首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
We introduced efficient incorporation of unsaturated fatty acids into volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and N-linolenoyl-L-glutamine, insect-derived elicitors of plant volatiles, in the common cutworms Spodoptera litura by the incubation of larval gut tissues with unsaturated (linolenic, linoleic, and oleic acids) or saturated fatty acids (palmitic and stearic acids) sodium salt, and L-[alpha-(15)N]glutamine.  相似文献   

2.
Volicitin, [N-(17-hydroxylinolenoyl)-L-glutamine], was identified as an elicitor of plant volatiles from a Spodoptera exigua regurgitant. It has been proposed that gut microbes synthesize volicitin from glutamine, a predominant amino acid component in the insect gut. However, we found that glutamine was not a major component in the regurgitant of Spodoptera litura, although L-glutamine was exclusively incorporated into volicitin by S. litura fed on diets enriched with various amino acids. This selectivity of glutamine as a substrate was not due to a dominant occurrence in the insect gut.  相似文献   

3.
Volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and N-linolenoyl-L-glutamine are known as insect-produced plant volatile elicitors. The absolute configuration of the hydroxylinolenoyl moiety of volicitin from three noctuid species, Helicoverpa armigera, Mythimna separata and Spodoptera litura, was determined to be all 17S in high enantiomeric excess. When treated with 30 pmol of (17S)- and (17R)-volicitin, corn seedlings were induced to release volatiles, there being no significant difference in the amount released between the two isomers. On the other hand, N-linolenoyl-L-glutamine was only about 30% as active as volicitin. Among several synthesized N-linolenoylamino acid conjugates, only the L-glutamine conjugate induced the emission of volatile organic compounds. These results show that the L-glutamine moiety of volicitin played a more critical role than the hydroxyl moiety, although both moieties affected the elicitor activity inducing the release of volatiles.  相似文献   

4.
Volicitin, [N-(17-hydroxylinolenoyl)-L-glutamine], was identified as an elicitor of plant volatiles from a Spodoptera exigua regurgitant. It has been proposed that gut microbes synthesize volicitin from glutamine, a predominant amino acid component in the insect gut. However, we found that glutamine was not a major component in the regurgitant of Spodoptera litura, although L-glutamine was exclusively incorporated into volicitin by S. litura fed on diets enriched with various amino acids. This selectivity of glutamine as a substrate was not due to a dominant occurrence in the insect gut.  相似文献   

5.
Feeding by larvae of Heliothis virescens induces cotton, corn and tobacco plants to release blends of volatile organic compounds that differ in constituent proportions from blends released when Helicoverpa zea larvae feed on the same plant species. The same elicitors (and analogs) of plant biosynthesis and release of volatiles, originally identified in oral secretions of Spodoptera exigua larvae, were also found in oral secretions of H. virescens and H. zea. However, relative amounts of these compounds, particularly N-(17-hydroxylinolenoyl)-L-glutamine (volicitin), 17-hydroxylinolenic acid, and N-linolenoyl-L-glutamine, varied among batches of oral secretions, more so in H. virescens than in H. zea. This variation was due to cleavage of the amide bond of the fatty acid-amino acid conjugates by an enzyme, or enzymes, originating in the midgut. The enzymatic activity in guts of H. virescens was significantly greater than that found in guts of H. zea. Furthermore, H. zea frass contains N-linolenoyl-L-glutamine in more than 0.1% wet weight, while this conjugate comprises only 0.003% wet weight in H. virescens frass. These results indicated that physiological differences between these two species affect the proportions of volicitin and its analogs in the caterpillars. Whether this causes different proportions of volatiles to be released by plants damaged by each caterpillar species is yet to be determined.  相似文献   

6.
We introduced efficient incorporation of unsaturated fatty acids into volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and N-linolenoyl-L-glutamine, insect-derived elicitors of plant volatiles, in the common cutworms Spodoptera litura by the incubation of larval gut tissues with unsaturated (linolenic, linoleic, and oleic acids) or saturated fatty acids (palmitic and stearic acids) sodium salt, and L-[α-15N]glutamine.  相似文献   

7.
Truitt CL  Paré PW 《Planta》2004,218(6):999-1007
Volicitin (N-[17-hydroxylinolenoyl]-l glutamine) present in the regurgitant of beet armyworm (Spodoptera exigua) activates the emissions of volatile organic compounds (VOCs) when in contact with damaged corn (Zea mays L.) leaves. VOC emission in turn serves as a signaling defense for the plant by attracting female parasitic wasps that prey on herbivore larvae. Chemical tracking of volicitin within plants has yet to be reported. Here we present biochemical data that beet armyworm regurgitant serves as a vector for the introduction of volicitin to the site of leaf damage under natural feeding conditions. Corn seedlings were 14CO2-labeled in situ, and beet armyworm larvae were allowed to feed on the labeled leaves. Herbivore oral secretions collected from late-third-instar larvae contained approximately 120 pmol volicitin (0.05 nCi pmol–1) per larva. When radiochemically labeled larvae were placed on unlabeled leaves, the amount of volicitin introduced to the damaged site was approximately 5.0 nCi (calc. 100 pmol/larvae). The mobility of volicitin in leaves was examined by allowing radiolabeled beet armyworms to feed on unlabeled plants. In such tracking experiments, radioactivity was not detected in the upper leaves; however, the exogenous application of 5 nCi of [U-14C]sucrose to the lower leaf did result in subsequent radioactivity being detected in the upper portion of the plant. The detection of labeled sucrose with the same radioactivity as that of administered volicitin indicated that volicitin was not readily transported to undamaged leaves and that volicitin may not directly serve as a mobile messenger in triggering the emissions of VOCs systemically.Abbreviations BAW Beet armyworm (Spodoptera exigua) - dpm Disintegrations per minute - FAA Fatty acid amide - JA Jasmonic acid - VOC Volatile organic compound  相似文献   

8.
9.
The Egyptian armyworm Spodoptera littoralis is a polyphagous insect attacking a number of plant species including those belonging to the Solanaceae and Cruciferaceae families. Its digestive physiology must therefore adapt to the food plant to ensure maximum extraction of nutrients with minimum trade-off in terms of growth retardation by pro-oxidant allelochemicals. To investigate this, the caterpillars of S. littoralis were fed on a semi-artificial diet (Manduca Premix-Heliothis Premix) and for 24 h on potato plants (Solanum tuberosum), respectively, at the mature 6th instar, and the levels of oxidative radicals and antioxidant enzymes in their guts were compared. The gut pH, standard redox potential (Eh) and electron availability (pe) revealed that oxidizing conditions prevail which promote oxidation of pro-oxidant allelochemicals in foliage. Oxidative stress in the foregut and midgut tissue and the gut contents was assessed from the generation of superoxide radical, total peroxide content and protein carbonyl content. Antioxidant defense was measured by the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX) and glutathione S-transferase peroxidase (GSTpx). A significant (p < 0.001) increase in the superoxide radical production (in foregut tissue, foregut and midgut contents), concomitant with an increase in total peroxide (in foregut contents) and protein carbonyl levels (in foregut and midgut tissue) were noted in larvae fed on the plants in contrast to those fed the semi-artificial diet. Similarly, a significant up-regulation of antioxidant enzymes SOD (in midgut tissues), CAT (in foregut, midgut tissue and contents), APOX (in foregut contents, midgut tissue and contents) and GSTpx (in foregut tissues) was recorded on the plant diet in comparison to the semi-artificial diet. The pro-oxidant allelochemicals in the plant diet are thus eliminated by the insect at the expense of up-regulation of antioxidative enzymes in response to increased oxidative stress from oxidizable allelochemicals. The results are consistent with the hypothesis that increased concentrations of antioxidants form an important component of the defense of herbivorous insects against both exogenous and endogenous oxidative radicals.  相似文献   

10.
Nitrogen metabolism was examined in senescent flag leaves of 90- to 93-day-old wheat (Triticum aestivum L. cv Yecora 70) plants. CO2 assimilation and the levels of protein, chlorophyll, and nitrogen in the leaves decreased with age. Glutamine synthetase activity decreased to one-eighth of the level in young flag leaves. Detached leaves were incubated (with the cut base) in 15N-labeled NH3, glutamate, or glycine in the light (1.8 millieinstein per square meter per second) at 25°C in an open gas exchange system under normal atmospheric conditions for up to 135 minutes. The 15N-enrichment of various amino acids derived from these 15N-substrates were examined. The amido-N of glutamine was the first 15N-labeled product in leaves incubated with 15NH4Cl whereas serine, closely followed by the amido- and amino-N of glutamine, were the most highly 15N-labeled products during incubation with [15N]glycine. In contrast, aspartate and alanine were the first 15N-labeled products when [15N] glutamate was used. These results indicate that NH3 was assimilated via glutamine synthetase and glutamate synthase activities and the photorespiratory nitrogen cycle remained functional in these senescent wheat flag leaves. In contrast, an involvement of glutamate dehydrogenase in the assimilation of ammonia could not be detected in these tissues.  相似文献   

11.
We have studied the relative roles of the glutaminase versus glutamate dehydrogenase (GLDH) and purine nucleotide cycle (PNC) pathways in furnishing ammonia for urea synthesis. Isolated rat hepatocytes were incubated at pH 7.4 and 37 degrees C in Krebs buffer supplemented with 0.1 mM L-ornithine and 1 mM [2-15N]glutamine, [5-15N]glutamine, [15N]aspartate, or [15N]glutamate as the sole labeled nitrogen source in the presence and absence of 1 mM amino-oxyacetate (AOA). A separate series of incubations was carried out in a medium containing either 15N-labeled precursor together with an additional 19 unlabeled amino acids at concentrations similar to those of rat plasma. GC-MS was utilized to determine the precursor product relationship and the flux of 15N-labeled substrate toward 15NH3, the 6-amino group of adenine nucleotides ([6-15NH2]adenine), 15N-amino acids, and [15N]urea. Following 40 min incubation with [15N]aspartate the isotopic enrichment of singly and doubly labeled urea was 70 and 20 atom % excess, respectively; with [15N]glutamate these values were approximately 65 and approximately 30 atom % excess for singly and doubly labeled urea, respectively. In experiments with [15N]aspartate as a sole substrate 15NH3 enrichment exceeded that in [6-NH2]adenine, indicating that [6-15NH2]adenine could not be a major precursor to 15NH3. Addition of AOA inhibited the formation of [15N]glutamate, 15NH3 and doubly labeled urea from [15N]aspartate. However, AOA had little effect on [6-15NH2]adenine production. In experiments with [15N]glutamate, AOA inhibited the formation of [15N]aspartate and doubly labeled urea, whereas 15NH3 formation was increased. In the presence of a physiologic amino acid mixture, [15N]glutamate contributed less than 5% to urea-N. In contrast, the amide and the amino nitrogen of glutamine contributed approximately 65% of total urea-N regardless of the incubation medium. The current data indicate that when glutamate is a sole substrate the flux through GLDH is more prominent in furnishing NH3 for urea synthesis than the flux through the PNC. However, in experiments with medium containing a mixture of amino acids utilized by the rat liver in vivo, the fraction of NH3 derived via GLDH or PNC was negligible compared with the amount of ammonia derived via the glutaminase pathway. Therefore, the current data suggest that ammonia derived from 5-N of glutamine via glutaminase is the major source of nitrogen for hepatic urea-genesis.  相似文献   

12.
斜纹夜幼虫对食物中重金属Ni2+的积累与排泄   总被引:2,自引:0,他引:2  
孙虹霞  夏嫱  周强  张古忍 《昆虫学报》2008,51(6):569-574
为明确食物中重金属离子在昆虫体内的分布和转移情况,本文采用等离子体原子发射光谱仪检测了植食性昆虫斜纹夜蛾Spodoptera litura Fabricius连续3个世代6龄幼虫对食物中过量Ni2+的排泄和积累情况。结果表明:大部分Ni2+可通过粪便排出体外;沉积在体内的Ni2+主要积累在中肠,部分Ni2+可通过中肠上皮细胞基底膜进入血淋巴,经由血淋巴的转运作用积累在脂肪体和表皮等组织中。6龄幼虫不同组织中所积累Ni2+的含量为中肠>脂肪体>表皮,且不同组织和粪便中的Ni2+都随饲料中Ni2+浓度的增加而增加,并存在显著的剂量-反应关系。研究结果可为进一步研究过量Ni2+对斜纹夜蛾幼虫的生长发育和繁殖的影响,以及斜纹夜蛾幼虫不同组织对Ni2+的解毒能力等提供一定依据。  相似文献   

13.
Oxygen levels were measured in the foregut and midgut lumens of ten species of caterpillars and three species of grasshoppers. In most species, the foregut was nearly anoxic, with oxygen levels ranging from 0 to 2.5 mm Hg. However, two caterpillar species with large foreguts (Malacosoma disstria and Lymantria dispar) had elevated oxygen levels (27.9 and 32.1 mm Hg) in this region when they were fed artificial diet. In all of the species surveyed, the anterior and posterior midgut were nearly anoxic, with oxygen levels ranging from 0 to 7.3 mm Hg. Oxygen levels in the midgut lumen of Helicoverpa zea did not differ when caterpillars were fed artificial diet or tomato foliage, suggesting that the insect is capable of reducing the level of ingested oxygen in its gut. An examination of the radial microgradient of oxygen in the gut lumen demonstrated that the midgut epithelium is not a sink for ingested oxygen. However, the midgut contents of larvae fed artificial diet were capable of depleting oxygen. This capacity was reduced by boiling, suggesting that the nearly anoxic state of the midgut lumen in some insects is maintained by endogenous chemical processes. We conclude that low oxygen levels in the gut lumens of most herbivorous insects may greatly reduce the rates of oxidation of ingested plant compounds by oxygen-dependent reactions.  相似文献   

14.
This study examines the role of glucagon and insulin in the incorporation of (15)N derived from (15)N-labeled glutamine into aspartate, citrulline and, thereby, [(15)N]urea isotopomers. Rat livers were perfused, in the nonrecirculating mode, with 0.3 mM NH(4)Cl and either 2-(15)N- or 5-(15)N-labeled glutamine (1 mM). The isotopic enrichment of the two nitrogenous precursor pools (ammonia and aspartate) involved in urea synthesis as well as the production of [(15)N]urea isotopomers were determined using gas chromatography-mass spectrometry. This information was used to examine the hypothesis that 5-N of glutamine is directly channeled to carbamyl phosphate (CP) synthesis. The results indicate that the predominant metabolic fate of [2-(15)N] and [5-(15)N]glutamine is incorporation into urea. Glucagon significantly stimulated the uptake of (15)N-labeled glutamine and its metabolism via phosphate-dependent glutaminase (PDG) to form U(m+1) and U(m+2) (urea containing one or two atoms of (15)N). However, insulin had little effect compared with control. The [5-(15)N]glutamine primarily entered into urea via ammonia incorporation into CP, whereas the [2-(15)N]glutamine was predominantly incorporated via aspartate. This is evident from the relative enrichments of aspartate and of citrulline generated from each substrate. Furthermore, the data indicate that the (15)NH(3) that was generated in the mitochondria by either PDG (from 5-(15)N) or glutamate dehydrogenase (from 2-(15)N) enjoys the same partition between incorporation into CP or exit from the mitochondria. Thus, there is no evidence for preferential access for ammonia that arises by the action of PDG to carbamyl-phosphate synthetase. To the contrary, we provide strong evidence that such ammonia is metabolized without any such metabolic channeling. The glucagon-induced increase in [(15)N]urea synthesis was associated with a significant elevation in hepatic N-acetylglutamate concentration. Therefore, the hormonal regulation of [(15)N]urea isotopomer production depends upon the coordinate action of the mitochondrial PDG pathway and the synthesis of N-acetylglutamate (an obligatory activator of CP). The current study may provide the theoretical and methodological foundations for in vivo investigations of the relationship between the hepatic urea cycle enzyme activities, the flux of (15)N-labeled glutamine into the urea cycle, and the production of urea isotopomers.  相似文献   

15.
Volicitin-related compounds were found in the oral secretion of the three noctuid species, Helicoverpa armigera, Mythimna separata and Spodoptera litura, and one sphingid species, Agrius convolvuli. Volicitin [N-(17-hydroxylinolenoyl)-L-glutamine], N-(17-hydroxylinoleoyl)-glutamine, N-linolenoylglutamine and N-linoleoylglutamine were identified in the secretion from the noctuid larvae. In secretions from the sphingid larvae, N-linolenoylglutamine and N-linoleoylglutamine were the main components. Furthermore, there were significant differences in the amounts of the N-acylamino acid conjugates in the secretions from the three noctuid species. These results suggest that the proportion of volicitin-related compounds in the regurgitant was species-specific.  相似文献   

16.
Administration of arginine or a high-protein diet increases the hepatic content of N-acetylglutamate (NAG) and the synthesis of urea. However, the underlying mechanism is unknown. We have explored the hypothesis that agmatine, a metabolite of arginine, may stimulate NAG synthesis and, thereby, urea synthesis. We tested this hypothesis in a liver perfusion system to determine 1) the metabolism of l-[guanidino-15N2]arginine to either agmatine, nitric oxide (NO), and/or urea; 2) hepatic uptake of perfusate agmatine and its action on hepatic N metabolism; and 3) the role of arginine, agmatine, or NO in regulating NAG synthesis and ureagenesis in livers perfused with 15N-labeled glutamine and unlabeled ammonia or 15NH4Cl and unlabeled glutamine. Our principal findings are 1) [guanidino-15N2]agmatine is formed in the liver from perfusate l-[guanidino-15N2]arginine ( approximately 90% of hepatic agmatine is derived from perfusate arginine); 2) perfusions with agmatine significantly stimulated the synthesis of 15N-labeled NAG and [15N]urea from 15N-labeled ammonia or glutamine; and 3) the increased levels of hepatic agmatine are strongly correlated with increased levels and synthesis of 15N-labeled NAG and [15N]urea. These data suggest a possible therapeutic strategy encompassing the use of agmatine for the treatment of disturbed ureagenesis, whether secondary to inborn errors of metabolism or to liver disease.  相似文献   

17.
昆虫肠道微生物对其寄主的生长发育、营养代谢、免疫以及农药抗性等方面都发挥着重要作用。为研究斜纹夜蛾Spodoptera litura幼虫肠道细菌的多样性,并为其功能验证做准备,本文利用传统微生物分离纯培养方法从斜纹夜蛾4龄幼虫肠道中共分离鉴定得到10株细菌,分别为属于变形菌门(Proteobacteria)的脱氮假单胞菌(Pseudomonas denitrificans),不动细菌(Acinetobacter sp.),肺炎克雷伯氏菌(Klebsiella pneumoniae)和肠杆菌(Enterobacter sp.);属于厚壁菌门(Firmicutes)的鸡葡萄球菌(Staphylococcus gallinarum),蒙氏肠球菌(Enterococcus mundtii),蜡样芽胞杆菌(Bacillus cereus)和枯草芽胞杆菌(Bacillus subtilis)以及放线菌门(Actinobacteria)的微杆菌(Microbacteriums sp.)和乳酪棒杆菌(Corynebacterium casei)。变形菌门和厚壁菌门是斜纹夜蛾肠道可培养细菌中的优势菌群。功能验证实验表明肠杆菌具备纤维素降解能力,微杆菌具备很强的苯酚降解能力。本研究为未来深入研究斜纹夜蛾肠道微生物的功能提供了方向和菌株材料。  相似文献   

18.
Larvae of several species of Lepidoptera produce fatty acid amide elicitors that induce the plants on which they feed to synthesize and release volatile organic compounds. The volatiles released by the plants act as cues that aid in host location by natural enemies of the herbivorous larvae. The elicitors are synthesized in the larvae by enzymes embedded in the membranes of the crop and anterior midgut tissues. The fatty acid precursors of the elicitors are obtained from the plants on which the caterpillars feed, while the amino acid moieties appear to be obtained from pools within the insects. The fatty acid amide elicitors are rapidly hydrolyzed in the midgut and hindgut by enzymes in the gut lumen. The role of these fatty acid amides in caterpillar metabolism is not yet understood.  相似文献   

19.
20.
The roles of serine proteases involved in the digestion mechanism of the cutworm Spodoptera litura (Lepidoptera: Noctuidae) were examined (in vitro and in vivo) following feeding of plant protease inhibitors. A trypsin inhibitor from Archidendron ellipticum (AeTI) was purified by ammonium sulfate fractionation, ion-exchange chromatography and size-exclusion chromatography (HPLC) and its bioinsecticidal properties against S. litura were compared with Soybean Kunitz trypsin inhibitor (SBTI). AeTI inhibited the trypsin-like activities of the midgut proteases of fifth instar larvae of S. litura by over 70%. Dixon plot analysis revealed competitive inhibition of larval midgut trypsin and chymotrypsin by AeTI, with an inhibition constant (K(i)) of 3.5x10(-9) M and 1.5x10(-9) M, respectively. However, inhibitor kinetics using double reciprocal plots for both trypsin and chymotrypsin inhibitions demonstrated a mixed inhibition pattern. Feeding experiments conducted on different (neonate to ultimate) instars suggested a dose-dependent decrease for both the larval body weight as well as % survival of larva fed on diet containing 50, 100 and 150 microM AeTI. Influence of AeTI on the larval gut physiology indicated a 7-fold decrease of trypsin-like protease activity and a 5-fold increase of chymotrypsin-like protease activity, after being fed with a diet supplemented with 150 microM AeTI. This study suggests that although the early (1st to 3rd) larval instars of S. litura are susceptible to the trypsin inhibitory action of AeTI, the later instars may facilitate the development of new serine proteases, insensitive to the inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号