首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Source–filter coupling is the rarest acoustic phenomenon not only in Iberian red deer, but in any mammal. In most mammals, sound production can be well described in the framework of source–filter theory. The vocal output is the result of combined work of the larynx (the source) and of the supralaryngeal vocal tract (the filter). The source–filter theory suggests the independence of source and filter. Thus, vocal tract filtering should not affect the fundamental frequency (f0) of the sound created in the larynx. Spectrographically, the source is mostly characterized by the f0 and its harmonics, while the filter by the vocal tract resonances, i.e., formant frequencies. Nevertheless, a non-independent (coupled) source and filter can be proposed when the vocal folds start oscillating at one of the formant frequencies. Coupling between source and filter has been found in human singers and predicted for red deer Cervus elaphus by a computer modeling approach. This study describes different modes of phonation in a natural bout of rutting calls of Iberian red deer Cervus elaphus hispanicus and the transition from a chaotic mode to a probable source–filter coupling mode. This phenomenon might be involved in the production of extremely high-frequency bugles of North American and Asian subspecies of C. elaphus.  相似文献   

2.
Inferences on the evolution of human speech based on anatomical data must take into account its physiology, acoustics and perception. Human speech is generated by the supralaryngeal vocal tract (SVT) acting as an acoustic filter on noise sources generated by turbulent airflow and quasi-periodic phonation generated by the activity of the larynx. The formant frequencies, which are major determinants of phonetic quality, are the frequencies at which relative energy maxima will pass through the SVT filter. Neither the articulatory gestures of the tongue nor their acoustic consequences can be fractionated into oral and pharyngeal cavity components. Moreover, the acoustic cues that specify individual consonants and vowels are “encoded”, i.e., melded together. Formant frequency encoding makes human speech a vehicle for rapid vocal communication. Non-human primates lack the anatomy that enables modern humans to produce sounds that enhance this process, as well as the neural mechanisms necessary for the voluntary control of speech articulation. The specific claims of Duchin (1990) are discussed.  相似文献   

3.
The purpose of the study was to reconstruct the supralaryngeal vocal tract of the archaic human from Petralona in Greece and to assess its vocal abilities. The reconstruction of the position of the hyoid bone of the Palaeolithic hominid from Petralona has been done by using the relation between the flexion of the basicranium and the inclination of the processus styloideus. The results indicate the lower position of the larynx in the fossil hominid. This conclusion was confirmed by an assessment of the position of the hyoid bones by extrapolating from a sample of 45 x-rays scans of recent adult human males.  相似文献   

4.
The source-filter theory describes vocal production as a two-stage process involving the generation of a sound source, with its own spectral structure, which is then filtered by the resonant properties of the vocal tract. This theory has been successfully applied to the study of animal vocal signals since the 1990s. As an extension, models reproducing vocal tract resonance can be used to reproduce formant patterns and to understand the role of vocal tract filtering in nonhuman vocalizations. We studied three congeneric lemur species —Eulemur fulvus, E. macaco, E. rubriventer— using morphological measurements to build computational models of the vocal tract to estimate formants, and acoustic analysis to measure formants from natural calls. We focused on call types emitted through the nose, without apparent articulation. On the basis of anatomical measurements, we modeled the vocal tract of each species as a series of concatenated tubes, with a cross-sectional area that changed along the tract to approximate the morphology of the larynx, the nasopharyngeal cavity, the nasal chambers, and the nostrils. For each species, we calculated the resonance frequencies in 2500 randomly generated vocal tracts, in which we simulated intraspecific length and size variation. Formant location and spacing showed significant species-specific differences determined by the length of the vocal tract. We then measured formants of a set of nasal vocalizations (“grunts”) recorded from captive lemurs of the same species. We found species-specific differences in the natural calls. This is the first evidence that morphology of the vocal tract is relevant in generating filter-related acoustic cues that potentially provide receivers with information about the species of the emitter.  相似文献   

5.
This study quantitatively documents the progressive development of sexual dimorphism of the vocal organs along the ontogeny of the goitred gazelle (Gazella subgutturosa). The major, male‐specific secondary sexual features, of vocal anatomy in goitred gazelle are an enlarged larynx and a marked laryngeal descent. These features appear to have evolved by sexual selection and may serve as a model for similar events in male humans. Sexual dimorphism of larynx size and larynx position in adult goitred gazelles is more pronounced than in humans, whereas the vocal anatomy of neonate goitred gazelles does not differ between sexes. This study examines the vocal anatomy of 19 (11 male, 8 female) goitred gazelle specimens across three age‐classes, that is, neonates, subadults and mature adults. The postnatal ontogenetic development of the vocal organs up to their respective end states takes considerably longer in males than in females. Both sexes share the same features of vocal morphology but differences emerge in the course of ontogeny, ultimately resulting in the pronounced sexual dimorphism of the vocal apparatus in adults. The main differences comprise larynx size, vocal fold length, vocal tract length, and mobility of the larynx. The resilience of the thyrohyoid ligament and the pharynx, including the soft palate, and the length changes during contraction and relaxation of the extrinsic laryngeal muscles play a decisive role in the mobility of the larynx in both sexes but to substantially different degrees in adult females and males. Goitred gazelles are born with an undescended larynx and, therefore, larynx descent has to develop in the course of ontogeny. This might result from a trade‐off between natural selection and sexual selection requiring a temporal separation of different laryngeal functions at birth and shortly after from those later in life. J. Morphol. 277:826–844, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
The physiological mechanisms and acoustic principles underlying sound production in primates are important for analyzing and synthesizing primate vocalizations, for determining the range of calls that are physically producible, and for understanding primate communication in the broader comparative context of what is known about communication in other vertebrates. In this paper we discuss what is known about vocal production in nonhuman primates, relying heavily on models from speech and musical acoustics. We first describe the role of the lungs and larynx in generating the sound source, and then discuss the effects of the supralaryngeal vocal tract in modifying this source. We conclude that more research is needed to resolve several important questions about the acoustics of primate calls, including the nature of the vocal tract's contribution to call production. Nonetheless, enough is known to explore the implications of call acoustics for the evolution of primate communication. In particular, we discuss how anatomy and physiology may provide constraints resulting in “honest” acoustic indicators of body size. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Source–filter theory assumes that calls are generated by a vocal source and are subsequently filtered by the vocal tract. The air in the vocal tract vibrates preferentially at certain resonant frequencies, called formants. Formant frequencies can be a good indicator of the caller's characteristics, such as sex, age, body size or individual identity. Although source–filter theory was originally proposed for mammals, formants are also observed in birds, and some bird species have been shown to perceive formants. In this study, we evaluated the hypotheses that formant frequencies (1) are an indicator of body size and (2) can be used for individual discrimination by a nocturnal bird species, the corncrake (Crex crex). We analysed calls of 104 males from Poland and the Czech Republic. Linear regression models showed that the males with a longer head (including the bill length) had a significantly lower formant dispersion and lower fourth and fifth formant frequencies. However, we found no significant relationships between body weight and any filter‐related acoustic measurement. The formant frequencies had smaller within‐ than between‐individual coefficients of variation. This characteristic of the formant frequencies implies a high potential for individual coding. A discriminant function analysis correctly assigned 94.8% of the calls to the caller based on formants from second to fifth. Our results indicated that the formant frequencies are a weak indicator of the body size of the sender in the corncrake. However, even weak dependence between body size and acoustic properties of signal may be important in natural selection process. Alternatively, such a weak dependence may be observed, because receivers ignore the acoustical, formant‐based cues of body size. Simultaneously, the formants might potentially provide acoustic cues to individual discrimination and could be used to census and monitoring tasks.  相似文献   

8.
A permanently descended larynx is found in humans and several other species of mammals. In addition to this, the larynx of species such as fallow deer is mobile and in males it can be retracted during vocalization. The most likely explanation for the lowered retractable larynx in mammals is that it serves to exaggerate perceived body size (size exaggeration hypothesis) by decreasing the formant frequencies of calls. In this study, we quantified for the first time the elongation of the vocal tract in fallow bucks during vocalization. We also measured the effect of this vocal tract length (VTL) increase on formant frequencies (vocal tract resonances) and formant dispersion (spacing of formants). Our results show that fallow bucks increase their VTL on average by 52% during vocalization. This elongation resulted in strongly lowered formant frequencies and decreased formant dispersion. There were minimal changes to formants 1 and 2 (−0.91 and +1.9%, respectively) during vocal tract elongation, whereas formants 3, 4 and 5 decreased substantially: 18.9, 10.3 and 13.6%, respectively. Formant dispersion decreased by 12.4%. Formants are prominent in deer vocalizations and are used by males to gain information on the competitive abilities of signallers. It remains to be seen whether females also use the information that formants contain for assessing male quality before mating.  相似文献   

9.

Background

Birdsong and human vocal communication are both complex behaviours which show striking similarities mainly thought to be present in the area of development and learning. Recent studies, however, suggest that there are also parallels in vocal production mechanisms. While it has been long thought that vocal tract filtering, as it occurs in human speech, only plays a minor role in birdsong there is an increasing number of studies indicating the presence of sound filtering mechanisms in bird vocalizations as well.

Methodology/Principal Findings

Correlating high-speed X-ray cinematographic imaging of singing zebra finches (Taeniopygia guttata) to song structures we identified beak gape and the expansion of the oropharyngeal-esophageal cavity (OEC) as potential articulators. We subsequently manipulated both structures in an experiment in which we played sound through the vocal tract of dead birds. Comparing acoustic input with acoustic output showed that OEC expansion causes an energy shift towards lower frequencies and an amplitude increase whereas a wide beak gape emphasizes frequencies around 5 kilohertz and above.

Conclusion

These findings confirm that birds can modulate their song by using vocal tract filtering and demonstrate how OEC and beak gape contribute to this modulation.  相似文献   

10.
The larynges (except for the epiglottis) of two adult Mongolian gazelles, one male and one female, were dissected. This species is characterized by a pronounced sexual dimorphism of the larynx. Dimorphism with regard to the size of the entire larynx and of the thyroid cartilage is about 2:1 whereas the difference of mean body mass is about 1.3:1 between males and females. Unexpectedly, and in contrast to other bovids, the larynx of the male Mongolian gazelle has a paired lateral laryngeal ventricle. However, in contrast to horse, dog, pig and many primate species also possessing such a paired ventricle, its rostral opening in the Mongolian gazelle is situated lateral to the corniculate process of the arytenoid cartilage. The neck of the laryngeal ventricle is embraced by the bifurcated cuneiform process of the epiglottis. Despite the enlarged laryngeal cartilages, the vocal process of the male arytenoid cartilage is relatively shorter than that of the female. The male thyroarytenoid muscle is clearly separated into a rostral ventricular muscle and a caudal vocal muscle whereas the female's, as in other bovids, is almost uniform. The lateral sac of the two-chambered laryngeal ventricle in the male projects laterally between the ventricular and the vocal muscle. As in the domestic bovids and in many other artiodactyls the larynx of the male Mongolian gazelle is lacking any rostrally directed membraneous portion of the vocal fold. Instead, the thick and tough bow-like vocal fold projects caudally into the infraglottic cavity and is supported by a peculiar pan-like fibroelastic pad. This resilient element, situated medial to the bipartite thyroarytenoid muscle, might be a homologue of the vocal ligament, eventually including lateral portions of the elastic cone. A fibroelastic pad is absent in the female. The resilient floor of the laryngeal vestibulum, ventral to the fibroelastic pad, is rostrally and caudally subducted by tube-like spaces. Evolutionary enlargement of the male larynx, including the vocal folds, and of the caudal portions of the vocal tract may have shifted the fundamental and formant frequencies to a lower register. The paired lateral laryngeal ventricle might produce an amplitude increase of the vocalizations assisted by differential action of the bipartite thyroarytenoid muscle. In addition, the peculiar shape, size and tough consistency of the male vocal folds may, as in roaring felids, assist in producing high amplitude and low frequency vocalizations. Perhaps the biological role of the enlarged male larynx of Procapra gutturosa has evolved in relation to its mating system. In the rutting season, dominant males establish individual territories and maintain harems. During prolonged courtship prior to mating, these males perform an acoustic display uttering loud and guttural bellows. In addition, the bulging ventral neck region of males may serve as an optical attractant for the females. Thus, the evolution of the enlarged larynx of the male Mongolian gazelle may have been favoured by sexual selection.  相似文献   

11.
Male Rocky Mountain elk (Cervus elaphus nelsoni) produce loud and high fundamental frequency bugles during the mating season, in contrast to the male European Red Deer (Cervus elaphus scoticus) who produces loud and low fundamental frequency roaring calls. A critical step in understanding vocal communication is to relate sound complexity to anatomy and physiology in a causal manner. Experimentation at the sound source, often difficult in vivo in mammals, is simulated here by a finite element model of the larynx and a wave propagation model of the vocal tract, both based on the morphology and biomechanics of the elk. The model can produce a wide range of fundamental frequencies. Low fundamental frequencies require low vocal fold strain, but large lung pressure and large glottal flow if sound intensity level is to exceed 70 dB at 10 m distance. A high-frequency bugle requires both large muscular effort (to strain the vocal ligament) and high lung pressure (to overcome phonation threshold pressure), but at least 10 dB more intensity level can be achieved. Glottal efficiency, the ration of radiated sound power to aerodynamic power at the glottis, is higher in elk, suggesting an advantage of high-pitched signaling. This advantage is based on two aspects; first, the lower airflow required for aerodynamic power and, second, an acoustic radiation advantage at higher frequencies. Both signal types are used by the respective males during the mating season and probably serve as honest signals. The two signal types relate differently to physical qualities of the sender. The low-frequency sound (Red Deer call) relates to overall body size via a strong relationship between acoustic parameters and the size of vocal organs and body size. The high-frequency bugle may signal muscular strength and endurance, via a ‘vocalizing at the edge’ mechanism, for which efficiency is critical.  相似文献   

12.
The sounds of human speech make human language a rapid medium of communication through a process of speech "encoding." The presence of sounds like the vowels [a], [i], and [u] makes this process possible. The supralaryngeal vocal tracts of newborn Homo sapiens and chimpanzee are similar and resemble the reconstructed vocal tract of the fossil La Chapelle-aux-Saints Neanderthal man. Vocal tract area functions that were directed toward making best possible approximations to the human vowels [a], [i], and [u], as well as certain consonantal configurations, were modeled by means of a computer program. The lack of these vowels in the phonetic repertories of these creatures, who lack a supralaryngeal pharyngeal region like that of adult Homo sapiens, may be concomitant with the absence of speech encoding and a consequently linguistic ability inferior to modern man.  相似文献   

13.
Early work on loud calling in mammals emphasized the importance of dynamic characteristics such as calling rate as cues to fitness and fighting ability. In contrast, little is known of the potential for fine-scaled acoustic cues to provide receivers with direct information on fitness. Fundamental frequency has typically been considered a good potential indicator of body size in the literature, but resonance frequencies (formants), which should be constrained by the length of the vocal tract, have received less attention. We conducted a detailed acoustic analysis on an extensive database of roars from red deer stags, Cervus elaphus, in a free-ranging population to investigate which variables provided honest information on age, body weight and reproductive success. Although fundamental frequency was higher in young stags than in adults, it did not decrease with body weight within adults and source cues (i.e. those generated by the larynx) in general did not provide clear information on fitness-related characteristics. In contrast, minimum formant frequencies, reached during the part of the roar when the mobile larynx is most fully retracted towards the sternum, decreased with body weight and age and were strongly negatively correlated with our index of reproductive success. Such production-related acoustic cues to body size and fitness, rendered honest by an anatomical constraint limiting the downward movement of the larynx, provide receivers with accurate information that could be used to assess rivals and choose mates. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

14.
In vocal communication, the mechanisms of sound production are well understood. The length of the vocal folds determines the minimum fundamental frequency, while the size and the shape of the vocal tract affect its filtering characteristics and hence, the resonant frequencies. Both measures-vocal fold length and vocal tract length-are related to body size and therefore, acoustic features are expected to vary with body size. Because direct measures of body size are difficult to obtain from free-ranging animals, age and sex have often been used as proxies. We surveyed studies which included direct measures of size or weight, and also studies in which only age and/or sex differences were examined. The main purpose was to examine whether age- and sex-related variations in acoustic features meet the predictions generated from our knowledge about sound production. Our survey revealed that compared to smaller animals, larger animals utter longer calls, with a lower fundamental frequency, with smaller formant dispersion, and with the energy concentrated in lower frequencies. Age and sex reliably reflect the influence of body size on acoustic features when gross size differences are examined. However, within age- and sex classes, this relationship may break down. In addition to body size, other factors such as internal state or social context may also influence the structure of vocal signals and highlight the richness of information in calls that is potentially available to listeners.  相似文献   

15.
One of the most influential paleoanthropological approaches to the question of language origins has been the attempt to reconstruct the supralaryngeal vocal tract (SVT) in fossil humans. In particular, the low placement of the larynx was considered to be a uniquely human feature and was interpreted as a specific adaptation to produce human speech. Nevertheless, based on the anatomy of the basicranium and the hyoid bone, various researchers reached different conclusions regarding the placement of the larynx in human fossils, especially in Neandertals. Further, the recent finding of a low placement of the larynx in chimpanzees, calls into question the basic premise on which much of this research has been based. To overcome this, we have proposed and developed a new line of research into the question of speech capabilities in fossil specimens which is focused not on the ability to produce the sounds of spoken language, but on the capacity to perceive them. The modern human auditory pattern is unique among primates in showing a relatively heightened sensitivity to the midrange frequencies between 2-4 kHz, a frequency range which coincides with that of spoken language. Our analysis shows that the preserved skeletal anatomy of the outer and middle ear in the Middle Pleistocene hominids from the site of the Sima de los Huesos is compatible with human-like auditory capacities, and is clearly different from chimpanzees in the midrange frequencies. These results strongly suggest that the anatomical structures which support the modern hum and pattern of intraspecific communication were already present in these human ancestors. Further, the presence of a common condition in both the modern human and Neandertal evolutionary lineages suggests this represents an ancient adaptation within the genus Homo.  相似文献   

16.
The human supralaryngeal vocal tract develops to form a unique two-tube configuration with equally long horizontal and vertical cavities. This anatomy contributes greatly to the morphological foundations of human speech. It is believed to depend on the reduced growth of the palate and on the developmental descent of the larynx relative to the palate. Anatomically, the descent of the larynx is accomplished through both the descent of the laryngeal skeleton relative to the hyoid and the descent of the hyoid relative to the palate. We have studied the development of three living chimpanzees using magnetic resonance imaging. Our previous study showed that, as in humans, chimpanzees show rapid laryngeal descent, with changes in the relative proportion of the vocal tract during early infancy. However, this is not accompanied by the descent of the hyoid relative to the palate, although it is achieved with the descent of the laryngeal skeleton relative to the hyoid. Here, we show that subsequently the chimpanzee hyoid also descends to maintain the rapid descent of the larynx, similarly to humans. We argue that the descent of the larynx probably evolved in a common ancestor of extant hominoids, originally to confer an advantage via a function unrelated to speech. Thus, the descent of the larynx per se is not unique to humans, and facial flattening was probably the major factor that paved the way for speech in the human lineage.  相似文献   

17.
Sounds produced in the avian vocal organ may be modified by filter properties of the upper vocal tract. Possible mechanisms to actively control filter characteristics include movements of the beak, tongue, and larynx and adjustments of tracheal length. We investigated whether length changes of the trachea are a likely mechanism for adjusting upper vocal tract filter properties during song in the zebra finch (Taeniopygia guttata). Tracheal length was monitored at the basal end using sonomicrometry and was recorded together with subsyringeal air sac pressure and acoustic output. Tracheal shortening occurred at the onset of song bouts, and during each motif the tracheal length decreased during expiratory pressure pulses and increased during the short inspirations. A bilateral tracheal syringeal nerve cut confirmed that the initial shortening at the onset of the song bout is an active shortening of the trachea (i.e., mediated by syringeal muscle activity). The modulation of length during the motif was not affected by the denervation and is most likely driven by the pressurization of the interclavicular air sac. The absolute length change during the motif was small (<0.2 mm) and not clearly related to acoustic features of the song. For example, some high-frequency syllables, which are generated during inspiration, were accompanied by tracheal elongation. Because this elongation shifts tube resonances to lower frequencies, it is inconsistent with an active adjustment of length to enhance high frequency sounds. The small magnitude and inconsistent nature of dynamic tracheal length changes during song make it unlikely that they significantly affect vocal tract filter properties if the trachea is modeled as a rigid tube.  相似文献   

18.
Although numerous arguments have been advanced against Lieberman & Crelin's hypothesis that Neandertal man lacked fully developed human speech, few of these have been noted in the recent literature. Fewer still have criticized Lieberman & Crelin specifically on their anatomical approach. This is, however, perhaps the weakest point in the hypothesis.The method of vocal tract reconstruction used by Lieberman & Crelin was not accurate due to the use of casts which are stylized models rather than accurate representations. Their comparisons of human newborns and adult Neandertal can be criticized on many grounds. Furthermore, their attempt to analyze the total functional complex underlying speech fails because of their inability to use parallel resonators in the acoustic analysis. Their method of placement of the larynx may be subject to errors due to deformation of the fossil, drying of the skull, and effects of fossilization. Relations between the tongue and larynx upon which Lieberman & Crelin's conclusions are partly based are totally invalid. Their conceptions of the posture of fossil men are also in error.Although Lieberman & Crelin retreat from the usual formation of hypotheses based on speculation alone, the anatomic reconstructions are a weak link in their hypothesis. Until this weakness can be corrected, their contribution towards solving the question of speech in Neandertals remains limited.  相似文献   

19.
While vocal tract resonances or formants are key acoustic parameters that define differences between phonemes in human speech, little is known about their function in animal communication. Here, we used playback experiments to present red deer stags with re-synthesized vocalizations in which formant frequencies were systematically altered to simulate callers of different body sizes. In response to stimuli where lower formants indicated callers with longer vocal tracts, stags were more attentive, replied with more roars and extended their vocal tracts further in these replies. Our results indicate that mammals other than humans use formants in vital vocal exchanges and can adjust their own formant frequencies in relation to those that they hear.  相似文献   

20.
  • 1 A negative correlation between body weight and frequency characteristics of a species' vocalizations exists in mammals, due to the acoustics of vocal sound production (‘source‐filter theory’; source = larynx; filter = supralaryngeal vocal tract) and the strong positive correlation between body weight and vocal tract length.
  • 2 A negative correlation is hypothesized to exist between increasing body weight and frequency characteristics of calls during ontogeny as well.
  • 3 This hypothesis is tested for mean dominant frequency (maximum spectral energy peak) of intense mew calls in juveniles of five species of the Felidae: lion Panthera leo, jaguar Panthera onca, leopard Panthera pardus, tiger Panthera tigris and puma Puma concolor.
  • 4 In the five felid species in which the hyoid is incompletely ossified (genera Panthera and Uncia), the larynx undergoes a considerable ontogenetic descent, resulting in a proportionally longer vocal tract in adult individuals than in all other species of the family, which have a fully ossified hyoid without a descent.
  • 5 In all five species studied here, mean dominant frequency decreases as body weight increases during growth. In the four Panthera species (with laryngeal descent) dominant frequency is determined by the vocal tract (the filter), and dominant frequency is largely similar at similar weights, indicating a similar correlation between the ontogenetic increase in body weight (and vocal tract length) and the decrease in mean dominant frequency. In the puma (without laryngeal descent) dominant frequency is determined by the larynx (the source), it is considerably higher than in the Panthera species, and the course of its ontogenetic decrease differs considerably from that in Panthera.
  • 6 The data do not support a uniform scaling relationship between body weight and mean dominant frequency of intense mew calls in the Felidae during ontogenetic growth.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号