首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitochondrial outer membrane contains proteinaceous machineries for the translocation of precursor proteins. The sorting and assembly machinery (SAM) is required for the insertion of β-barrel proteins into the outer membrane. Sam50 is the channel-forming core subunit of the SAM complex and belongs to the BamA/Sam50/Toc75 family of proteins that have been conserved from Gram-negative bacteria to mitochondria and chloroplasts. These proteins contain one or more N-terminal polypeptide transport-associated (POTRA) domains. POTRA domains can bind precursor proteins, however, different views exist on the role of POTRA domains in the biogenesis of β-barrel proteins. It has been suggested that the single POTRA domain of mitochondrial Sam50 plays a receptor-like function at the SAM complex. We established a system to monitor the interaction of chemical amounts of β-barrel precursor proteins with the SAM complex of wild-type and mutant yeast in organello. We report that the SAM complex lacking the POTRA domain of Sam50 efficiently binds β-barrel precursors, but is impaired in the release of the precursors. These results indicate the POTRA domain of Sam50 is not essential for recognition of β-barrel precursors but functions in a subsequent step to promote the release of precursor proteins from the SAM complex.  相似文献   

2.
The yeast Vts1 SAM (sterile alpha motif) domain is a member of a new class of SAM domains that specifically bind RNA. To elucidate the structural basis for RNA binding, the solution structure of the Vts1 SAM domain, in the presence of a specific target RNA, has been solved by multidimensional heteronuclear NMR spectroscopy. The Vts1 SAM domain retains the "core" five-helix-bundle architecture of traditional SAM domains, but has additional short helices at N and C termini, comprising a small substructure that caps the core helices. The RNA-binding surface of Vts1, determined by chemical shift perturbation, maps near the ends of three of the core helices, in agreement with mutational data and the electrostatic properties of the molecule. These results provide a structural basis for the versatility of the SAM domain in protein and RNA-recognition.  相似文献   

3.
Arap3 is a phosphoinositide (PI) 3 kinase effector that serves as a GTPase activating protein (GAP) for both Arf and Rho G-proteins. The protein has multiple pleckstrin homology (PH) domains that bind preferentially phosphatidyl-inositol-3,4,5-trisphosphate (PI(3,4,5,)P3) to induce translocation of Arap3 to the plasma membrane upon PI3K activation. Arap3 also contains a Ras association (RA) domain that interacts with the small G-protein Rap1 and a sterile alpha motif (SAM) domain of unknown function. In a yeast two-hybrid screen for new interaction partners of Arap3, we identified the PI 5'-phosphatase SHIP2 as an interaction partner of Arap3. The interaction between Arap3 and SHIP2 was observed with endogenous proteins and shown to be mediated by the SAM domain of Arap3 and SHIP2. In vitro, these two domains show specificity for a heterodimeric interaction. Since it was shown previously that Arap3 has a higher affinity for PI(3,4,5,)P3 than for PI(3,4)P2, we propose that the SAM domain of Arap3 can function to recruit a negative regulator of PI3K signaling into the effector complex.  相似文献   

4.
The mitogen-activated protein kinase (MAPK) Byr2 and its activator Ste4 are involved in the mating pheromone response pathway of Schizosaccharomyces pombe and interact via their SAM domains. SAM domains can self-associate to form higher-order structures, including dimers, polymers and closed oligomers. Ste4-SAM is adjacent to a trimeric leucine zipper domain and we have shown previously that the two domains together (Ste4-LZ-SAM) bind to a monomeric Byr2-SAM with high affinity (Kd approximately 20 nM), forming a 3:1 complex. Here, we map the surfaces of Byr2-SAM and Ste4-SAM that is involved the interaction. A set of 38 mutants of Byr2-SAM and 33 mutants of Ste4-SAM were prepared, covering most of the protein surfaces. These mutants were purified and screened for binding, yielding a map of residues that are required for binding and a complementary map of residues that are not required. We find that the interface maps to regions of the SAM domains that are known to be important for the formation of SAM polymers. These results indicate that SAM domains can create a variety of oligomeric architectures utilizing common binding surfaces.  相似文献   

5.
Radical S-adenosylmethionine (SAM) enzymes use a common catalytic core for diverse transformations. While all radical SAM enzymes bind a Fe4S4 cluster via a characteristic tri-cysteine motif, many bind additional metal cofactors. Recently reported structures of radical SAM enzymes that use methylcobalamin or additional iron-sulfur clusters as cosubstrates show that these auxiliary units are anchored by N- and C-terminal domains that vary significantly in size and topology. Despite this architectural diversity, all use a common surface for auxiliary cofactor docking. In the sulfur insertion and metallocofactor assembly systems evaluated here, interaction with iron-sulfur cluster assembly proteins or downstream scaffold proteins is an important component of catalysis. Structures of these complexes represent important new frontiers in structural analysis of radical SAM enzymes.  相似文献   

6.
S-Adenosylmethionine (SAM, also known as AdoMet) radical enzymes use SAM and a [4Fe-4S] cluster to catalyze a diverse array of reactions. They adopt a partial triose-phosphate isomerase (TIM) barrel fold with N- and C-terminal extensions that tailor the structure of the enzyme to its specific function. One extension, termed a SPASM domain, binds two auxiliary [4Fe-4S] clusters and is present within peptide-modifying enzymes. The first structure of a SPASM-containing enzyme, anaerobic sulfatase-maturating enzyme (anSME), revealed unexpected similarities to two non-SPASM proteins, butirosin biosynthetic enzyme 2-deoxy-scyllo-inosamine dehydrogenase (BtrN) and molybdenum cofactor biosynthetic enzyme (MoaA). The latter two enzymes bind one auxiliary cluster and exhibit a partial SPASM motif, coined a Twitch domain. Here we review the structure and function of auxiliary cluster domains within the SAM radical enzyme superfamily.  相似文献   

7.
8.
SAM (sterile alpha motif) domains are protein-protein interaction modules found in a large number of regulatory proteins. Byr2 and Ste4 are two SAM domain-containing proteins in the mating pheromone response pathway of the fission yeast, Schizosaccharomyces pombe. Byr2 is a mitogen-activated protein kinase kinase kinase that is regulated by Ste4. Tu et al. (Tu, H., Barr, M., Dong, D. L., and Wigler, M. (1997) Mol. Cell. Biol. 17, 5876-5887) showed that the isolated SAM domain of Byr2 binds a fragment of Ste4 that contains both a leucine zipper (Ste4-LZ) domain as well as a SAM domain, suggesting that Byr2-SAM and Ste4-SAM may form a hetero-oligomer. Here, we show that the individual SAM domains of Ste4 and Byr2 are monomeric at low concentrations and bind to each other in a 1:1 stoichiometry with a relatively weak dissociation constant of 56 +/- 3 microm. Inclusion of the Ste4-LZ domain, which determines the oligomeric state of Ste4, has a dramatic effect on binding affinity, however. We find that the Ste4-LZ domain is trimeric and, when included with the Ste4-SAM domain, yields a 3:1 Ste4-LZ-SAM:Byr2-SAM complex with a tight dissociation constant of 19 +/- 4 nm. These results suggest that the Ste4-LZ-SAM protein may recognize multiple binding sites on Byr2-SAM, indicating a new mode of oligomeric organization for SAM domains. The fact that high affinity binding occurs only with the addition of an oligomerization domain suggests that it may be necessary to include ancillary oligomerization modules when searching for binding partners of SAM domains.  相似文献   

9.
p53 Family members p63 and p73 are SAM domain-containing proteins.   总被引:14,自引:0,他引:14       下载免费PDF全文
Homologs of the tumor suppressor p53, called p63 and p73, have been identified. The p63 and p73 family members possess a domain structure similar to p53, but contain variable C-terminal extensions. We find that some of the C-terminal extensions contain Sterile Alpha Motif (SAM) domains. SAM domains are protein modules that are involved in protein-protein interactions. Consistent with this role, the C-terminal SAM domains of the p63 and p73 may regulate function by recruiting other protein effectors.  相似文献   

10.
The sterile alpha motif (SAM) domain is one of the most common protein modules found in eukaryotic genomes. Many SAM domains have been shown to form helical polymer structures suggesting that SAM modules can be used to create large protein complexes in the cell. Because many polymeric SAM domains form heterogenous and insoluble aggregates that are experimentally intractable when isolated, it is likely that many polymeric SAM domains have gone uncharacterized. We, therefore, developed a method to maintain polymeric SAM domains in a soluble form that allowed rapid screening for potential SAM polymers. SAM domains were expressed as fusions to a super-negatively charged green fluorescent protein (negGFP). The negGFP imparts three useful properties to the SAM domains: (1) the charge helps to maintain solubility; (2) the charge leads to reliable migration toward the cathode on native gels; and (3) the fluorescence emission allows visualization in crude extracts. Using the negGFP-SAM fusions, we screened a large library of human SAM domains for polymerization using a native gel screen. A selected set of hSAM domains were then purified and examined for true polymer formation by electron microscopy. In this manner, we identified a set of new potential SAM polymers: ANKS3, Atherin, BicaudalC1, Caskin1, Caskin2, Kazrin, L3MBTL3, L3MBTL4, LBP, LiprinB1, LiprinB2, SAMD8, SAMD9, and STIM2. While further characterization will be necessary to verify that the SAM domains identified here truly form polymers, our results provide a much stronger working hypothesis for a large number of proteins that was possible from sequence analysis alone.  相似文献   

11.
12.
The neuronal scaffolding protein AIDA-1 is believed to act as a convener of signals arising at postsynaptic densities. Among the readily identifiable domains in AIDA-1, two closely juxtaposed sterile alpha motif (SAM) domains and a phosphotyrosine binding domain are located within the C-terminus of the longest splice variant and exclusively in four shorter splice variants. As a first step towards understanding the possible emergent properties arising from this assembly of ligand binding domains, we have used NMR methods to solve the first structure of a SAM domain tandem. Separated by a 15-aa linker, the two SAM domains are fused in a head-to-tail orientation that has been observed in other hetero- and homotypic SAM domain structures. The basic nuclear import signal for AIDA-1 is buried at the interface between the two SAM domains. An observed disparity between the thermal stabilities of the two SAM domains suggests a mechanism whereby the second SAM domain decouples from the first SAM domain to facilitate translocation of AIDA-1 to the nucleus.  相似文献   

13.
The sterile alpha motif (SAM) domains are among the most versatile protein domains in biology, and the variety of the oligomerization states contribute to their diverse roles in many diseases. A better understanding of the structure and dynamics of various SAM domains will provide a scientific basis for drug development targeting them. Here, we used SEC-MALS, HPLC, NMR, and other biophysical techniques to characterize the structural features and dynamics of the SAM1 domain in SASH1. SASH1 is a scaffold protein belonging to the same family as SASH3. Unlike the dimerization seen in SASH3′s SAM domain, our SEC-MALS and SE-HPLC showed that SAM1 exists primarily as a less compact monomer with a minor oligomer. NMR assignment, relaxation, and exchange experiments revealed the presence of both a disordered monomer and a more structured oligomer with multiple timescale exchange regimes in solution. Mutagenesis and SE-HPLC showed that D663A/T664K substitutions in SAM1 increased its oligomerization. In sum, this study is the first to characterize a disordered structure for a SAM domain, provides additional evidence and framework for the diversity of SAM domains, and identifies a region in SAM1 as a potential starting point to further characterize the structural mechanism of oligomerization of the domain.  相似文献   

14.
Sterile alpha motif (SAM) domains are common protein modules in eukaryotic cells. It has not been possible to assign functions to uncharacterized SAM domains because they have been found to participate in diverse functions ranging from protein-protein interactions to RNA binding. Here we computationally identify likely members of the subclass of SAM domains that form polymers. Sequences were virtually threaded onto known polymer structures and then evaluated for compatibility with the polymer. We find that known SAM polymers score better than the vast majority of known nonpolymers: 100% (7 of 7) of known polymers and only 8% of known nonpolymers (1 of 12) score above a defined threshold value. Of 2901 SAM family members, we find 694 that score above the threshold and are likely polymers, including SAM domains from the proteins Lethal Malignant Brain Tumor, Bicaudal-C, Liprin-beta, Adenylate Cyclase, and Atherin.  相似文献   

15.
16.
Riboswitches are structured mRNA elements that regulate gene expression upon binding specific cellular metabolites. It is thought that the highly conserved metabolite-binding domains of riboswitches undergo conformational change upon binding their cognate ligands. To investigate the generality of such a mechanism, we employed small-angle X-ray scattering (SAXS). We probed the nature of the global metabolite-induced response of the metabolite-binding domains of four different riboswitches that bind, respectively, thiamine pyrophosphate (TPP), flavin mononucleotide (FMN), lysine, and S-adenosyl methionine (SAM). We find that each RNA is unique in its global structural response to metabolite. Whereas some RNAs exhibit distinct free and bound conformations, others are globally insensitive to the presence of metabolite. Thus, a global conformational change of the metabolite-binding domain is not a requirement for riboswitch function. It is possible that the range of behaviors observed by SAXS, rather than being a biophysical idiosyncrasy, reflects adaptation of riboswitches to the regulatory requirements of their individual genomic context.  相似文献   

17.
RNA methyltransferases (MTases) are important players in the biogenesis and regulation of the ribosome, the cellular machine for protein synthesis. RsmC is a MTase that catalyzes the transfer of a methyl group from S-adenosyl-l-methionine (SAM) to G1207 of 16S rRNA. Mutations of G1207 have dominant lethal phenotypes in Escherichia coli, underscoring the significance of this modified nucleotide for ribosome function. Here we report the crystal structure of E. coli RsmC refined to 2.1 A resolution, which reveals two homologous domains tandemly duplicated within a single polypeptide. We characterized the function of the individual domains and identified key residues involved in binding of rRNA and SAM, and in catalysis. We also discovered that one of the domains is important for the folding of the other. Domain duplication and subfunctionalization by complementary degeneration of redundant functions (in particular substrate binding versus catalysis) has been reported for many enzymes, including those involved in RNA metabolism. Thus, RsmC can be regarded as a model system for functional streamlining of domains accompanied by the development of dependencies concerning folding and stability.  相似文献   

18.
19.
The sorting and assembly machinery (SAM) complex functions in the assembly of beta-barrel proteins into the mitochondrial outer membrane. It is related to the Omp85/YaeT machinery in bacterial outer membranes, but the eukaryotic SAM complex is distinguished by two peripheral subunits, Sam37 and Sam35, that sit on the cytosolic face of the complex. The function of these subunits in beta-barrel protein assembly is currently unclear. By screening a library of sam35 mutants, we show that 13 distinct alleles were each specifically suppressed by overexpression of SAM37. Two of these mutants, sam35-409 and sam35-424, show distinct phenotypes that enable us to distinguish the function of Sam35 from that of Sam37. Sam35 is required for the SAM complex to bind outer membrane substrate proteins: destabilization of Sam35 inhibits substrate binding by Sam50. Sam37 acts later than Sam35, apparently to assist release of substrates from the SAM complex. Very different environments surround bacteria and mitochondria, and we discuss the role of Sam35 and Sam37 in terms of the problems peculiar to mitochondrial protein substrates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号