首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of changes in the degree of dominance by upper laterals over lower ones in coppice shoots (1-year-old stems) of 12-year old low- pruned stumps of mulberry ( Morus alba L. cv. Shin-ichinose) were made by removal of upper stem sections (pruning) or of lateral buds (debudding.) before spring bud burst, as part of a study of the factors involved in dominance relationships between the developing buds and elongating shoots. Besides inhibition of lower laterals by the upper, leading shoots, there was evidence for mutual inhibition (competition) of neighboring laterals along the stem. Thus in stems in which every other bud, or 4 out of every 5 buds were removed, there was a delay in growth cessation of lower laterals and their greater elongation than in controls. Such competition was seen to exist even between the uppermost and sub-terminal laterals, since the former elongated more in the absence of the latter.
In contrast to high and middle pruned stems, the delay in sprouting of the buds in low-pruned stems resulted in limited elongation of the shoots from such buds. This inhibition was removed when all the stems on a stump were pruned to the same length, suggesting that it was associated with intact stems with actively growing laterals. Patterns of regrowth of the short shoots (lower laterals) after summer pruning (middle-pruned) depended on the extent of removal of other stems with vigorously growing, upper laterals. These results demonstrate that both acropetal and basipetal influences are important in bud and shoot dominance relationships.  相似文献   

2.
The flowering response of axillary buds of seedlings of Pharbitis nil Choisy, cv. Violet, was examined in relation to the timing of apical bud removal (plumule including the first leaf or second leaf) before or after a flower-inductive 16-h dark period. When the apical bud was removed well before the dark period, flower buds formed on the axillary shoots that subsequently developed, but when removed just before, or after, the dark period, different results were observed depending on the timing of the apical bud removal and plant age. In the case of 8-day-old seedlings, fewer flower buds formed on the axillary shoots developing from the cotyledonary node when plumules were removed 20 to 0 h before the dark period. When the apical bud was removed after the dark period, no flower buds formed. Using 14-day-old seedlings a similar reduction of flowering response was observed on the axillary shoots developing from the first leaf node when the apical bud was removed just after the dark period. To further elucidate the relationship between apical dominance and flowering, kinetin or IAA was applied to axillary buds or the cut site where the apical bud was located. Both chemicals influenced flowering, probably by modulating apical dominance which normally forces axillary buds to be dormant.  相似文献   

3.
The torosa-2 tomato mutant is characterized by a strong inhibition of release of axillary shoots, that is not under the control of the main apex and IAA. Microscopic examination indicated that about 70% of leaf axils do not have axillary buds. Of the growth regulators tested, gibberellic acid and cytokinins were able to modify the to-2 phenotype: increasing bud number (GA3 treated) and developing shoots (both substances). Sequential application of growth regulators demonstrated that bud production was only affected by treatments given between sowing time and 32 days after germination. Grafting experiments indicated that endogenous root factors have no essential role in the lateral branching of the genotypes investigated. The control of axillary bud differentiation and the branching pattern in the to-2 appears to be dependent of a complex mechanism involving gibberellins and cytokinins.  相似文献   

4.
The hormonal regulation of axillary bud growth in Arabidopsis   总被引:11,自引:0,他引:11  
Apically derived auxin has long been known to inhibit lateral bud growth, but since it appears not to enter the bud, it has been proposed that its inhibitory effect is mediated by a second messenger. Candidates include the plant hormones ethylene, cytokinin and abscisic acid. We have developed a new assay to study this phenomenon using the model plant Arabidopsis. The assay allows study of the effects of both apical and basal hormone applications on the growth of buds on excised nodal sections. We have shown that apical auxin can inhibit the growth of small buds, but larger buds were found to have lost competence to respond. We have used the assay with nodes from wild-type and hormone-signalling mutants to test the role of ethylene, cytokinin and abscisic acid in bud inhibition by apical auxin. Our data eliminate ethylene as a second messenger for auxin-mediated bud inhibition. Similarly, abscisic acid signalling is not to be required for auxin action, although basally applied abscisic can enhance inhibition by apical auxin and apically applied abscisic acid can reduce it. By contrast, basally applied cytokinin was found to release lateral buds from inhibition by apical auxin, while apically applied cytokinin dramatically increased the duration of inhibition. These results are consistent with cytokinin acting independently to regulate bud growth, rather than as a second messenger for auxin. However, in the absence of cytokinin-signalling mutants, a role for cytokinin as a second messenger for auxin cannot be ruled out.  相似文献   

5.
Lateral buds of pea plants can be released from apical dominance and even be transformed into dominant shoots when repeatedly treated with synthetic exogenous cytokinins (CKs). The mechanism of the effect of CKs, however, is not clear. The results in this work showed that the stimulatory effects of CKs on the growth of lateral buds and the increase in their fresh weights in pea plants depended on the structure and concentration of the CKs used. The effect of N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU) was stronger than that of 6-benzylaminopurine (6-BA). Indoleacetic acid (IAA) concentration in shoot, IAA export out of the treated apex and basipetal transport in stems were markedly increased after the application of CPPU or 6-BA to the apex or the second node of pea plant. This increase was positively correlated with the increased concentration of the applied CKs. These results suggest that the increased IAA synthesis and export induced by CKs application might be responsible for the growth of lateral shoots in intact pea plants.  相似文献   

6.
The control of shoot branching: an example of plant information processing   总被引:2,自引:0,他引:2  
Throughout their life cycle, plants adjust their body plan to suit the environmental conditions in which they are growing. A good example of this is in the regulation of shoot branching. Axillary meristems laid down in each leaf formed from the primary shoot apical meristem can remain dormant, or activate to produce a branch. The decision whether to activate an axillary meristem involves the assessment of a wide range of external environmental, internal physiological and developmental factors. Much of this information is conveyed to the axillary meristem via a network of interacting hormonal signals that can integrate inputs from diverse sources, combining multiple local signals to generate a rich source of systemically transmitted information. Local interpretation of the information provides another layer of control, ensuring that appropriate decisions are made. Rapid progress in molecular biology is uncovering the component parts of this signalling network, and combining this with physiological studies and mathematical modelling will allow the operation of the system to be better understood.  相似文献   

7.
The role of hormones in apical dominance has been under investigation with traditional 'spray and weigh' methods for nearly 5 decades. Even though the precision of hormone content analyses in tissue has greatly improved in recent years, there have been no significant breakthroughs in our understanding of the action mechanism of this classical developmental response. Auxin appears to inhibit axillary bud outgrowth whereas cytokinins will often promote it. Conclusive evidence for a direct role of these or other hormones in apical dominance has not been forthcoming. However, promising new tools and approaches recently have begun to be utilized. The manipulation of endogenous hormone levels via the use of transgenic plants transformed with bacterial genes ( iaaM and ipt from Agrobacterium tumefaciens and iaaL from Pseudomonas syringae pv. savastanoi ) has demonstrated powerful effects of auxin and cytokinin on axillary bud outgrowth. Also, possible auxin and cytokinin involvement of rolB and C genes from Agrobacterium rhizogenes whose activity is associated with reduced apical dominance in dicotyledons has received considerable attention. The characterization of unique mRNAs and proteins in non-growing and growing lateral buds before and after apical dominance release is helping to lay the groundwork for the elucidation of signal transduction and cell cycle regulation in this response. The use of auxin-deficient, and auxin/ethylene-resistant mutants has provided another approach for analyzing the role of these hormones. The presumed eventual employment of molecular assay systems (SAUR/GH3 promoters fused with GUS reporter gene) which are presently being developed for analyzing auxin localized in lateral buds will hopefully provide a critical test for the direct auxin inhibition hypothesis.  相似文献   

8.
In conifers such as Norway spruce, the extent of shoot growth is predetermined by the size and number of embryonal organs of the buds laid down the previous year. As it is known that cytokinins have a key role in bud development a possible hypothesis is that the level of cytokinin in the buds during their formation determines their size and complexity. As a first step to test this hypothesis we compared cytokinin levels in buds of different size of annual shoots from 15- to 20-year-old trees of Picea abies (L.) Karst. Apical buds from the leaders, and from branches in lower parts of the trees, were collected in April, July and August. The difference in size of the buds and the shoots growing from them was considerable in these three positions. Extracts were purified by immunoaffinity columns, and the retained compounds were separated by high-performance liquid chromatography (HPLC). Quantification was made by enzyme-linked immunosorbent assay (ELISA), and the accuracy of this method was checked by measurements with liquid chromatography-mass spectrometry (LC-MS) and UV absorption. Zeatin riboside (ZR) was the most abundant cytokinin, but isopentenyladenosine (iPA) was also present in all samples. The large apical bud of the leader contained much higher cytokinin concentrations than the considerably smaller buds from lower positions, and during the period of secondary growth in July, similar relationships were found for annual stem tissue from different positions. The possible role of ZR as a controlling factor in bud development and apical control is discussed. Our conclusion is that the level of zeatin-type cytokinins appears to play an important role in the establishment of differences in bud size and, thereby, the architecture of the tree crown.  相似文献   

9.
10.
11.
A time-dependent correlation of anatomical and chemical defence reactions was shown during the incompatible reaction of tomato against the phanerogamic parasite Cuscuta reflexa. Microscopical analysis of the infection sites at the tomato stem revealed the elongation of epidermal, hypodermal and collenchymatic cells beneath the parasitic prehaustorium. After 9–11 days of infection the elongated cells had collapsed forming a visible brownish plaque at the tomato stem followed by a scalariform tissue with lignified and suberized cell walls. Concomitantly, an enhanced accumulation of soluble phenolic compounds (chlorogenic acid and an unidentified hydroxycinnamic acid derivative), as well as a stimulation of peroxidases, was observed. In contrast, PAL activity was not increased. Whereas the stimulation of phenylpropanoid metabolism could also be induced by artificial wounding, the described anatomical changes were only observed during attack of Cuscuta.  相似文献   

12.
Shoot regeneration from Rubus leaves was obtained on a medium containing MS salts, vitamins and sugars, Staba vitamins, casein hydrolysate (100 mg l–1) and 10 M thidiazuron. Shoot regeneration from Malus leaves was obtained on N6 rice anther medium with 5 M thidiazuron. In vitro pretreatment of source shoots with either colchicine or thidiazuron enhanced the organogenic potential of detached leaves of two Rubus hybrids. The response to colchicine was quadratic and occurred at non-mutagenic concentrations (75–250 M). The response to thidiazuron was exponential between 0 and 5 M. When applied as a pretreatment, the effectiveness of several different cytokinins (benzyladenine, thidiazuron, zeatin) at enhancing Malus and Rubus organogenesis was related to the shoot proliferation activity of the cytokinin and to treatment-induced variation in leaf and petiole size.Abbreviations BA benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - IBA indolebutyric acid - MS Murashige & Skoog basal medium devoid of plant growth regulators - OI organogenesis-initiating subculture - PTI colchicine pretreatment subculture - PTII cytokinin pretreatment subculture - NAA naphthaleneacetic acid - TDZ thidiazuron - zeatin trans-zeatin  相似文献   

13.
Auxin, cytokinin and the control of shoot branching   总被引:3,自引:0,他引:3  
Müller D  Leyser O 《Annals of botany》2011,107(7):1203-1212
BACKGROUND: It has been known for many decades that auxin inhibits the activation of axillary buds, and hence shoot branching, while cytokinin has the opposite effect. However, the modes of action of these two hormones in branching control is still a matter of debate, and their mechanisms of interaction are equally unresolved. SCOPE: Here we review the evidence for various hypotheses that have been put forward to explain how auxin and cytokinin influence axillary bud activity. In particular we discuss the roles of auxin and cytokinin in regulating each other's synthesis, the cell cycle, meristem function and auxin transport, each of which could affect branching. These different mechanisms have implications for the main site of hormone action, ranging from systemic action throughout the plant, to local action at the node or in the bud meristem or leaves. The alternative models have specific predictions, and our increasing understanding of the molecular basis for hormone transport and signalling, cell cycle control and meristem biology is providing new tools to enable these predictions to be tested.  相似文献   

14.
15.
We examined the role of cytokinins (CKs) in release of apical dominance in lateral buds of chickpea (Cicer arietinum L.). Shoot decapitation or application of CKs (benzyladenine, zeatin or dihydrozeatin) stimulated rapid bud growth. Time-lapse video recording revealed growth initiation within 2 h of application of 200 pmol benzyladenine or within 3 h of decapitation. Endogenous CK content in buds changed little in the first 2 h after shoot decapitation, but significantly increased by 6 h, somewhat later than the initiation of bud growth. The main elevated CK was zeatin riboside, whose content per bud increased 7-fold by 6 h and 25-fold by 24 h. Lesser changes were found in amounts of zeatin and isopentenyl adenine CKs. We have yet to distinguish whether these CKs are imported from the roots via the xylem stream or are synthesised in situ in the buds, but CKs may be part of an endogenous signal involved in lateral bud growth stimulation following shoot decapitation. To our knowledge, this is the first detailed report of CK levels in buds themselves during release of apical dominance. Received: 12 December 1996 / Accepted: 7 January 1997  相似文献   

16.
Apical dominance is the control exerted by the shoot apex over lateral bud outgrowth. The concepts and terminology associated with apical dominance as used by various plant scientists sometimes differ, which may lead to significant misconceptions. Apical dominance and its release may be divided into four developmental stages: (I) lateral bud formation, (II) imposition of inhibition on lateral bud growth, (III) release of apical dominance following decapitation, and (IV) branch shoot development. Particular emphasis is given to discriminating between Stage III, which is accompanied by initial bud outgrowth during the first few hours of release and may be promoted by cytokinin and inhibited by auxin, and Stage IV, which is accompanied by subsequent bud outgrowth occurring days or weeks after decapitation and which may be promoted by auxin and gibberellin. The importance of not interpreting data measured in Stage IV on the basis of conditions and processes occurring in Stage III is discussed as well as the correlation between degree of branching and endogenous auxin content, branching mutants, the quantification of apical dominance in various species (including Arabidopsis ), and apical control in trees.  相似文献   

17.
A lateral bud growth inhibitor was isolated from etiolated pea seedlings and identified as indole-3-aldehyde. The indole-3-aldehyde content was significantly higher in the diffusates from explants with apical bud and indole-3-acetic acid treated decapitated explants, in which apical dominance is maintained, than in those from decapitated ones releasing apical dominance. When the indole-3-aldehyde was applied to the cut surface of etiolated decapitated plants or directly to the lateral buds, it inhibited outgrowth of the latter. These results suggest that indole-3-aldehyde plays an important role as a lateral bud growth inhibitor in apical dominance of pea seedlings.  相似文献   

18.
Bioactive gibberellins (GAs) are involved in many developmental aspects in the life cycle of plants, acting either directly or through interaction with other hormones. One way to study the role of GA in specific mechanisms is to modify the levels of bioactive GA in specific tissues. We increased GA catabolism in different parts of the vascular tissue by overexpressing two different GA 2‐oxidase genes that encode oxidases with affinity for C20‐ or C19‐GA. We show that, irrespective of their localization in the vascular tissue, the expression of different members of this gene family leads to similar modifications in the primary and secondary growth of the stem of hybrid aspen. We also show that the precise localization of bioactive GA downregulation is important for the proper control of other developmental aspects, namely leaf shape and bud dormancy. Expression under the control of one of the studied promoters significantly affected both the shape of the leaves and the number of sylleptic branches. These phenotypic defects were correlated with alterations in the levels and repartitioning of auxins. We conclude that a precise localization of bioactive GA in the vasculature of the apex is necessary for the normal development of the plant through the effect of GAs on auxin transport.  相似文献   

19.
Xylem or tracheary changes at the base of the cotyledonary buds of flax seedlings (Linum usitatissimum L.), released from inhibition by decapitation of the main apex were studied. The differentiation of xylem strands and/or tracheary elements was correlated with the growth in length of the lateral buds, especially 48–72 hr after the removal of the main apex. The xylem strands, connected to the hypocotylary stele or not, and the tracheary elements increased with age within and outside the strands of both non-decapitated and decapitated seedlings. In the latter, the differentiation of these structures, however, occurred much earlier and in greater abundance in the same regions. The early growth in length of lateral buds, 1 or 2 hr after decapitation, was correlated with the early development of tracheary perforations in the xylem strands. The xylary strands with perforated elements are known to be more efficient than those without them. Therefore, it is suggested that the inhibition of lateral-bud growth was due, in fact, to a lack of appropriate tracheary perforations in the bud xylem strands that were connected with the hypocotylary stele of flax seedlings.  相似文献   

20.
Adventitious buds were induced on isolated immature cotyledons of Pinus pinea L. in the presence of benzyladenine (BA). The response to different BA concentrations also depended upon the culture medium used (modified MS, SH and GD). A wide range of BA concentrations (5, 25 or 50 M) can be applied to the GD and SH media, which are the media with the lower nitrogen content, without damaging effects. In the MS medium, which has the highest nitrogen concentration, the range of BA that can be applied was narrower and the highest BA concentration was lethal. The addition of indolebutyric acid (0.05, 0.25 or 0.5 M) to the induction medium, decreased the response of cotyledons. The increase in the concentration of sucrose from 3% to 5% did not increase the number of responding cotyledons. The addition of activated charcoal (0.5 and 3 g l-1) or indolebutyric acid (1.5 or 3 M) did not speed up the elongation of explants. Elongation of the buds produced shoots with two different phenotypes, each phenotype having a different multiplication rate.Abbreviations BA benzyladenine - GD Gresshoff & Doy medium - IBA indolebutyric acid - MS Murashige & Skoog medium - SH Schenk & Hildebrandt medium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号