4.6%) and cross sectional area of type I (CSA, 5660 ± 329 vs. 3586 ± 257 μm2) and type IIA (2770 ± 302 vs. 2099 ± 206 μm2) were lower (P < 0.05) and higher (P < 0.05), respectively, in COPD. Disease state did not alter either the distribution or CSA of the IIA, IIAX or type X subtypes. Although differences were found between fiber types in the number of capillary contacts (n) (I > IIAX, IIX; IIA > IIX) and the capillaries per CSA (μm210−3) (I < IIA, IIAX, IIX), no differences were found between CON and COPD. Succinic dehydrogenase activity and sarcoplasmic reticulum (SR) Ca2+-ATPase activity, measured photometrically (OD units), were higher (P < 0.05), and lower (P < 0.05), respectively, in type I compared to the type II fiber subtypes. These properties were not altered with COPD. COPD in females is accompanied by a higher percent of type II fibers, a larger CSA of type I and type IIA fibers, both of which occur in the absence of differences in oxidative potential and the potential for SR Ca2+-sequestration.  相似文献   

7.
Gliomas are the most important group of malignant primary brain tumors and one of the most aggressive forms of cancer. During the last years, several studies have demonstrated that cannabinoids induce apoptosis of glioma cells and inhibit angiogenesis of gliomas in vivo. As the effects of cannabinoids rely on CB1 and CB2 receptors activation, the aim of the present study was to investigate both receptors protein expression in cellular membrane homogenates of human glial tumors using specific antibodies raised against these proteins. Additionally, we studied the functionality of the cannabinoid receptors in glioblastomas by using WIN 55,212-2 stimulated [35S]GTPγS binding.Western blot analysis showed that CB1 receptor immunoreactivity was significantly lower in glioblastoma multiforme (?43%, n = 10; p < 0.05) than in normal post-mortem brain tissue (n = 16). No significant differences were found for astrocytoma (n = 6) and meningioma (n = 8) samples. Conversely, CB2 receptor immunoreactivity was significantly greater in membranes of glioblastoma multiforme (765%, n = 9; p < 0.05) and astrocytoma (471%, n = 4; p < 0.05) than in control brain tissue (n = 10). Finally, the maximal stimulation of [35S]GTPγS binding by WIN 55,212-2 was significantly lower in glioblastomas (134 ± 4%) than in control membranes (183 ± 2%; p < 0.05). The basal [35S]GTPγS binding and the EC50 values were not significantly different between both groups.The present results demonstrate opposite changes in CB1 and CB2 receptor protein expression in human gliomas. These changes may be of interest for further research about the therapeutic effects of cannabinoids in glial tumors.  相似文献   

8.
The same isoform of ryanodine receptor (RYR1) is expressed in both fast and slow mammalian skeletal muscles. However, differences in contractile activation and calcium release kinetics in intact and skinned fibers have been reported. In this work, intracellular Ca2+ transients were measured in soleus and extensor digitorum longus (EDL) single muscle fibers using mag-fura-2 (K D for Ca2+= 49 μm) as Ca2+ fluorescent indicator. Fibers were voltage-clamped at V h =−90 mV and sarcoplasmic reticulum calcium release was measured at the peak (a) and at the end (b) of 200 msec pulses at +10 mV. Values of a-b and b were assumed to correspond to Ca2+-gated and voltage-gated Ca2+ release, respectively. Ratios (b/a-b) in soleus and EDL fibers were 0.41 ± 0.05 and 1.01 ± 0.13 (n= 12), respectively. This result suggested that the proportion of dihydropyridine receptor (DHPR)-linked and unlinked RYRs is different in soleus and EDL muscle. The number of DHPR and RYR were determined by measuring high-affinity [3H]PN200-110 and [3H]ryanodine binding in soleus and EDL rat muscle homogenates. The B max values corresponded to a PN200-110/ryanodine binding ratio of 0.34 ± 0.05 and 0.92 ± 0.11 for soleus and EDL muscles (n= 4–8), respectively. These data suggest that soleus muscle has a larger calcium-gated calcium release component and a larger proportion of DHPR-unlinked RYRs. Received: 31 August 1995/Revised: 25 January 1996  相似文献   

9.
The correlations between Y chromosome polymorphisms and the carcass traits were studied in five Chinese beef cattle populations by PCR, single strand conformation polymorphism and Y-STR sequence analysis. Nine alleles and their frequencies were identified on Y-STR UMN0929 region in Qinchuan (n = 116), Luxi (n = 112), Jinnan (n = 104) pure breeds, Simmental × Qinchuan crossbred (n = 80) and Angus × Qinchuan crossbred (n = 96). The most popular A-176 and B-178 alleles were presented in all 5 cattle populations in the range of 12% (Jinnan) to 66% (Simmental × Qinchuan). The allele I-194 presented Luxi and Angus × Qinchuan. In Qinchun cattle, G-190 and E-186 alleles had bigger effect on BPI (4.23 ± 0.32 and 4.22 ± 0.48 kg/cm, P < 0.01) and CW (325.40 ± 49.42 and 316.73 ± 45.29 kg, P < 0.01), respectively. In Luxi cattle, I-194 allele affected higher BPI (4.08 ± 0.35 kg/cm, P < 0.01) and CW (302.07 ± 17.55 kg, P < 0.01), respectively. In Jinnan cattle breed, H-192 had higher BPI (4.32 ± 0.50 kg/cm, P < 0.05) and CW (327.87 ± 59.37 kg, P < 0.05), respectively. In Simmental × Qinchuan cross breed, C-180 allele affected largely on BPI (5.16 ± 0.25 kg/cm, P < 0.05) and CW (393.16 ± 25.92 kg, P < 0.05). In Angus × Qinchuan cross breed, I-194 had higher BPI (4.43 ± 0.33 kg, P < 0.05) and CW (346.63 ± 29.77 kg, P < 0.05). Correlations between alleles and other carcass traits (net meat weight, top grade weight, slaughter rate, net meat rate, loin-eye muscle area, carcass length, meet tenderness and shear force) were also analyzed using mixed-effect model. Cattle Y-STR UMN0929 loci alleles and its correlation with carcass traits in beef cattle populations could be implemented into the cattle breeding program for choosing beef cattle with better carcass traits.  相似文献   

10.
The present study aims to investigate the mechanism of calmodulin modification during hypoxia and tests the hypothesis that hypoxia-induced increase in Tyr99 phosphorylation of calmodulin in the cerebral cortex of newborn piglets is mediated by NO derived from nNOS. Fifteen piglets were divided into normoxic (Nx, n = 5), hypoxic (Hx, FiO2 of 0.07 for 1 h, n = 5) and hypoxic-pretreated with nNOSi (Hx-nNOSi, n = 5) groups. nNOS inhibitor I (selectivity >2,500 vs. eNOS and >500 vs. iNOS) was administered (0.4 mg/kg, I.V.) 30 min prior to hypoxia. Cortical membranes were isolated and tyrosine phosphorylation (Tyr99 and total) of calmodulin determined by Western blot using anti-phospho-(pTyr99)-calmodulin and anti-pTyr antibodies. Protein bands were detected by enhanced chemiluminescence, analyzed by densitometry and expressed as absorbance. The pTyr99 calmodulin (ODxmm2) was 78.55 ± 10.76 in Nx, 165.05 ± 12.26 in Hx (P < 0.05 vs. Nx) and 96.97 ± 13.18 in Hx-nNOSi (P < 0.05 vs. Hx, P = NS vs. Nx). Expression of total tyrosine phosphorylated calmodulin was 69.24 ± 13.69 in Nx, 156.17 ± 16.34 in Hx (P < 0.05 vs. Nx) and 74.18 ± 3.9 in Hx-nNOSi (P < 0.05 vs. Hx, P = NS vs. Nx). The data show that administration of nNOS inhibitor prevented the hypoxia-induced increased Tyr99 phosphorylation of calmodulin. Total tyrosine phosphorylation of calmodulin was similar to Tyr99 phosphorylation. We conclude that the mechanism of hypoxia-induced modification (Tyr99 phosphorylation) of calmodulin is mediated by NO derived from nNOS. We speculate that Tyr99 phosphorylated calmodulin, as compared to non-phosphorylated, binds with a higher affinity at the calmodulin binding site of nNOS leading to increased activation of nNOS and increased generation of NO.  相似文献   

11.
Three fenamates—niflumic, flufenamic and mefenamic acids—were tested for effects on substrate-induced currents of glutamate and glycine transporters (EAAT1, EAAT2, GLYT1b and GLYT2a) expressed in Xenopus laevis oocytes. All fenamates inhibited EAAT1 currents; 100 μM flufenamic acid produced the most inhibition, decreasing the I max by 53 ± 4% (P < 0.001). EAAT2 currents were less sensitive, but 100 μM flufenamic acid inhibited the I max by 34 ± 5% (P = 0.006). All fenamates inhibited GLYT1b currents; 100 μM flufenamic acid produced the most inhibition, decreasing the I max by 61 ± 1% (P < 0.001). At 100 μM, effects on the GLYT2a I max were mixed: 13 ± 2% inhibition by flufenamic acid (P = 0.002), 30 ± 6% enhancement by niflumic acid (P = 0.002), and no effect by mefenamic acid. Minor effects on substrate affinity suggested non-competitive mechanisms. These data could contribute to the development of selective transport modulators.  相似文献   

12.
Cannabinoid CB1 receptors are highly expressed in the striatum where they are known to be co‐localized with dopamine D2 receptors. There is now strong evidence that cannabinoids modulate dopamine release in the brain. Using fast cyclic voltammetry, single pulse stimulation (0.1 ms; 10 V) was applied every 5 min and peak dopamine release was measured with a carbon fibre microelectrode. Application of the D2 receptor agonist, quinpirole, inhibited single pulse dopamine overflow in a concentration‐dependent manner (IC50: 3.25 × 10?8 M). The CB1 receptor agonist WIN55212‐2 (WIN; 1 μM) had no effect on single pulse dopamine release (93.9 ± 6.6% at 60 min, n = 5) but attenuated the inhibitory effect of quinpirole (30 nM; quinpirole 39.0 ± 4.2% vs. quinpirole + WIN, 48.2 ± 3.7%, n = 5, p < 0.05). This affect was antagonized by the CB1 receptor anatgonist [N‐(Piperidin‐1‐yl)‐5‐(4‐iodophenyl)‐1‐(2,4‐dichlorophenyl)‐4‐methyl‐1H‐pyrazole‐3‐carboxamide] (AM‐251, 1 μM). Dopamine release evoked by four pulses delivered at 1 Hz (4P1Hz) and 10 pulses delivered at 5 Hz (10P5Hz) was significantly inhibited by WIN [72.3 ± 7.9% control (peak 4 to 1 ratio measurement) and 66.9 ± 3.8% control (area under the curve measurement), respectively, p < 0.05; n = 6 for both]. Prior perfusion of WIN significantly attenuated the effects of quinpirole on multiple pulse‐evoked dopamine release (4P1Hz: quinpirole, 28.4 ± 4.8% vs. WIN + quinpirole, 52.3 ± 1.2%; 10P5Hz: quinpirole, 29.5 ± 1.3% vs. WIN + quinpirole, 59.4 ±7.1%; p < 0.05 for both; n = 6). These effects were also antagonized by AM‐251 (1 μM). This is the first report demonstrating a functional, antagonistic interaction between CB1 receptors and D2 autoreceptors in regulating rat striatal dopamine release.  相似文献   

13.
Articaine is widely used as a local anesthetic (LA) in dentistry, but little is known regarding its blocking actions on Na+ channels. We therefore examined the state-dependent block of articaine first in rat skeletal muscle rNav1.4 Na+ channels expressed in Hek293t cells. Articaine exhibited a weak block of resting rNav1.4 Na+ channels at −140 mV with a 50% inhibitory concentration (IC50) of 378 ± 26 μM (n = 5). The affinity was higher for inactivated Na+ channels measured at −70 mV with an IC50 value of 40.6 ± 2.7 μM (n = 5). The open-channel block by articaine was measured using inactivation-deficient rNav1.4 Na+ channels with an IC50 value of 15.8 ± 1.5 μM (n = 5). Receptor mapping demonstrated that articaine interacted strongly with a D4S6 phenylalanine residue, which is known to form a part of the LA receptor. Thus the block of rNav1.4 Na+ channels by articaine is via the conserved LA receptor in a highly state-dependent manner, with a ranking order of open (23.9×) > inactivated (9.3×) > resting (1×) state. Finally, the open-channel block by articaine was likewise measured in inactivation-deficient hNav1.7 and rNav1.8 Na+ channels, with IC50 values of 8.8 ± 0.1 and 22.0 ± 0.5 μM, respectively (n = 5), indicating that the high-affinity open-channel block by articaine is indeed preserved in neuronal Na+ channel isoforms.  相似文献   

14.
Age and growth of early-life-stage Atlantic tarpon Megalops atlanticus collected from Mississippi coastal waters in the northcentral Gulf of Mexico (GOM) are described using otolith microstructure analysis. Tarpon leptocephali (n = 95, 16.0—27.8 mm standard length, LS) collected from June throughOctober 2013—2018, ranged in age from 22 to 43 days (mean = 30.9 ± 0.5 days). Leptocephalus somatic growth rates ranged 0.46—1.24 mm day−1 (mean = 0.76 ± 0.02 mm day−1), and leptocephalus otolith growth rates ranged 1.78—3.97 μm day−1 (mean = 2.58 ± 0.04 μm day−1). Growth rates were inversely correlated to leptocephalus age, indicating the shrinkage phase associated with leptocephalus metamorphosis. Juvenile tarpon (n = 358, 50—359 mm fork length, LF) were collected from August through December 2007—2018. Juveniles exhibited a positive allometric relationship (adjusted R2 = 0.99, P < 0.001) between length and mass. The age of 100 juveniles (71—277 mm LF) ranged from 76 to 174 days. Juvenile growth rate was estimated as 1.56 ± 0.11 mm day−1. Significant (P < 0.001) linear relationships were found between juvenile age and otolith metrics, including otolith mass (R2 = 0.81) and radius (R2 = 0.68). Evaluation of the backcalculated hatch dates suggests that specimens in the collection hatched from late May through mid-September with slight peaks during July and August. A Rao's Spacing Test of Uniformity indicates the presence of significant lunar periodicity in leptocephalus hatch dates (n = 95, U = 250.1, P < 0.05), with 50% of the leptocephali hatched within 5 days (before or after) of the full moon. This study fills critical gaps in the scientific knowledge of tarpon and provides estimates of early-life-history metrics for an iconic game fish at the northernmost extent of its GOM range.  相似文献   

15.
We tested the hypothesis thatage-associated decline in muscle function is related to a change inmyosin ATPase activity. Single, glycerinated semimembranosus fibersfrom young (8-12 mo) and aged (32-37 mo) Fischer 344 × Brown Norway male rats were analyzed simultaneously for force andmyosin ATPase activity over a range of Ca2+ concentrations.Maximal force generation was ~20% lower in fibers from aged animals(P = 0.02), but myosin ATPase activity was not different between fibers from young and aged rats: 686 ± 46 (n = 30) and 697 ± 46 µM/s (n = 33) (P = 0.89). The apparent rate constant for thedissociation of strong-binding myosin from actin was calculated to be~30% greater in fibers from aged animals (P = 0.03),indicating that the lower force produced by fibers from aged animals isdue to a greater flux of myosin heads from the strong-binding state tothe weak-binding state during contraction. This is in agreement withour previous electron paramagnetic resonance experiments that showed areduced fraction of myosin heads in the strong-binding state during amaximal isometric contraction in fibers from older rats.

  相似文献   

16.
Previous studies have shown that hyperoxia results in cerebral cortical neuronal apoptosis. Studies have also shown that phosphorylation of anti-apoptotic proteins Bcl-2 and Bcl-xl results in loss of their anti-apoptotic potential leading to alteration in mitochondrial membrane permeability and the release of apoptogenic proteins in the neuronal cell of the newborn piglets. The present study tests the hypothesis that cerebral hyperoxia will result in increased serine phosphorylation of apoptotic proteins Bcl-2, Bcl-xl, Bax, and Bad in the mitochondrial membranes of the cerebral cortex of newborn piglets. Twelve newborn piglets were divided into normoxic (Nx, n = 6) exposed to an FiO2 of 0.21 for 1 h and hyperoxic (Hyx, n = 6) exposed to FiO2 of 1.0 for 1 h. In the Hyx group, PaO2 was maintained above 400 mmHg while the Nx group was kept at 80–100 mmHg. Cerebral cortical tissue was harvested and mitochondrial fractions were isolated. Mitochondrial membrane proteins were separated using 12% SDS-PAGE, and probed with anti-serine phosphorylated Bcl-2, Bcl-xl, Bax, and Bad antibodies. Protein bands were detected, analyzed by imaging densitometry and density expressed as absorbance (OD × mm2). Phosphorylated Bcl-2 (p-Bcl-2) protein density (OD × mm2) was 81.81 ± 9.24 in Nx and 158.34 ± 10.66 in Hyx (P < 0.05). Phosphorylated Bcl-xl (p-Bcl-xl) protein density was 52.98 ± 3.59 in Nx and 99.62 ± 18.22 in Hyx (P < 0.05). Phosphorylated Bax (p-Bax) protein was 161.13 ± 6.27 in Nx and 174.21 ± 15.95 in Hyx (P = NS). Phosphorylated Bad (p-Bad) protein was 166.24 ± 9.47 in Nx 155.38 ± 12.32 in Hyx (P = NS). The data show that there is a significant increase in serine phosphorylation of Bcl-2 and Bcl-xl proteins while phosphorylation of Bad and Bax proteins were not altered during hyperoxia in the mitochondrial fraction of the cerebral cortex of newborn piglets. We conclude that hyperoxia results in differential post-translational modification of anti-apoptotic proteins Bcl-2 and Bcl-xl as compared to pro-apoptotic proteins Bax and Bad in mitochondria. We speculate that phosphorylation of Bcl-2 and Bcl-xl will result in loss of their anti-apoptotic potential by preventing their dimerization with Bax leading to activation of the caspase cascade of neuronal death.  相似文献   

17.
The aim of this study was to explore effects of hypoxia, glucose deprivation (HGD) and recovery on expression and activities of equilibrative nucleoside transporters (rENT) and concentrative nucleoside transporters (rCNT) in rat astrocytes in primary culture. Amounts of cellular ATP in the control group (CG, 5% CO2 in air, medium containing 7 mM d-glucose, 1 mM Na+-pyruvate, 1 h), HGD group (2% O2/5% CO2 in N2, pyruvate-free medium containing 1.5 mM d-glucose and 10 mM 2-deoxy-d-glucose, 1 h) and recovery group (RG, HGD for 1 h, followed by 1 h exposure to the same conditions as the CG) were (nmol/mg protein, n = 4) 18 ± 1.6, 4.9 ± 0.6 and 10.1 ± 0.8, respectively. Extracellular adenosine concentrations increased from (nM, n = 3) 42 ± 4 in the CG, to 99 ± 8 in the HGD group and 86 ± 3 in the RG. Real-time PCR and immunoblotting revealed that in the HGD group and RG, the amounts of rENT1 mRNA and protein were reduced to 40 and 50%, when compared to the CG, respectively. Astrocyte cultures took up [3H]adenosine by concentrative and equilibrative transport processes; however, rENT1-mediated uptake was absent in the RG and cultures from the RG took up significantly less [3H]adenosine by equilibrative mechanisms than cultures from the CG.  相似文献   

18.
The present study aims to investigate the mechanism of phosphorylation of apoptotic proteins and tests the hypothesis that the hypoxia-induced increased tyrosine phosphorylation of apoptotic proteins Bcl-2 and Bcl-xl is Ca2+-influx-dependent. Piglets were divided in normoxic (Nx, n = 5), hypoxic (Hx, n = 5) and hypoxic-pretreated with clonidine (Clo + Hx, n = 4) groups. Hypoxic animals were exposed to an FiO2 of 0.06 for 1 h. Clonidine (12.5 μg/kg, IV) was administered to piglets 30 min prior to hypoxia. Hypoxia was confirmed by ATP and phosphocreatinine (PCr) levels. Cytosol was isolated and separated by 12% SDS–PAGE and probed with tyrosine phosphorylated (p) -Bax, Bad, Bcl-2 and Bcl-xl antibodies and bands were detected. The ATP levels (μmol/g brain) in the Nx, Hx, Clo + Hx were 4.3 ± 1.0 (P < 0.05 vs. Hx, Clo-Hx), 0.9 ± 0.8 and 1.5 ± 0.3, respectively. The PCr levels in the Nx, Hx, Clo + Hx were 2.7 ± 0.7 (P < 0.05 vs. Hx, Clo-Hx), 0.9 ± 0.2 and 0.9 ± 0.9, respectively. Ca2+-influx (pmoles/mg protein) was 4.96 ± 0.94 in Nx, 11.11 ± 2.38 in Hx, and 6.23 ± 2.07 in Clo + Hx (P < 0.05 Nx vs. Hx and Hx vs. Clo + Hx). p-Bcl-2 density was 21.1 ± 1.1 Nx, 58.9 ± 9.6 Hx and 29.5 ± 6.4 Clo + Hx (P < 0.05 vs. Hx). p-Bcl-xl density was 29.6 ± 1.5 Nx, 50.6 ± 7.4 Hx and 32.1 ± 0.1 Clo + Hx (P < 0.05 vs. Hx). p-Bax density was 38.6 ± 16.2 Nx, 46.1 ± 5.5 Hx and 41.6 ± 1.9 Clo + Hx groups (P = NS). p-Bad was 66.7 ± 12.8 Nx, 71.2 ± 6.8 Hx and 78.7 ± 22.5 Clo + Hx groups (P = NS). Results showed that clonidine administration prior to hypoxia prevents the hypoxia-induced increased nuclear Ca2+-influx and increased phosphorylation of Bcl-2 and Bcl-xl while phosphorylation of Bad and Bax was not altered. We conclude that post-translational modification of anti-apoptotic proteins Bcl-2 and Bcl-xl during hypoxia is nuclear Ca2+-influx-dependent. We propose that blockade of nuclear Ca2+-influx that prevents phosphorylation of antiapoptotic proteins may become a neuroprotective strategy.  相似文献   

19.
To investigate microvascular hyperpermeability and thrombosis induced by photodynamic therapy or light/dye treatment, we quantified the initiation time for thrombus formation, thrombus growth rate, and the time for the microvessel occlusion in post-capillary venules of rat mesenteries. Under similar light/dye treatments, we also measured the microvessel hydraulic conductivity (Lp) and solute permeability (P) to TRITC-BSA (bovine serum albumin), respectively, in the same type of microvessels as for thrombosis. Under an irradiation power of 0.37 mW/mm2, thrombus was initiated in 3.8 ± 0.4 min, its growth rate was 3.9 ± 0.3% of the vessel mid-plane area/min, and the microvessels were completely occluded in 29.3 ± 2.2 min (SE, n = 8). Under the same irradiation power, Lp and P increased gradually, reaching a plateau in 3–5 min. At the plateau, Lp had increased to 2.2 ± 0.2 times (n = 11), while P had increased to 4.1 ± 0.7 (n = 7) times their baseline values, respectively. Neither Lp nor P increased further after longer time exposure (up to 30 min). Comparison of the measured Lp and P data with predictions from a mathematical model for the inter-endothelial cleft suggests that an almost complete depletion of the glycocalyx layer at the luminal surface of the endothelium might be one of the structural mechanisms by which the light/dye increases microvascular permeability and induces thrombosis.  相似文献   

20.
The present study tests the hypothesis that hyperoxia results in increased tyrosine phosphorylation of apoptotic proteins Bcl-2, Bcl-xl, Bax & Bad in the mitochondrial fraction of the cerebral cortex of newborn piglets. Twelve newborn piglets were divided into normoxic [Nx, n = 6], exposed to a FiO2 of 0.21 for 1 h and hyperoxic [Hyx, n = 6], exposed to FiO2 of 1.0 for 1 h. PaO2 in Hyx group was maintained at 400 mmHg while the Nx group was kept at 80 to100 mmHg. The density (O.D.x mm2) of phosphorylated Bcl2 protein on westernblot was 19.3 ± 3.6 in Nx and 41.5 ± 18.3 in Hyx, (P < 0.05). The density of phosphorylated Bcl-xl protein density was 26.9 ± 7.0 in Nx and 47.9 ± 2.5 in Hyx, (P < 0.05). Phosphorylated Bax density was 43.5 ± 5.0 in Nx and 43.3 ± 5.2 in Hyx. Phosphorylated Bad density was 23.6 ± 3.9 in Nx, 24.4 ± 4.7 in Hyx. The data show that during hyperoxia there is a significant increase in tyrosine phosphorylation of Bcl2 and Bcl-xl, while the phosphorylation of proapototic proteins Bax & Bad was not altered. We conclude that hyperoxia leads to post translational modification of anti apoptotic proteins Bcl2 and Bcl-xl in cerebral cortical mitochondria. We propose that phosphorylation of Bcl2 will result in loss of its antiapoptotic potential by preventing its dimerization with Bax leading to activation of the caspase pathway and subsequent neuronal death in the cerebral cortex of the newborn piglets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号