首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Single toxic doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).HCl (2.5 mg/kg i.v.) and 4'-amino-MPTP.2HCl (22.5 mg/kg) induce loss of striatal dopamine (DA) and tyrosine hydroxylase (TH) activity and of nigral DA neurons in the dog. To examine the subacute neurochemical changes induced by low doses of MPTP and 4'-amino-MPTP, dose-response studies of these compounds were carried out in the dog, using 6- and 3-week survival times for these two compounds, respectively. Low single doses of MPTP (1.0, 0.5, and 0.1 mg/kg i.v.) and 4'-amino-MPTP (15, 7.5, and 3.75 mg/kg i.v.) did not cause depletion of canine striatal DA or TH or a loss of nigral neurons. However, levels of the DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were decreased in a dose-related fashion, with significant loss of DOPAC being evident 6 weeks after the lowest administered dose of MPTP and 3 weeks after 4'-amino-MPTP. This selective loss of DA metabolites following nontoxic doses of MPTP and 4'-amino-MPTP led to a shift in the ratio of DA to DOPAC or HVA, which was characteristic for each compound. The measurement of striatal 1-methyl-4-phenylpyridinium (MPP+) and 4'-amino-MPP+ levels revealed that high concentrations (up to 150 microM) persist in the striatum for weeks following administration of a single nontoxic dose of MPTP or 4'-amino-MPTP. A causal relationship between the striatal concentration of MPP+ or 4'-amino-MPP+ and the change in DA metabolism as reflected in the DA/DOPAC ratio is suggested by a significant correlation between these measures. It is suggested that presynaptic sequestration and retention of MPP+ and 4'-amino-MPP+ by striatal DA terminals result in the inhibition of the monoamine oxidase contained within these terminals.  相似文献   

2.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a contaminant found in a synthetic illicit drug, can elicit in humans and monkeys a severe extrapyramidal syndrome similar to Parkinson's disease. It also induces alterations of the dopamine (DA) pathways in rodents. MPTP neurotoxicity requires its enzymatic transformation into 1-methyl-4-phenylpyridinium (MPP+) by monoamine oxidase followed by its concentration into target cells, the DA neurons. Here, we show that mesencephalic glial cells from the mouse embryo can take up MPTP in vitro, transform it into MPP+, and release it into the culture medium. MPTP is not taken up by neurons from either the mesencephalon or the striatum in vitro (8 days in serum-free conditions). However, mesencephalic neurons in culture revealed a high-affinity uptake mechanism for the metabolite MPP+, similar to that for DA. The affinity (Km) for DA uptake is fivefold higher than that for MPP+ (0.2 and 1.1 microM, respectively), whereas the number of uptake sites for MPP+ is double (Vmax = 25 and 55 pmol/mg of protein/min for DA and MPP+, respectively). Mazindol, a DA uptake inhibitor, blocks the uptake of DA and MPP+ equally well under these conditions. Moreover, by competition experiments, the two molecules appear to use the same carrier(s) to enter DA neurons. Small concentrations of MPP+ are also taken up by striatal neurons in vitro. The amount taken up represented less than 10% of the MPP+ uptake in mesencephalic neurons. Depolarization induced by veratridine released comparable proportions of labeled DA and MPP+ from mesencephalic cultures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The acute effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium ion (MPP+) on mouse locomotor activity and striatal dopamine (DA) and 5-hydroxytryptamine (5-HT) levels were investigated. A single dose of either MPTP (10-30 mg/kg, i.p.) or MPP+ (5-20 ug/mouse, i.c.v.) decreased locomotor activity 10-40 min after injection: this locomotor effect was significantly suppressed by either pretreatment with nomifensine or 1-deprenyl alone, or by the combination of desmethylimipramine and 6-hydroxydopamine. Pretreatment with clorgyline did not suppress this behavior and a single dose of haloperidol enhanced the effect. The striatal levels of DA, 3-methoxytyramine and 5-HT increased in parallel with the decrease in locomotor activity caused by MPTP or MPP+. In contrast, levels of 3,4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindoleacetic acid were decreased by injection of either MPTP or MPP+. Possible mechanism(s) of the behavioral and biochemical changes caused by the acute actions of MPTP and MPP+ with respect to their neurotoxic effects on the nigrostriatal DA system are discussed.  相似文献   

4.
Abstract: Subcutaneous injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) HC1 (25 mg/kg) in pregnant female mice at the 17th day of gestation markedly depleted striatal dopamine (DA) concentrations in the mothers 24 h later and at 24 h and 28 days after delivery. By contrast, in the offspring of the female mice exposed to MPTP during pregnancy, fetal brain DA concentrations at 24 h after injection and at 24 h after birth and striatal DA levels at 14 and 28 days postnatally were unaffected and identical to those in age-matched controls. The postnatal ontogenesis of striatal DA levels was identical in offspring of control vehicle- and MPTP-treated pregnant mice. Also, prenatal challenge with MPTP did not make nigrostriatal DA neurons more vulnerable to a second postnatal treatment with the toxin. Striatal DA depletions were identical in 6-week-old mice given MPTP, whether they were exposed to MPTP or to vehicle in utero. Monoamine oxidase (EC 1.4.3.4; MAO) type B activity was extremely low in the fetal brain and, relatively, much lower than that of MAO-A. Prenatal MPTP administration reduced maternal striatal and also embryonal brain MAO-B activity at 24 h post treatment but did not alter the normal postnatal development of striatal MAO-A and -B activities in the offspring. Study suggests that resistance of fetal DA neurons to the DA-depleting effect of MPTP may be due, at least in part, to an absence in the embryonal brain of adequately developed MAO-B activity required for the conversion of MPTP to its toxic metabolite, 1-methyl-4-phenylpyridinium ion.  相似文献   

5.
Previous studies have shown that dopamine (DA) uptake was decreased after preincubation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium (MPP(+)) in in vitro slice and synaptosome models. The present study, conducted with and without preincubation, attempted to determine whether inhibition results from a direct effect of neurotoxins on neuronal DA transporter or from an alteration of the transporter secondary to other toxic events. DA uptake was inhibited about 50% in the presence of MPTP+O(2) or MPP(+) (0.1, 1 and 5 mM) in rat striatal slices and synaptosomes. Such inhibition was obtained in synaptosomes preincubated for 150 min with MPP(+) and then washed. Inhibition of DA uptake was lower in slices preincubated with MPTP (5 mM)+O(2) and then washed (30%). Experiments in synaptosomes prepared from slices preincubated with MPTP or MPP(+) showed greater inhibition of DA uptake with MPTP. The results suggest that the inhibition of DA uptake in vitro by MPTP or MPP(+) results initially from a direct effect on the transporter during its penetration in nerve endings and subsequently from a transporter alteration related to toxic events. Thus, the preincubation of striatal slices followed by DA uptake measurement in synaptosomes would appear to be a good in vitro model for studying the dopaminergic toxicity of MPTP.  相似文献   

6.
S P Bagchi 《Life sciences》1992,51(5):389-396
The present study has examined the effects of systemically administered MPTP and MPP+ upon striatal DA and Dopac of C57 mice, also treated concurrently with either saline or reserpine. MPTP followed by saline did not affect DA level but decreased that of Dopac only at 5.0 mg/kg and higher dosages. The potency of MPTP affecting DA increased greatly when the neurotoxicant was followed by either 5.0 or 10.0 mg/kg reserpine; MPTP at 0.10 mg/kg and higher dosages significantly reversed the DA depleting effects of reserpine. MPP+ (1.0 or 10.0 mg/kg) with saline did not affect either DA or Dopac. In contrast, MPP+ at 0.10 mg/kg and higher dosages, when followed by 10.0 mg/kg reserpine, dose-dependently enhanced the DA depleting effects of reserpine. In agreement with the earlier results obtained in vitro, the present study indicates that MPTP administration at trace level dosages may lead to an inhibition of MAO in vivo. The effect of systemically given MPP+ on DA, however, appears to be more complex in nature, conceivably comprised of actions at the striatal neurones including the intraneuronal vesicles and, possibly, at the substantia nigra which may affect striatum in turn. That MPP+ may have reached brain areas in these experiments is also indicated by the observation of a significant striatal level of 3H-MPP+ after its systemic administration. In conclusion, irrespective of MPTP and MPP+ action mechanisms, trace levels of these neurotoxicants appear to affect brain dopamine neurons.  相似文献   

7.
Insights into the etiology and pathophysiology of Parkinson's disease may derive from elucidation of the neurotoxic mechanisms of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its active metabolite, 1-methyl-4-phenylpyridinium (MPP+). In previous studies, MPP+ provoked oxidation of cytochrome b and K+ leakage into the extracellular space of rat striatal slices. Magnitudes of these time-dependent responses were far greater than expected had the MPP+ effects been limited to dopaminergic terminals. To determine whether cytochromes become oxidized from K(+)-induced increases in ion transport activity or from electron transport inhibition at complex I, oxygen consumption was measured because this should be increased by the former and decreased by the latter mechanism. Low MPP+ concentrations (1 microM) decreased O2 consumption (approximately 40% in 3 h) in striatal slices. This decrease was diminished by mazindol and did not occur in hippocampal slices. High toxin concentrations (100 microM) inhibited oxygen consumption to a greater extent (approximately 60%) in striatal slices; this inhibition was still greater in hippocampal slices. These results support the hypothesis that acute effects of low ("selective") MPP+ concentrations require the presence of dopaminergic terminals to trigger a sequence of destructive metabolic events but that the metabolic consequences of MPP+ spread to neighboring cells. In contrast, high MPP+ concentrations nonselectively inhibit metabolic and ion transport activity without requiring the presence of dopaminergic terminals. These results also suggest that physiological effects of "selective" MPP+ concentrations extend to nondopaminergic cells.  相似文献   

8.
MPTP, MPP+ and mitochondrial function   总被引:8,自引:0,他引:8  
1-Methyl-4-phenylpyridinium (MPP+), the putative toxic metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), inhibited NAD(H)-linked mitochondrial oxidation at the level of Complex I of the electron transport system. MPTP and MPP+ inhibited aerobic glycolysis in mouse striatal slices, as measured by increased lactate production; MPTP-induced effects were prevented by inhibition of monoamine oxidase B activity. Several neurotoxic analogs of MPTP also form pyridinium metabolites via MAO; these MPP+ analogs were all inhibitors of NAD(H)-linked oxidation by isolated mitochondria. 2'-Methyl-MPTP, a more potent neurotoxin in mice than MPTP, was also more potent than MPTP in inducing lactate accumulation in mouse brain striatal slices. Overall, the studies support the hypothesis that compromise of mitochondrial oxidative capacity is an important factor in the mechanisms underlying the toxicity of MPTP and similar compounds.  相似文献   

9.
The effects of carboxyfullerene on a well-known neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its active metabolite 1-methyl-4-phenyl-pyridinium (MPP+) were investigated. In chloral hydrate-anesthetized rats, cytosolic cytochrome c was elevated in the infused substantia nigra 4 h after an intranigral infusion of MPP+. Five days after local application of MPP+, lipid peroxidation (LP) was elevated in the infused substantia nigra. Furthermore, dopamine content and tyrosine hydroxylase (TH)-positive axons were reduced in the ipsilateral striatum. Concomitant intranigral infusion of carboxyfullerene abolished the elevation in cytochrome c and oxidative injuries induced by MPP+. In contrast, systemic application of carboxyfullerene did not prevent neurotoxicity induced by intraperitoneal injection of MPTP. In mice, systemic administration of MPTP induced a dose-dependent depletion in striatal dopamine content. Simultaneous injection of carboxyfullerene (10 mg/kg) actually potentiated MPTP-induced reduction in striatal dopamine content. Furthermore, systemic administration of carboxyfullerene (30 mg/kg) caused death in the MPTP-treated mice. An increase in the striatal MPP+ level and reduction in hepatic P450 level were observed in the carboxyfullerene co-treated mice. These data showed that systemic application of carboxyfullerene appears to potentiate MPTP-induced neurotoxicity while local carboxyfullerene has been suggested as a neuroprotective agent. Furthermore, an increase in striatal MPP+ level may contribute to the potentiation by carboxyfullerene of MPTP-induced neurotoxicity.  相似文献   

10.
The parkinsonian-inducing compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is converted by isolated hepatocytes to its primary metabolite, the 1-methyl-4-phenyl-2,3-dihydropyridinium ion (MPDP+), and to its fully oxidized derivative, 1-methyl-4-phenylpyridinium ion (MPP+). Only the latter, however, accumulates in the cells. Incubation of hepatocytes in the presence of MPDP+ also results in the selective intracellular accumulation of MPP+. Conversion to MPP+ is more rapid and extensive after exposure to MPDP+, than with MPTP and the former is also more toxic. Addition of MPP+ itself is toxic to hepatocytes but only after a long lag period, which presumably reflects its limited access to the cell and its relatively slow intracellular accumulation. As previously shown with MPTP and MPP+, the cytotoxicity of MPDP+ is dose-dependent and is consistently preceeded by complete depletion of intracellular ATP. Similar to MPP+ but not MPTP, MPDP+ causes a comparable rate and extent of cytotoxicity and ATP loss in hepatocytes pretreated with the monoamine oxidase inhibitor pargyline. Pargyline blocks hepatocyte biotransformation of MPTP to MPP+, but it has no significant effect on MPP+ accumulation after exposure to either MPDP+ or MPP+. It is concluded that MPTP is toxic to hepatocytes via its monoamine oxidase-dependent metabolism and that MPP+ is likely to be the ultimate toxic metabolite which accumulates in the cell, causing ATP depletion and eventual cell death.  相似文献   

11.
S P Bagchi 《Life sciences》1991,48(10):1007-1013
1-methyl-4-phenylpyridinium ion (MPP+) was tested for its effects upon dopamine level after incubating striatal synaptosomes in medium with and without reserpine. In the absence of reserpine, MPP+ enhanced the total incubation mixture dopamine level when tyrosine was present in the medium but that enhancing effect was considerably weaker when tyrosine was replaced by alpha methyl p-tyrosine. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) also had effects upon dopamine but likely due to MPP+, which was formed from MPTP by free mitochondrial MAO present in the tissue preparation. The incubation mixture dopamine level was drastically reduced by the addition of only reserpine and its presence in the medium markedly raised the ability of MPP+ to increase dopamine; the effects of MPTP in this medium were weaker than those of MPP+. Pargyline also raised dopamine levels under these conditions but only at concentrations much higher than those of MPP+. The particulate uptake of MPP+, at several medium concentrations, and the corresponding value of dopamine increase above the basal level were determined; the dopamine increase in p-moles was much greater than the p-moles of MPP+ uptake. These results indicate that, in the presence of reserpine, MPP+ has a potent action and that may lead to a release of intraneuronal free dopamine; this action is also likely to be independent of the countertransport from MPP+ uptake. The possibility of MPP+ being a potent inhibitor of intraneuronal MAO may have to be considered.  相似文献   

12.
The parkinsonism-inducing neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) given in single systemic doses (i.p.) to mice produced marked hyperthermia, and subsequent long-lasting hypothermia. Administration of MPTP or its oxidized product, 1-methyl-4-phenylpyridinium ion, MPP+, via i.c.v. resulted in only hypothermia. In contrast, i.p. MPP+ administration resulted in only hyperthermia. The MPTP-induced hyperthermia (i.p.) was blocked by quaternary derivatives of anti-cholinergic agents, atropine and scopolamine, but not by the tertiary-derivative of atropine. Duration of this hyperthermic effect was potentiated by neostigmine. Pretreatment with 1-deprenyl did not prevent hypothermia, but nomifensine partially or clorgyline completely prevented the effect without preventing MPTP-induced hyperthermia. The thermic effects by MPTP, unlike its neurotoxicity for the nigrostriatal DA system, may not require metabolism to MPP+. These results indicate that peripheral cholinergic functions are responsible for the MPTP-induced hyperthermia, whereas its hypothermic effect may be centrally mediated via dysregulation of the various neuron systems.  相似文献   

13.
The effects of 1-methyl-4-phenyl - 1,2,3,6-tetrahydropyridine (MPTP) on immune parameters, and the restorative influence of sodium diethyldithiocarbamate (DTC) or deprenyl were evaluated in mice. The concentrations of dopamine (DA), 3-methoxytyramine (3-MT), 3-4-dihydroxyphenyl acetic acid (DOPAC), and homovanillic acid (HVA), were concomitantly measured in the striatum. MPTP depressed T-cell responses. DTC restored these responses as well as the concentration of striatal DA. Deprenyl had no effect on the concentrations of DA and its metabolites, yet it modified the immune responses alike MPTP. The findings suggest a dopamine pathway could be involved in the brain-controlled immunostimulation afforded by DTC.  相似文献   

14.
The 3,4-dihydroxyphenylethylamine (DA, dopamine) uptake inhibitors GBR 13,069, amfonelic acid, WIN-35,065-2, WIN-35,428, nomifensine, mazindol, cocaine, McN-5908, McN-5847, and McN-5292 were effective in preventing [3H]DA and [3H]1-methyl-4-phenylpyridinium (MPP+) uptake in rat and mouse neostriatal tissue slices. These DA uptake inhibitors also were effective in attenuating the MPP+-induced release of [3H]DA in vitro. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration to mice (6 X 25 mg/kg i.p.) resulted in a large (70-80%) decrement in neostriatal DA. WIN-35,428 (5 mg/kg), GBR 13,069 (10 mg/kg), McN-5292 (5 mg/kg), McN-5908 (2 mg/kg), and amfonelic acid (2 mg/kg), when administered intraperitoneally 30 min prior to each MPTP injection, fully protected against MPTP-induced neostriatal damage. Other DA uptake inhibitors showed partial protection in vivo at the doses selected. Desmethylimipramine did not prevent [3H]MPP+ uptake or MPP+-induced release of [3H]DA in vitro, and did not protect against MPTP neurotoxicity in vivo. These results support the hypothesis put forth previously by others that the active uptake of MPP+ by dopaminergic neurons is necessary for toxicity.  相似文献   

15.
Systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) caused a rapid and long-lasting reduction of both 3,4-dihydroxyphenylalanine (dopamine, DA) and noradrenaline (NA) in mouse brain, as observed histo- and neurochemically. The depleting effects were more pronounced after repeated MPTP administration and the most marked reductions were observed after 2 X 50 mg MPTP/kg s.c., when DA in striatum and NA in frontal cortex were reduced by greater than 90% 1 week after MPTP. Mice with such catecholamine depletions were markedly sedated and almost completely immobilized. The behavioural syndrome after MPTP resembled that seen after reserpine, a monoamine-depleting drug. MPTP also caused a long-lasting reduction of catecholamine uptake in striatal DA and cortical NA nerve terminals and reduced tyrosine hydroxylase activity in these regions. There was no evidence that MPTP caused any marked DA and NA cell body death. MPTP given acutely transiently elevated serotonin levels. The results are compatible with a neurotoxic action of MPTP on both DA and NA nerve terminals. The nigro-striatal DA and the locus coeruleus NA neurone systems appeared to be most susceptible. Synthesis and utilization of residual striatal DA and cortical NA were increased, as often observed in partially denervated monoamine-innervated brain regions. Both DA and NA showed a gradual recovery, which took months to become complete and may have been related to a regrowth of catecholamine nerve terminals.  相似文献   

16.
Diethyldithiocarbamic acid (DDC) potentiates in vivo neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and in vitro neurotoxicity of 1-methyl-4-phenylpyridinium (MPP+). Male C57B1/6 mice were given two or five injections of MPTP (30 mg/kg i.p.) preceded 0.5 h by DDC (400 mg/kg i.p.). The mice were tested for catalepsy, akinesia, or motor activity during and after the period of dosing. Striatal and hippocampal tissues were obtained at 2 and 7 days following the last injection and evaluated for dopamine and norepinephrine levels, respectively. These same tissues were also analyzed for the levels of glial fibrillary acidic protein (GFAP), an astrocyte-localized protein known to increase in response to neural injury. Pretreatment with DDC potentiated the effect of MPTP in striatum and resulted in substantially greater dopamine depletion, as well as a more pronounced elevation in GFAP. In hippocampus, the levels of norepinephrine and GFAP were not different from controls in mice receiving only MPTP, but pretreatment with DDC resulted in a sustained depletion of norepinephrine and an elevation of GFAP, suggesting that damage was extended to this brain area by the combined treatment. Mice receiving MPTP preceded by DDC also demonstrated a more profound, but reversible, catalepsy and akinesia compared to those receiving MPTP alone. Systemically administered MPP+ decreased heart norepinephrine, but did not alter the striatal levels of dopamine or GFAP, and pretreatment with DDC did not alter these effects, but did increase lethality. DDC is known to increase brain levels of MPP+ after MPTP, but our data indicate that this is not due to a movement of peripherally generated MPP+ into CNS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The neurotoxic properties of the parkinsonian inducing agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are dependent on its metabolic activation in a reaction catalyzed by centrally located monoamine oxidase B (MAO-B). This reaction ultimately leads to the permanently charged 1-methyl-4-phenylpyridinium species MPP(+), a 4-electron oxidation product of MPTP and a potent mitochondrial toxin. The corresponding 5-membered analogue, 1-methyl-3-phenyl-3-pyrroline, is also a selective MAO-B substrate. Unlike MPTP, the MAO-B-catalyzed oxidation of 1-methyl-3-phenyl-3-pyrroline is a 2-electron process that leads to the neutral 1-methyl-3-phenylpyrrole. MPP(+) is thought to exert its toxic effects only after accumulating in the mitochondria, a process driven by the transmembrane electrochemical gradient. Since this energy-dependent accumulation of MPP(+) relies upon its permanent charge, 1-methyl-3-phenyl-3-pyrrolines and their pyrrolyl oxidation products should not be neurotoxic. We have tested this hypothesis by examining the neurotoxic potential of 1-methyl-3-phenyl-3-pyrroline and 1-methyl-3-(4-chlorophenyl)-3-pyrroline in the C57BL/6 mouse model. These pyrrolines did not deplete striatal dopamine while analogous treatment with MPTP resulted in 65-73% depletion. Kinetic studies revealed that both 1-methyl-3-phenyl-3-pyrroline and its pyrrolyl oxidation product were present in the brain in relatively high concentrations. Unlike MPP(+), however, 1-methyl-3-phenylpyrrole was cleared from the brain quickly. These results suggest that the brain MAO-B-catalyzed oxidation of xenobiotic amines is not, in itself, sufficient to account for the neurodegenerative properties of a compound like MPTP. The rapid clearance of 1-methyl-3-phenylpyrroles from the brain may contribute to their lack of neurotoxicity.  相似文献   

18.
Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 5,7-dihydroxytryptamine (5,7-DHT) on striatal levels of dopamine (DA), 5-hydroxytryptamine (5-HT), and their metabolites, as well as on locomotor activity were investigated in C57BL/6 mice. The results showed that MPTP significantly increased locomotor activity and decreased striatal DA levels. However, injection of the serotonergic neurotoxin 5,7-DHT in the striatum, either alone or following high doses of MPTP, significantly decreased locomotor activity, and concomitantly decreased striatal levels of 5-HT and 5-HIAA. This study suggests that the increased locomotor activity may be due to increased striatal serotonergic activity which overcompensates for the DA deficiency. The locomotor hypoactivity, induced by 5,7-DHT, might be due to the decreased striatal levels of 5-HT and 5-HIAA.  相似文献   

19.
The impact of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) in the pathology of Parkinson's disease (PD) and in MPTP neurotoxicity remains unclear. Here, male TNF-alpha (-/-) deficient mice and C57bL/6 mice were treated with MPTP (4 x 15 mg/kg, 24 h intervals) and in one series, thalidomide was administered to inhibit TNF-alpha synthesis. Real-time RT-PCR revealed that the striatal mRNA levels of TNF-alpha, of the astrocytic marker glial fibrillary acidic protein (GFAP) and of the marker for activated microglia, macrophage antigen complex-1 (MAC-1), were significantly enhanced after MPTP administration. Thalidomide (50 mg/kg, p.o.) partly protected against the MPTP-induced dopamine (DA) depletion, and TNF-alpha (-/-) mice showed a significant attenuation of striatal DA and DA metabolite loss as well as striatal tyrosine hydroxylase (TH) fiber density, but no difference in nigral TH and DA transporter immunoreactivity. TNF-alpha deficient mice suffered a lower mortality (10%) compared to the high mortality (75%) seen in wild-type mice after acute MPTP treatment (4 x 20 mg/kg, 2 h interval). HPLC measurement of MPP(+) levels revealed no differences in TNF-alpha (-/-), wild-type and thalidomide treated mice. This study demonstrates that TNF-alpha is involved in MPTP toxicity and that inhibition of TNF-alpha response may be a promising target for extending beyond symptomatic treatment and developing anti-parkinsonian drugs for the treatment of the inflammatory processes in PD.  相似文献   

20.
Administration of methamphetamine (METH) to animals causes loss of DA terminals in the brain. The manner by which METH causes these changes in neurotoxicity is not known. We have tested the effects of this drug in copper/zinc (CuZn)-superoxide dismutase transgenic (SOD Tg) mice, which express the human CuZnSOD gene. In nontransgenic (non-Tg) mice, acute METH administration causes significant decreases in DA and dihydroxyphenylacetic acid (DOPAC) in the striata of non-Tg mice. In contrast, there were no significant decreases in striatal DA in the SOD Tg mice. The effects of METH on DOPAC were also attenuated in SOD Tg mice. Chronic METH administration caused decreases in striatal DA and DOPAC in the non-Tg mice, but not in the SOD-Tg mice. Similar studies were carried out with 1-methyl-1,2,3,6-tetrahydropyridine (MPTP), which also causes striatal DA and DOPAC depletion. As in the case of METH, MPTP causes marked depletion of DA and DOPAC in the non-Tg mice, but not in the SOD Tg mice. These results suggest that the mechanisms of toxicity of both METH and MPTP involve superoxide radical formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号