首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Deep cytoplasmic rearrangements during early development in Xenopus laevis   总被引:4,自引:0,他引:4  
The egg of the frog Xenopus is cylindrically symmetrical about its animal-vegetal axis before fertilization. Midway through the first cell cycle, the yolky subcortical cytoplasm rotates 30 degrees relative to the cortex and plasma membrane, usually toward the side of the sperm entry point. Dorsal embryonic structures always develop on the side away from which the cytoplasm moves. Details of the deep cytoplasmic movements associated with the cortical rotation were studied in eggs vitally stained during oogenesis with a yolk platelet-specific fluorescent dye. During the first cell cycle, eggs labelled in this way develop a complicated swirl of cytoplasm in the animal hemisphere. This pattern is most prominent on the side away from which the vegetal yolk moves, and thus correlates in position with the prospective dorsal side of the embryo. Although the pattern is initially most evident near the egg's equator or marginal zone, extensive rearrangements associated with cleavage furrowing (cytoplasmic ingression) relocate portions of the swirl to vegetal blastomeres on the prospective dorsal side.  相似文献   

3.
The specification of the dorsoventral axis in naturally polyspermic eggs of the Japanese newt, Cynops pyrrhogaster , was first examined by studies on the spatial relationship between the dorsal midline of the future body plan and the sperm entrance points (SEPs 1 ). On local insemination, the dorsal blastopore lip was usually found to be formed opposite the SEPs, as in anuran monospermic eggs. Next the movements of the subcortical layer and the cortex were analyzed. "Subcortical rotation" was observed, similar to that of Xenopus laevis eggs with respect to its timing and extent, and its direction was shown to predict the embryonic axis of the eggs. Thus, the dorsoventral axis was concluded to be determined by essentially the same mechanism in the newt as in Xenopus .
Owing to their large size and long first cell cycle, newt eggs appear to be suitable material for study of subcortical rotation, but their behavior is unique in that subcortical rotation occurs in only the vegetal hemisphere so that the subcortical layer stretches in the future dorsal side. Studies on the movement of Nile blue spots suggested that the cytoplasm under the cortex in newt eggs consists of two layers.  相似文献   

4.
Aligned vegetal subcortical microtubules in fertilized Xenopus eggs mediate the "cortical rotation", a translocation of the vegetal cortex and of dorsalizing factors toward the egg equator. Kinesin-related protein (KRP) function is essential for the cortical rotation, and dynein has been implicated indirectly; however, the role of neither microtubule motor protein family is understood. We examined the consequence of inhibiting dynein--dynactin-based transport by microinjection of excess dynamitin beneath the vegetal egg surface. Dynamitin introduced before the cortical rotation prevented formation of the subcortical array, blocking microtubule incorporation from deeper regions. In contrast, dynamitin injected after the microtubule array was fully established did not block cortical translocation, unlike inhibitory-KRP antibodies. During an early phase of cortical rotation, when microtubules showed a distinctive wavy organization, dynamitin disrupted microtubule alignment and perturbed cortical movement. These findings indicate that dynein is required for formation and early maintenance of the vegetal microtubule array, while KRPs are largely responsible for displacing the cortex once the microtubule tracks are established. Consistent with this model for the cortical rotation, photobleach analysis revealed both microtubules that translocated with the vegetal cytoplasm relative to the cortex, and ones that moved with the cortex relative to the cytoplasm.  相似文献   

5.
《Developmental biology》1986,116(1):241-251
The role of the cortex in ooplasmic segregation of the yolky eggs of Tubifex has been studied by epifluorescence microscopy. Living eggs labeled with rhodamine 123 and fine carbon particles placed on the surface showed that, following the second polar body formation, the egg surface cosegregates with subcortical mitochondria in a bipolar fashion, viz. toward the animal and vegetal poles in the animal and vegetal hemispheres, respectively. The egg surface of each pole moves spirally while the equatorial surface appears to remain stationary during this process. The rhodamine-phalloidin staining of whole eggs reveals that actin networks cosegregate with mitochondria. Isolated cortices which were stained with rhodamine-phalloidin demonstrated that cortical actin is organized bipolarly and that, during ooplasmic segregation, it undergoes reorganization directed toward both poles of the egg. The cortical polarity expressed as actin organization is not disrupted by centrifugal force sufficient to stratify the egg cytoplasm into five layers. The surface of a centrifuged egg moves according to the original cortical polarity. This surface movement is accompanied by the reorganization of cortical actin which appears to be identical to that in intact eggs. Other centrifugation experiments have demonstrated that the connection of the subcortical cytoplasm to the cortex is resistant to a centrifugal force of up to 650g. The nature of cortical polarity and its role in ooplasmic segregation are discussed in the light of the present results.  相似文献   

6.
Exposure of uncleaved Xenopus eggs to a centrifugal force directed from the animal pole to the vegetal pole produces larvae with enhanced dorsal structures, which resemble 'hyperdorso-anterior' larvae produced by D2O-treatment at 0.3 normalized time (NT). Optimal conditions are 70 g for 6 min at 20% of the first cell cycle (0.2 NT). Exposure before removal of vegetal pole cortical cytoplasm, which we find has an effect of eliminating dorsal structures, protects eggs from losing their ability to form dorsal axial structures upon removal. In contrast, exposure after a slight ultraviolet (UV)-irradiation, which has virtually no effect on dorsal development, produces larvae with heavily reduced dorsal structures, which resemble 'ventralized' larvae produced by heavy UV-irradiation. Interestingly, none of these treatments prevents cortical rotation. Morphological and histological examinations reveal that exposure to the force causes displacement of both cortical and deep egg components from around the vegetal pole to subequatorial regions. We conclude that exposure to the centrifugal force enhances dorsal structures by displacing dorsal determinants from around the vegetal pole to subequatorial regions broader than normal. This is the first experiment in which displacement of egg components, by methods independent of the rotation, are shown to perturb larval body pattern.  相似文献   

7.
Following fertilization, the Xenopus egg cortex rotates relative to the cytoplasm by 30 degrees about a horizontal axis. The direction of rotation, and as a result the orientation of the embryonic body axes, is normally specified by the position of sperm entry. The mechanism of rotation appears to involve an array of aligned microtubules in the vegetal cortex (Elinson and Rowning, 1988, Devl Biol. 128, 185-197). We performed anti-tubulin immunofluorescence on sections to follow the formation of this array. Microtubules disappear rapidly from the egg following fertilization, and reappear first in the sperm aster. Surprisingly, astral microtubules then extend radially through both the animal and vegetal cytoplasm. The cortical array arises as they reach the vegetal cell surface. The eccentric position of the sperm aster gives asymmetry to the formation of the array and may explain its alignment since microtubules reaching the cortex tend to bend away from the sperm entry side. The radial polymerization of cytoplasmic microtubules is not dependent on the sperm aster or on the female pronucleus: similar but more symmetric patterns arise in artificially activated and enucleate eggs, slightly later than in fertilized eggs. These observations suggest that the cortical microtubule array forms as a result of asymmetric microtubule growth outward from cytoplasm to cortex and, since cortical and cytoplasmic microtubules remain connected throughout the period of the rotation, that the microtubules of the array rotate with the cytoplasm.  相似文献   

8.
Heat-Induced Reversal of Dorsal-Ventral Polarity in Xenopus Eggs   总被引:2,自引:2,他引:0  
Heat-treatment of fertilized Xenopus laevis eggs at 30°C induced; 1. conspicuous concentration of the pigment toward the sperm entry point (SEP), 2. eccentric first cleavage furrow formation, and 3. reversal of the dorsal-ventral polarity of the embryos. The optimal treatment was for 2.5 min applied at 20 min postfertilization (p.f.). The rotation movement of the Nile-blue stained spots in the vegetal hemisphere of the heated eggs accurately located the future dorsal midline as in untreated embryos (ref. 22). Exposure of eggs to D2O also reversed the dorsal-ventral polarity of the embryo suggesting that stabilization of microtubules is involved in the dorsal-ventral axis reversal.  相似文献   

9.
Spatial reorganization of cytoplasm in zygotic cells is critically important for establishing the body plans of many animal species. In ascidian zygotes, maternal determinants (mRNAs) are first transported to the vegetal pole a few minutes after fertilization and then to the future posterior side of the zygotes in a later phase of cytoplasmic reorganization, before the first cell division. Here, by using a novel fluorescence polarization microscope that reports the position and the orientation of fluorescently labeled proteins in living cells, we mapped the local alignments and the time-dependent changes of cortical actin networks in Ciona eggs. The initial cytoplasmic reorganization started with the contraction of vegetal hemisphere approximately 20 s after the fertilization-induced [Ca2+] increase. Timing of the vegetal contraction was consistent with the emergence of highly aligned actin filaments at the cell cortex of the vegetal hemisphere, which ran perpendicular to the animal–vegetal axis. We propose that the cytoplasmic reorganization is initiated by the local contraction of laterally aligned cortical actomyosin in the vegetal hemisphere, which in turn generates the directional movement of cytoplasm within the whole egg.  相似文献   

10.
The early development of several species involves the segregation of cytoplasmic components into different regions of the egg. In Xenopus zygotes, a 30° rotation displaces the central animal cytoplasm to the future dorsal side of the embryo. To elucidate the role of the central animal cytoplasm in dorsal determination, we induced germinal vesicle breakdown (GVBD) closer to the equator by cold/centrifugation treatment of oocytes. Centrifugation moved the germinal vesicle to the centripetal side; eggs with such displaced GVBD fertilized and began to develop normally. Dorsal embryonic structures tended to develop on the GVBD side of the egg, but displacement of the GVBD was insufficient to rescue dorsal structures in axis-deficient embryos. The labeling of yolk platelets of oocytes with Trypan Blue revealed similar cytoplasmic patterns in control and treated eggs. Furthermore, 67% of treated eggs had Danilchik's swirl, indicative of the dorsal side, on the GVBD side. In conclusion, both the swirl and dorsal development tend to occur on the GVBD side of cold/centrifuged eggs; however, displaced GVBD cannot by itself determine dorsality.  相似文献   

11.
The dorsoventral axis of the frog embryo is specified by a rotation of the egg cytoplasm relative to the cortex. When eggs undergoing the cortical/cytoplasmic rotation were examined by immunocytochemistry and electron microscopy, an extensive array of parallel microtubules was found covering the vegetal hemisphere of the egg. The microtubules were 1-3 microns deep from the plasma membrane and were aligned parallel to the direction of rotation. They formed at the start of rotation and disappeared at its completion. Colchicine and uv irradiation, inhibitors of the rotation, prevented the formation of the parallel microtubules. Based on these properties, we suggest that the parallel microtubules serve as tracks for the cortical/cytoplasmic rotation which specifies the dorsoventral axis of the embryo.  相似文献   

12.
Polarity of the ascidian egg cortex before fertilization.   总被引:5,自引:0,他引:5  
The unfertilized ascidian egg displays a visible polar organization along its animal-vegetal axis. In particular, the myoplasm, a mitochondria-rich subcortical domain inherited by the blastomeres that differentiate into muscle cells, is mainly situated in the vegetal hemisphere. We show that, in the unfertilized egg, this vegetal domain is enriched in actin and microfilaments and excludes microtubules. This polar distribution of microfilaments and microtubules persists in isolated cortices prepared by shearing eggs attached to a polylysine-coated surface. The isolated cortex is further characterized by an elaborate network of tubules and sheets of endoplasmic reticulum (ER). This cortical ER network is tethered to the plasma membrane at discrete sites, is covered with ribosomes and contains a calsequestrin-like protein. Interestingly, this ER network is distributed in a polar fashion along the animal-vegetal axis of the egg: regions with a dense network consisting mainly of sheets or tightly knit tubes are present in the vegetal hemisphere only, whereas areas characterized by a sparse tubular ER network are uniquely found in the animal hemisphere region. The stability of the polar organization of the cortex was studied by perturbing the distribution of organelles in the egg and depolymerizing microfilaments and microtubules. The polar organization of the cortical ER network persists after treatment of eggs with nocodazole, but is disrupted by treatment with cytochalasin B. In addition, we show that centrifugal forces that displace the cytoplasmic organelles do not alter the appearance and polar organization of the isolated egg cortex. These findings taken together with our previous work suggest that the intrinsic polar distribution of cortical membranous and cytoskeletal components along the animal-vegetal axis of the egg are important for the spatial organization of calcium-dependent events and their developmental consequences.  相似文献   

13.
We have studied egg activation and ooplasmic segregation in the ascidian Phallusia mammillata using an imaging system that let us simultaneously monitor egg morphology and calcium-dependent aequorin luminescence. After insemination, a wave of highly elevated free calcium crosses the egg with a peak velocity of 8-9 microns/s. A similar wave is seen in egg fertilized in the absence of external calcium. Artificial activation via incubation with WGA also results in a calcium wave, albeit with different temporal and spatial characteristics than in sperm-activated eggs. In eggs in which movement of the sperm nucleus after entry is blocked with cytochalasin D, the sperm aster is formed at the site where the calcium wave had previously started. This indicates that the calcium wave starts where the sperm enters. In 70% of the eggs, the calcium wave starts in the animal hemisphere, which confirms previous observations that there is a preference for sperm to enter this part of the egg (Speksnijder, J. E., L. F. Jaffe, and C. Sardet. 1989. Dev. Biol. 133:180-184). About 30-40 s after the calcium wave starts, a slower (1.4 microns/s) wave of cortical contraction starts near the animal pole. It carries the subcortical cytoplasm to a contraction pole, which forms away from the side of sperm entry and up to 50 degrees away from the vegetal pole. We propose that the point of sperm entry may affect the direction of ooplasmic segregation by causing it to tilt away from the vegetal pole, presumably via some action of the calcium wave.  相似文献   

14.
In unfertilized frog eggs, the plasma membrane displays an animal vegetal polarity characterized by the presence of short microvilli in the vegetal hemisphere and long microvilli or ridge-like protrusions in the animal hemisphere. The densities of microvilli are similar in the two hemispheres.
The fertilizing sperm always fuses with the animal hemisphere of the egg and induces a wave of exocytosis of cortical granules from its site of penetration. Similar spreading of the cortical reaction is seen on activation by pricking the egg cortex. The integration of the cortical granule membrane with the plasma membrane is rapidly followed by elongation of microvilli, which is progressively realized all over the egg surface from the site of sperm entry or the site of pricking. At this time, the length and shape of the microvilli in the animal and vegetal hemispheres are similar and their densities are the same as in unfertilized eggs.
A "smoothing" wave can be seen on the living egg, 40–60 seconds after pricking, starting around the site of pricking. This wave of microvillar elongation is accompanied by changes in intensity of diffracted light spots observed at the surface of the egg. This pattern might result from rapid and progressive thickening of the cortex that would drive pigment granules into the cytoplasm. The Brownian movement of these granules is thought to be responsible for the observed diffracted light spots.
Electrical stimulus or the ionophore A23187 induced activation reactions similar to those triggered by the sperm or by pricking, except that the cortical reaction began simultaneously in several distinct sites of the cortex.  相似文献   

15.
16.
The dorsal-ventral axis of amphibian embryos is specified by the "cortical rotation," a translocation of the egg cortex relative to the vegetal yolk mass. The mechanism of cortical rotation is not understood but is thought to involve an array of aligned, commonly oriented microtubules. We have demonstrated an essential requirement for kinesin-related proteins (KRPs) in the cortical rotation by microinjection beneath the vegetal cortex of an antipeptide antibody recognising multiple Xenopus egg KRPs. Time-lapse videomicroscopy revealed a striking local inhibition of the cortical rotation around the injection site, indicating that KRP-mediated translocation of the cortex is generated by forces acting across the vegetal subcortical region. Anti-tubulin immunofluorescence showed that the antibody disrupted both formation and maintenance of the aligned microtubule array. Direct examination of rhodamine-labelled microtubules by confocal microscopy showed that the anti-KRP antibody provoked striking three-dimensional flailing movement of the subcortical microtubules. In contrast, microtubules in antibody-free regions undulated only within the plane of the cortex, a significant population exhibiting little or no net movement. These findings suggest that KRPs have a critical role during cortical rotation in tethering microtubules to the cortex and that they may not contribute significantly to the translocation force as previously thought.  相似文献   

17.
Summary Ooplasmic segregation, i.e. the accumulation of pole plasm in theTubifex egg, consists of two steps: (1) Cytoplasm devoid of yolk granules and lipid droplets migrates toward the egg periphery and forms a continuous subcortical layer around the whole egg; (2) the subcortical cytoplasm moves along the surface toward the animal pole in the animal hemisphere and toward the vegetal pole in the vegetal hemisphere, and finally accumulates at both poles of the egg to form the animal and vegetal pole plasms. Whereas the subcortical layer increases in volume during the first step, it decreases during the second step. This is ascribed to the compact rearrangement in the subcortical layer of membraneous organelles such as endoplasmic reticulum and mitochondria. The number of membraneous organelles associated with the cortical layer increases during the second step. Electron microscopy reveals the presence of microfilaments not only in the cortical layer but also in the subcortical layer. Subcortical microfilaments link membraneous organelles to form networks; some are associated with bundles of cortical microfilaments. The thickness of the cortical layer differs regionally. The pattern of this difference does not change during the second step. On the other hand, the subcortical cytoplasm moves ahead of the stationary cortical layer. The accumulation of pole plasm is blocked by cytochalasin B but not by colchicine. The first step of this process is less sensitive to cytochalasin B than the second step, suggesting that these two steps are controlled by differnt mechanisms. The mechanical aspects of ooplasmic segregation in theTubifex egg are discussed in the light of the present observations.  相似文献   

18.
The spatial distribution of voltage-dependent ionic currents was characterized in Boltenia villosa eggs before and after fertilization using two-microelectrode voltage clamp of paired animal-vegetal halves of eggs (merogones) made surgically. Major voltage-dependent conductances in the Boltenia egg are a transient inward Na current, a transient inward Ca current, and an inwardly rectifying K current. These currents were randomly distributed along the animal-vegetal axis in the unfertilized egg. When paired merogones (surgically prepared egg fragments) were made at the vegetal cap stage, 15-30 min after fertilization, Ca and K currents remained randomly distributed along the animal-vegetal axis. In contrast, the relative Na current density was found to be twofold lower in the vegetal vs the animal merogones made at the vegetal cap stage. By making pairs of merogones from unfertilized eggs and subsequently fertilizing one merogone of a pair, we showed that this change in current density ratio was due to a loss of absolute Na current density in the vegetal hemisphere shortly after fertilization. These results also show that this loss was intrinsic to the vegetal hemisphere, rather than being determined solely by the point of sperm entry. A second decrease in Na current was observed during the hour before first cleavage, 60-120 min after fertilization (M.L. Block and W.J. Moody, 1987, J. Physiol. 393, 619-634), both in fertilized eggs and in animal merogones fertilized after isolation. This second loss of Na current was not observed in vegetal merogones fertilized after isolation or in either animal or vegetal merogones made from fertilized eggs at the vegetal cap stage. Possible mechanisms for te rapid (complete by 40 min after fertilization) and the late (occurring from ca. 60 to 120 minutes after fertilization) Na current losses are discussed.  相似文献   

19.
In eggs of Xenopus laevis, the meridian of sperm entry (SEP meridian), the direction of subcortical rotation, and the first cleavage furrow have been used to predict, with varying degrees of accuracy, the position of the plane of bilateral symmetry of the embryo. We show here that altering the shape of the uncleaved egg by lateral compression disrupts some of these topographical relationships in a reproducible way. The neural groove, which identifies the embryonic dorsal midline, usually forms at either of the two narrow ends of the compressed egg, regardless of the position of the SEP meridian, whereas the first cleavage furrow divides the compressed egg across its shorter dimension, regardless of the position of the SEP meridian. Thus the positions of the SEP meridian, the cleavage plane, and the embryonic bilateral plane can be completely uncoupled from each other. In contrast, the direction of subcortical rotation is usually parallel to the plane of compression and predicts the position of the neural groove in all cases. Since the direction of subcortical rotation and the plane of bilateral symmetry still correlate under conditions of compression, we conclude that subcortical rotation is the crucial early step in the process of axis specification.  相似文献   

20.
The animal-vegetal organization of the amphibian egg may originatefrom the axis of organelles and cytoskeletal elements establishedin the oocyte as it divides from the oogonium. Along this axis,cytoplasmic materials are localized during oogenesis: yolk platelets,for example, are translocated toward the vegetal pole, increasingtheir amount and size in that region. In the first cell cycleafter fertilization, the egg cortex rotates 30° relativeto the cytoplasmic core, modifying animal-vegetal organization.The direction of this rotation, biased by the point of spermentry, defines the site of development of anatomical structuresof the dorsal midline of the embryo. As its immediate effect,rotation activates the cytoplasm of a subregion of the vegetalhemisphere, causing cells cleaved from this subregion to bemore effective than other vegetal parts in inducing marginalzone cells to initiate gastrulation movements. The most stronglyinduced part of the marginal zone begins gastrulation first(the dorsal lip of the blastopore) and proceeds through a seriesof cell interactions leading to its determination as the anteriordorsal mesoderm of the embryo. If these cell movements are inhibitedin the gastrula stage, or if vegetal induction is inhibitedin the blastula stage, or if cortical rotation is inhibitedin the first cell cycle after fertilization, the embryo alwaysfails to develop dorsal structures of the anterior end of itsbody axis; the more inhibition, the more posterior is the levelof truncation, until a radial ventralized embryo develops, derivedfrom the animal-vegetal organization of the oocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号