首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure of the cross-striated adductor muscle of the scallop has been studied by electron microscopy and X-ray diffraction using living relaxed, glycerol-extracted (rigor), fixed and dried muscles. The thick filaments are arranged in a hexagonal lattice whose size varies with sarcomere length so as to maintain a constant lattice volume. In the overlap region there are approximately 12 thin filaments about each thick filament and these are arranged in a partially disordered lattice similar to that found in other invertebrate muscles, giving a thin-to-thick filament ratio in this region of 6:1.The thin filaments, which contain actin and tropomyosin, are about 1 μm long and the actin subunits are arranged on a helix of pitch 2 × 38.5 nm. The thick filaments, which contain myosin and paramyosin, are about 1.76 μm long and have a backbone diameter of about 21 nm. We propose that these filaments have a core of paramyosin about 6 nm in diameter, around which the myosin molecules pack. In living relaxed muscle, the projecting myosin heads are symmetrically arranged. The data are consistent with a six-stranded helix, each strand having a pitch of 290 nm. The projections along the strands each correspond to the heads of one or two myosin molecules and occur at alternating intervals of 13 and 16 nm. In rigor muscle these projections move away from the backbone and attach to the thin filaments.In both living and dried muscle, alternate planes of thick filaments are staggered longitudinally relative to each other by about 7.2 nm. This gives rise to a body-centred orthorhombic lattice with a unit cell twice the volume of the basic filament lattice.  相似文献   

2.
To investigate characteristics of ATP-dependent sliding of a non-muscle cell myosin, obtained from a cellular slime mold Dictyostelium discoideum, on actin filament, we prepared hybrid thick filaments, in which Dictyostelium myosin was regularly arranged around paramyosin filaments obtained from a molluscan smooth muscle. A single to a few hybrid filaments were attached to a polystyrene bead (diameter, 4.5 μm; specific gravity, 1.5), and the filaments were made to slide on actin filament arrays (actin cables) in the internodal cell of an alga Chara corallina, mounted on the rotor of a centrifuge microscope. The filament-attached bead was observed to move with a constant velocity under a constant external load for many seconds. The steady-state force–velocity relation of Dictyostelium myosin sliding on actin cables was hyperbolic in shape except for large loads ≤0.7–0.8 P0, being qualitatively similar to that of skeletal muscle fibres, despite a considerable variation in the number of myosin molecules interacting with actin cables. Comparison of the P–V curves between Dictyostelium myosin and muscle myosins sliding on actin cables suggests that the time of attachment to actin in a single attachment–detachment cycle is much longer in Dictyostelium myosin than in muscle myosins.  相似文献   

3.
JGP microscopy study supports the idea that the region linking myosin head and tail domains can be peeled away from filament backbone to prevent actin-attached heads from impeding filament movement.

Myosin II motors move along actin filaments by coupling cycles of ATP binding and hydrolysis to a repetitive process in which the myosin head domains attach to actin, undergo a conformational shift/powerstroke, and then detach. In muscle cells, myosin II molecules assemble into thick filaments containing hundreds of head domains, and any heads that remain attached to actin after completing their power stroke may impede the ability of other heads to move the filament and drive muscle contraction. In this issue of JGP, Brizendine et al. provide direct evidence that this potential drag on filament movement is limited by the flexibility of myosin II’s S2 subdomain (1).(Left to right) Richard Brizendine, Christine Cremo, and Murali Anuganti provide direct evidence that the S2 domain of myosin II is a flexible structure, which would allow it to prevent actin-attached heads from impeding the movement of myosin filaments. Quantum dots labeling a head domain (black) and the filament backbone (red) mostly follow the same trajectory as a filament moves in vitro. But, in rare instances (insets), an actin-attached head briefly lags the backbone’s trajectory before catching up, an event facilitated by the flexibility of the S2 region that connects the motor protein’s head and tail domains.For the past few years, Christine Cremo and colleagues at the University of Nevada, Reno, have been studying the kinetics of filament movement using fluorescently labeled myosin and actin filaments in vitro (2). Based on their data, Cremo’s team, in collaboration with Josh Baker, developed a mixed kinetic model that predicted a key mechanical function for the S2 subdomain of myosin II, which links the motor protein’s head domains to the C-terminal light meromyosin (LMM) domains that mediate filament assembly (3,4). According to the model, the flexibility of the S2 subdomain, and its ability to be peeled away from the filament backbone, provides some slack to actin-attached heads as the filament moves forward, giving them more time to detach before they impede the filament’s progress.“So now we wanted to see if we could directly observe this flexibility,” Cremo explains. To do this, two postdocs in Cremo’s laboratory, Richard Brizendine and Murali Anuganti, assembled smooth muscle myosin filaments labeled with two differently colored quantum dots, one attached to the LMM domain and the other attached to the head domain. Most of the time, these two labels should follow the same trajectory along actin filaments in vitro. If the S2 domain is flexible, however, it should be possible to occasionally observe an actin-attached head remain in place while the LMM domain continues moving forward. This brief “dwell” should then be followed by a “jump” as the head domain detaches from actin and catches up with the trajectory of the filament backbone.“We were looking for rare events in a sea of noise,” Cremo says, yet the researchers were able to identify dwells and jumps in the quantum dot trajectories consistent with the predicted flexibility of the S2 domain. The frequency and duration of these events fit the known kinetics of actomyosin motility.Based on their data, Brizendine et al. (1) estimate that, in smooth muscle, a myosin filament can move up to ∼52 nm without being impeded by an actin-attached head, a figure close to that predicted by the mixed kinetic model. To provide this flexibility, the researchers calculate that as much as 26 nm of the S2 domain can be unzipped from the filament backbone. Intriguingly, this matches the maximum length that S2 can be seen to project from thick filaments in tomograms of Drosophila flight muscle (5), and the forces generated by working myosin heads should be more than sufficient to achieve this unzipping.Many cardiomyopathy-associated mutations are located in the S2 region of myosin II. However, the mixed kinetic model predicts that, compared with smooth muscle, myosin filaments in cardiac and skeletal muscle cannot move quite as far without being impeded by actin-attached heads. “What leads to these differences?” Cremo wonders. “Are there differences in the biophysical behavior of the S2 domain in different muscle types?”  相似文献   

4.
UNC-89 is a giant polypeptide located at the sarcomeric M-line of Caenorhabditis elegans muscle. The human homologue is obscurin. To understand how UNC-89 is localized and functions, we have been identifying its binding partners. Screening a yeast two-hybrid library revealed that UNC-89 interacts with paramyosin. Paramyosin is an invertebrate-specific coiled-coil dimer protein that is homologous to the rod portion of myosin heavy chains and resides in thick filament cores. Minimally, this interaction requires UNC-89’s SH3 domain and residues 294–376 of paramyosin and has a KD of ∼1.1 μM. In unc-89 loss-of-function mutants that lack the SH3 domain, paramyosin is found in accumulations. When the SH3 domain is overexpressed, paramyosin is mislocalized. SH3 domains usually interact with a proline-rich consensus sequence, but the region of paramyosin that interacts with UNC-89’s SH3 is α-helical and lacks prolines. Homology modeling of UNC-89’s SH3 suggests structural features that might be responsible for this interaction. The SH3-binding region of paramyosin contains a “skip residue,” which is likely to locally unwind the coiled-coil and perhaps contributes to the binding specificity.  相似文献   

5.
X-ray patterns from lobster and crayfish muscles show very clear layer lines from the thin filaments, well separated from the myosin layer lines. The intensities in patterns from relaxed muscles include an important contribution from the regulatory proteins, and allow the arrangement of the troponin complexes to be deduced. Moreover, the troponin diffraction indirectly provides an accurate value for the pitch of the actin helix in relaxed muscle.In rigor, the attachment of cross-bridges modifies the intensities. These X-ray patterns support Reedy's (1968) concept that cross-bridges in rigor attach only to certain azimuths on the actin filaments (“target areas”); the 145 Å repeat of their origins on the thick filaments is not reflected in the pattern of attachment. Our calculations show that the observed intensities agree quantitatively with those expected for models based on such attachment, but depend significantly on the locations of the troponin complexes. The arrangement of the filament components is discussed in terms of design requirements. Our conclusions may be applicable to many other muscles, especially insect flight muscle and other invertebrate muscles.  相似文献   

6.
Abstract. A light and electron immunohistochemical study was carried out on the body wall muscles of the chaetognath Sagitta friderici for the presence of a variety of contractile proteins (myosin, paramyosin, actin), regulatory proteins (tropomyosin, troponin), and structural proteins (α‐actinin, desmin, vimentin). The primary muscle (~80% of body wall volume) showed the characteristic structure of transversely striated muscles, and was comparable to that of insect asynchronous flight muscles. In addition, the body wall had a secondary muscle with a peculiar structure, displaying two sarcomere types (S1 and S2), which alternated along the myofibrils. S1 sarcomeres were similar to those in the slow striated fibers of many invertebrates. In contrast, S2 sarcomeres did not show a regular sarcomeric pattern, but instead exhibited parallel arrays of 2 filament types. The thickest filaments (~10–15 nm) were arranged to form lamellar structures, surrounded by the thinnest filaments (~6 nm). Immunoreactions to desmin and vimentin were negative in both muscle types. The primary muscle exhibited the classical distribution of muscle proteins: actin, tropomyosin, and troponin were detected along the thin filaments, whereas myosin and paramyosin were localized along the thick filaments; immunolabeling of α‐actinin was found at Z‐bands. Immunoreactions in the S1 sarcomeres of the secondary muscle were very similar to those found in the primary muscle. Interestingly, the S2 sarcomeres of this muscle were labeled with actin and tropomyosin antibodies, and presented no immunore‐actions to both myosin and paramyosin. α‐Actinin in the secondary muscle was only detected at the Z‐lines that separate S1 from S2. These findings suggest that S2 are not true sarcomeres. Although they contain actin and tropomyosin in their thinnest filaments, their thickest filaments do not show myosin or paramyosin, as the striated muscle thick myofilaments do. These peculiar S2 thick filaments might be an uncommon type of intermediate filament, which were labeled neither with desmin or vimentin antibodies.  相似文献   

7.
Mutants affecting paramyosin in Caenorhabditis elegans   总被引:17,自引:0,他引:17  
Four mutants of Caenorhabditis elegans with abnormal muscle structure are described which are alleles of a single locus unc-15. In one of the mutants, E1214, paramyosin is completely absent from both body-wall and pharyngeal musculature. In the other three mutants paramyosin is present but does not assemble into thick filaments. Instead paramyosin paracrystals are formed in the body-wall muscle cells. Myosin filaments lacking paramyosin cores are present in all four mutants, but these filaments fail to integrate stably into the myofilament lattice. One mutant is temperature-sensitive; all four are semi-dominant in their effect on muscle structure. The hypothesis that unc-15 is the structural gene for paramyosin is discussed.  相似文献   

8.
Like animal cells, fission yeast divides by assembling actin filaments into a contractile ring. In addition to formin Cdc12p and profilin, the single tropomyosin isoform SpTm is required for contractile ring assembly. Cdc12p nucleates actin filaments and remains processively associated with the elongating barbed end while driving the addition of profilin-actin. SpTm is thought to stabilize mature filaments, but it is not known how SpTm localizes to the contractile ring and whether SpTm plays a direct role in Cdc12p-mediated actin polymerization. Using “bulk” and single actin filament assays, we discovered that Cdc12p can recruit SpTm to actin filaments and that SpTm has diverse effects on Cdc12p-mediated actin assembly. On its own, SpTm inhibits actin filament elongation and depolymerization. However, Cdc12p completely overcomes the combined inhibition of actin nucleation and barbed end elongation by profilin and SpTm. Furthermore, SpTm increases the length of Cdc12p-nucleated actin filaments by enhancing the elongation rate twofold and by allowing them to anneal end to end. In contrast, SpTm ultimately turns off Cdc12p-mediated elongation by “trapping” Cdc12p within annealed filaments or by dissociating Cdc12p from the barbed end. Therefore, SpTm makes multiple contributions to contractile ring assembly during and after actin polymerization.  相似文献   

9.
In Megalobulimus abbreviatus, the ultrastructural features and the contractile proteins of columellar, pharyngeal and foot retractor muscles were studied. These muscles are formed from muscular fascicles distributed in different planes that are separated by connective tissue rich in collagen fibrils. These cells contain thick and thin filaments, the latter being attached to dense bodies, lysosomes, sarcoplasmic reticulum, caveolae, mitochondria and glycogen granules. Three types of muscle cells were distinguished: T1 cells displayed the largest amount of glycogen and an intermediate number of mitochondria, suggesting the highest anaerobic metabolism; T2 cells had the largest number of mitochondria and less glycogen, which suggests an aerobic metabolism; T3 cells showed intermediate glycogen volumes, suggesting an intermediate anaerobic metabolism. The myofilaments in the pedal muscle contained paramyosin measuring between 40 and 80 nm in diameter. Western Blot muscle analysis showed a 46-kDa band that corresponds to actin and a 220-kDa band that corresponds to myosin filaments. The thick filament used in the electrophoresis showed a protein band of 100 kDa in the muscles, which may correspond to paramyosin.  相似文献   

10.
The effect of the type of metal ion (i.e., Ca2+, Mg2+, or none) bound to the high-affinity divalent cation binding site (HAS) of actin on filament assembly, structure, and dynamics was investigated in the absence and presence of the mushroom toxin phalloidin. In agreement with earlier reports, we found the polymerization reaction of G-actin into F-actin filaments to be tightly controlled by the type of divalent cation residing in its HAS. Moreover, novel polymerization data are presented indicating that LD, a dimer unproductive by itself, does incorporate into growing F-actin filaments. This observation suggests that during actin filament formation, in addition to the obligatory nucleation– condensation pathway involving UD, a productive filament dimer, a facultative, LD-based pathway is implicated whose abundance strongly depends on the exact polymerization conditions chosen. The “ragged” and “branched” filaments observed during the early stages of assembly represent a hallmark of LD incorporation and might be key to producing an actin meshwork capable of rapidly assembling and disassembling in highly motile cells. Hence, LD incorporation into growing actin filaments might provide an additional level of regulation of actin cytoskeleton dynamics. Regarding the structure and mechanical properties of the F-actin filament at steady state, no significant correlation with the divalent cation residing in its HAS was found. However, compared to native filaments, phalloidin-stabilized filaments were stiffer and yielded subtle but significant structural changes. Together, our data indicate that whereas the G-actin conformation is tightly controlled by the divalent cation in its HAS, the F-actin conformation appears more robust than this variation. Hence, we conclude that the structure and dynamics of the Mg–F-actin moiety within the thin filament are not significantly modulated by the cyclic Ca2+ release as it occurs in muscle contraction to regulate the actomyosin interaction via troponin.  相似文献   

11.
Myosin filament–based regulation supplements actin filament–based regulation to control the strength and speed of contraction in heart muscle. In diastole, myosin motors form a folded helical array that inhibits actin interaction; during contraction, they are released from that array. A similar structural transition has been observed in mammalian skeletal muscle, in which cooling below physiological temperature has been shown to reproduce some of the structural features of the activation of myosin filaments during active contraction. Here, we used small-angle x-ray diffraction to characterize the structural changes in the myosin filaments associated with cooling of resting and relaxed trabeculae from the right ventricle of rat hearts from 39°C to 7°C. In intact quiescent trabeculae, cooling disrupted the folded helical conformation of the myosin motors and induced extension of the filament backbone, as observed in the transition from diastole to peak systolic force at 27°C. Demembranation of trabeculae in relaxing conditions induced expansion of the filament lattice, but the structure of the myosin filaments was mostly preserved at 39°C. Cooling of relaxed demembranated trabeculae induced changes in motor conformation and filament structure similar to those observed in intact quiescent trabeculae. Osmotic compression of the filament lattice to restore its spacing to that of intact trabeculae at 39°C stabilized the helical folded state against disruption by cooling. The myosin filament structure and motor conformation of intact trabeculae at 39°C were largely preserved in demembranated trabeculae at 27°C or above in the presence of Dextran, allowing the physiological mechanisms of myosin filament–based regulation to be studied in those conditions.  相似文献   

12.
Muscle thick filaments are stable assemblies of myosin and associated proteins whose dimensions are precisely regulated. The mechanisms underlying the stability and regulation of the assembly are not understood. As an approach to these problems, we have studied the core proteins that, together with paramyosin, form the core structure of the thick filament backbone in the nematode Caenorhabditis elegans. We obtained partial peptide sequences from one of the core proteins, β-filagenin, and then identified a gene that encodes a novel protein of 201–amino acid residues from databases using these sequences. β-Filagenin has a calculated isoelectric point at 10.61 and a high percentage of aromatic amino acids. Secondary structure algorithms predict that it consists of four β-strands but no α-helices. Western blotting using an affinity-purified antibody showed that β-filagenin was associated with the cores. β-Filagenin was localized by immunofluorescence microscopy to the A bands of body–wall muscles, but not the pharynx. β-filagenin assembled with the myosin homologue paramyosin into the tubular cores of wild-type nematodes at a periodicity matching the 72-nm repeats of paramyosin, as revealed by immunoelectron microscopy. In CB1214 mutants where paramyosin is absent, β-filagenin assembled with myosin to form abnormal tubular filaments with a periodicity identical to wild type. These results verify that β-filagenin is a core protein that coassembles with either myosin or paramyosin in C. elegans to form tubular filaments.  相似文献   

13.
In the cortex of a motile cell, membrane-anchored actin filaments assemble into structures of varying shape and function. Filopodia are distinguished by a core of bundled actin filaments within finger-like extensions of the membrane. In a recent paper by Medalia et al1 cryo-electron tomography has been used to reconstruct, from filopodia of Dictyostelium cells, the 3-dimensional organization of actin filaments in connection with the plasma membrane. A special arrangement of short filaments converging toward the filopod''s tip has been called a “terminal cone”. In this region force is applied for protrusion of the membrane. Here we discuss actin organization in the filopodia of Dictyostelium in the light of current views on forces that are generated by polymerizing actin filaments, and on the resistance of membranes against deformation that counteracts these forces.Key Words: actin network, cytoskeleton, Dictyostelium, electron tomography, filopodia, membrane bending  相似文献   

14.
Cytoplasm has been isolated from single amoeba (Chaos carolinensis) in physiological solutions similar to rigor, contraction, and relaxation solutions designed to control the contractile state of vertebrate striated muscle. Contractions of the isolated cytoplasm are elicited by free calcium ion concentrations above ca. 7.0 x 10-7 M. Amoeba cytoplasmic contractility has been cycled repeatedly through stabilized (rigor), contracted, and relaxed states by manipulating the exogenous free calcium and ATP concentrations. The transition from stabilized state to relaxed state was characterized by a loss of viscoelasticity which was monitored as changes in the capacity of the cytoplasm to exhibit strain birefringence when stretched. When the stabilized cytoplasm was stretched, birefringent fibrils were observed. Thin sections of those fibrils showed thick (150–250 Å) and thin (70 Å) filaments aligned parallel to the long axis of fibrils visible with the light microscope. Negatively stained cytoplasm treated with relaxation solution showed dissociated thick and thin filaments morphologically identical with myosin aggregates and purified actin, respectively, from vertebrate striated muscle. In the presence of threshold buffered free calcium, ATP, and magnesium ions, controlled localized contractions caused membrane-less pseudopodia to extend into the solution from the cytoplasmic mass. These experiments shed new light on the contractile basis of cytoplasmic streaming and pseudopod extension, the chemical control of contractility in the amoeba cytoplasm, the site of application of the motive force for amoeboid movement, and the nature of the rheological transformations associated with the circulation of cytoplasm in intact amoeba.  相似文献   

15.
Although actin at neuronal growth cones is well-studied, much less is known about actin organization and dynamics along axon shafts and presynaptic boutons. Using probes that selectively label filamentous-actin (F-actin), we found focal “actin hotspots” along axons—spaced ∼3–4 µm apart—where actin undergoes continuous assembly/disassembly. These foci are a nidus for vigorous actin polymerization, generating long filaments spurting bidirectionally along axons—a phenomenon we call “actin trails.” Super-resolution microscopy reveals intra-axonal deep actin filaments in addition to the subplasmalemmal “actin rings” described recently. F-actin hotspots colocalize with stationary axonal endosomes, and blocking vesicle transport diminishes the actin trails, suggesting mechanistic links between vesicles and F-actin kinetics. Actin trails are formin—but not Arp2/3—dependent and help enrich actin at presynaptic boutons. Finally, formin inhibition dramatically disrupts synaptic recycling. Collectively, available data suggest a two-tier F-actin organization in axons, with stable “actin rings” providing mechanical support to the plasma membrane and dynamic "actin trails" generating a flexible cytoskeletal network with putative physiological roles.  相似文献   

16.
The Regulation of Catch in Molluscan Muscle   总被引:4,自引:0,他引:4  
Molluscan catch muscles are smooth muscles. As with mammalian smooth muscles, there is no transverse ordering of filaments or dense bodies. In contrast to mammalian smooth muscles, two size ranges of filaments are present. The thick filaments are long as well as large in diameter and contain paramyosin. The thin filaments contain actin and appear to run into and join the dense bodies. Vesicles are present which may be part of a sarcoplasmic reticulum. Neural activation of contraction in Mytilus muscle is similar to that observed in mammalian smooth muscles, and in some respects to frog striated muscle. The relaxing nerves, which reduce catch, are unique to catch muscles. 5-Hydroxytryptamine, which appears to mediate relaxation, specifically blocks catch tension but increases the ability of the muscle to fire spikes. It is speculated that Mytilus muscle actomyosin is activated by a Ca++-releasing mechanism, and that 5-hydroxytryptamine may reduce catch and increase excitability by influencing the rate of removal of intracellular free Ca++.  相似文献   

17.
To understand the structural changes involved in the force-producing myosin cross-bridge cycle in vertebrate muscle it is necessary to know the arrangement and conformation of the myosin heads at the start of the cycle (i.e. the relaxed state). Myosin filaments isolated from goldfish muscle under relaxing conditions and viewed in negative stain by electron microscopy (EM) were divided into segments and subjected to three-dimensional (3D) single particle analysis without imposing helical symmetry. This allowed the known systematic departure from helicity characteristic of vertebrate striated muscle myosin filaments to be preserved and visualised. The resulting 3D reconstruction reveals details to about 55 A resolution of the myosin head density distribution in the three non-equivalent head 'crowns' in the 429 A myosin filament repeat. The analysis maintained the well-documented axial perturbations of the myosin head crowns and revealed substantial azimuthal perturbations between crowns with relatively little radial perturbation. Azimuthal rotations between crowns were approximately 60 degrees , 60 degrees and 0 degrees , rather than the regular 40 degrees characteristic of an unperturbed helix. The new density map correlates quite well with the head conformations analysed in other EM studies and in the relaxed fish muscle myosin filament structure modelled from X-ray fibre diffraction data. The reconstruction provides information on the polarity of the myosin head array in the A-band, important in understanding the geometry of the myosin head interaction with actin during the cross-bridge cycle, and supports a number of conclusions previously inferred by other methods. The observed azimuthal head perturbations are consistent with the X-ray modelling results from intact muscle, indicating that the observed perturbations are an intrinsic property of the myosin filaments and are not induced by the proximity of actin filaments in the muscle A-band lattice. Comparison of the axial density profile derived in this study with the axial density profile of the X-ray model of the fish myosin filaments which was restricted to contributions from the myosin heads allows the identification of a non-myosin density peak associated with the azimuthally perturbed head crown which can be interpreted as a possible location for C-protein or X-protein (MyBP-C or -X). This position for C-protein is also consistent with the C-zone interference function deduced from previous analysis of the meridional X-ray pattern from frog muscle. It appears that, along with other functions, C-(X-) protein may have the role of slewing the heads of one crown so that they do not clash with the neighbouring actin filaments, but are readily available to interact with actin when the muscle is activated.  相似文献   

18.
The Arp2/3 (actin-related protein 2/3) complex nucleates branched actin filaments involved in multiple cellular functions, including endocytosis and cellular motility. Two subunits (Arp2 and Arp3) in this seven-subunit assembly are closely related to actin and upon activation of the complex form a “cryptic dimer” that stably mimics an actin dimer to nucleate a new filament. Both Arps contain a shared actin core structure, and each Arp contains multiple insertions of unknown function at conserved positions within the core. Here we characterize three key insertions within the actin core of Arp3 and show that each one plays a distinct role in modulating Arp2/3 function. The β4/β5 insert mediates interactions of Arp2/3 complex with actin filaments and “dampers” the nucleation activity of the complex. The Arp3 hydrophobic plug plays an important role in maintaining the integrity of the complex but is not absolutely required for formation of the daughter filament nucleus. Deletion of the αK/β15 insert did not constitutively activate the complex, as previously hypothesized. Instead, it abolished in vitro nucleation activity and caused defects in endocytic actin patch assembly in fission yeast, indicating a role for the αK/β15 insert in the activated state of the complex. Biochemical characterization of each mutant revealed steps in the nucleation pathway influenced by each Arp3-specific insert to provide new insights into the structural basis of activation of the complex.  相似文献   

19.
Thick filaments in vascular smooth muscle   总被引:5,自引:4,他引:1       下载免费PDF全文
Two sets of myofilaments were demonstrated after incubation of strips of rabbit portal-anterior mesenteric vein under moderate stretch in a physiological salt solution. Thick filaments had a mean diameter of 18 nm and reached a maximum length of 1.4 µm with a mean length of 0.61 µm. In transverse sections, 2.5–5 nm particles were resolved as subunits of the thick filaments. Thin filaments had an average diameter of 8.4 nm and generally conformed to the structure believed to represent actin filaments in smooth and striated muscles. In the areas of maximum concentration there were 160–328 thick filaments/µm2 and the lowest ratio of thin to thick filaments was 12:1. Thick filaments were present in approximately equal numbers in vascular smooth muscle relaxed by theophylline, in Ca++-free solution, or contracted by norepinephrine. The same preparatory procedures used with vascular smooth muscle also enabled us to visualize thick filaments in guinea pig and rabbit taenia coli and vas deferens.  相似文献   

20.
A novel form of acto-myosin regulation has been proposed in which polymerization of new actin filaments regulates motility of parasites of the apicomplexan class of protozoa. In vivo and in vitro parasite F-actin is very short and unstable, but the structural basis and details of filament dynamics remain unknown. Here, we show that long actin filaments can be obtained by polymerizing unlabeled rabbit skeletal actin (RS-actin) onto both ends of the short rhodamine-phalloidin-stabilized Plasmodium falciparum actin I (Pf-actin) filaments. Following annealing, hybrid filaments of micron length and “zebra-striped” appearance are observed by fluorescence microscopy that are stable enough to move over myosin class II motors in a gliding filament assay. Using negative stain electron microscopy we find that pure Pf-actin stabilized by jasplakinolide (JAS) also forms long filaments, indistinguishable in length from RS-actin filaments, and long enough to be characterized structurally. To compare structures in near physiological conditions in aqueous solution we imaged Pf-actin and RS-actin filaments by atomic force microscopy (AFM). We found the monomer stacking to be distinctly different for Pf-actin compared with RS-actin, such that the pitch of the double helix of Pf-actin filaments was 10% larger. Our results can be explained by a rotational angle between subunits that is larger in the parasite compared with RS-actin. Modeling of the AFM data using high-resolution actin filament models supports our interpretation of the data. The structural differences reported here may be a consequence of weaker inter- and intra-strand contacts, and may be critical for differences in filament dynamics and for regulation of parasite motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号