首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have partially purified S-adenosylmethionine decarboxylase (EC 4.1.1.50, SAMDC) from carnation (Dianthus caryophyllus L.) petals and generated polyclonal antibodies against CSDC 16 protein (Leeet al., 1996) overexpressed inE. coli. The protein has been purified approximately 126.8 fold through the steps involving ammonium sulfate fractionation, DEAE-Sepharose column chromatography and Sephacryl S-300 gel filtration. Its molecular mass was 42 kDa in native form and we could also detect a band of 32 kDa molecular mass on SDS-PAGE in western blot analysis using the polyclonal antibodies. The Km value of this enzyme forS-adenosylmethionine was 26.3 μM. The optimum temperature and pH forS-adenosylmethionine decarboxylase activity were 35°C and pH 8.0, respectively. Putrescine and Mg2+ had no effects on the activation of the enzyme activity. Mg2+ did not have any significant effects on the enzyme activity. SAMDC activity was inhibited by putrescine, spermidine and spermine. Methylglyoxal bis-(guanylhydrazone) (MGBG), carbonyl reagents such as hydroxylamine and phenylhydrazine, and sulfhydryl reagent such as 5,5′dithio-bis (2-nitrobenzoic acid) (DTNB) were effective inhibitors of the enzyme. However, isonicotinic acid hydrazide known as an inhibitor of 5′-pyridoxal phosphate (PLP) dependent enzyme activity had no significant effect on the enzyme activity. These results and our previously reported results (Leeet al., 1997b) suggest thatS-adenosylmethionine decarboxylase is a heterodimer, αβ, and some carbonyl group and sulfhydryl group are involved in the catalytic activity.  相似文献   

2.
Sulfobromophthalein (BSP) electrogenic transport activity in a plasma membrane vesicle preparation from rat liver is shown to depend on free sulfhydryl groups. These are organized in two classes, one of which does not react with the sulfhydryl group reagent 5,5'-dithiobis(2-nitrobenzoate). The two classes appear to be involved in BSP transport independently. However, reactivity of one class can be shown to be affected by alkylation of the other. Hence, it is concluded that both classes are located on the same carrier system, which previous research has established to be the integral sinusoidal membrane protein bilitranslocase.  相似文献   

3.
J Baudier  R D Cole 《Biochemistry》1988,27(8):2728-2736
Zn2+ and Ca2+ affect the conformation of bovine brain S100b (beta beta) protein and the exposure of its Cys-84 beta. Zn2+ binding to high-affinity sites of native S100b protected the sulfhydryl groups against the thiol-specific reagent 5,5'-dithiobis(2-nitrobenzoate) and antagonized the Ca2+-stimulated reactivity of Cys-84 beta toward the reagent. Spectroscopic studies on the fluorescence properties of labeled S100b with the fluorescent probes bimane and acrylodan at Cys-84 beta confirmed the antagonistic effect of Ca2+ and Zn2+ with respect to the conformational properties of the protein. Measurements of fluorescence dynamics on bimane-labeled S100b indicated that the slow monomer-dimer equilibrium that characterizes the apoprotein at micromolar concentrations was shifted to the monomer form in the presence of Zn2+, a fact that could explain the previously reported Zn2+-dependent increase of S100b protein affinity for calcium. The difference in the effects of Ca2+ and Zn2+ on the reactivity of Cys-84 beta in S100b was confirmed when we observed that Ca2+ and Zn2+ have opposite actions on the formation of disulfide bridges between Cys-84 beta of the S100b beta-subunit and sulfhydryl groups on the microtubule-associated tau(2) protein. Ca2+ stimulated the covalent complex formation whereas Zn2+ inhibited it. We suggest that Zn2+ may have a modulatory function on Cys-84 beta reactivity in the S100b beta-subunit in vivo. Two types of divalent complexes between tau(2) and beta-subunit were formed in the presence of Ca2+, an equimolar complex tau(2)-beta 1 and a complex of one molecule of tau(2) with two beta-subunits, tau(2)-beta 2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A novel method has been developed for the attachment of exogenous protein to liposomal and other membranes. A new phospholipid-containing alkylating reagent, N-(Nα-idoacetyl, N?-dansyl lysyl)-phosphatidylethanolamine, was synthesized for conjugation to sulfhydryl groups of proteins. Model experiments were carried out with a Bence-Jones dimer which was reduced to generate one sulfhydryl group per monomer. After alkylation with the reagent the modified protein spontaneously attached to preformed liposomes and red cell ghosts. The attachment and accessibility of the protein were demonstrated by the association of the protein with the liposomal fraction in gel filtration and the agglutination of treated vesicles and red cell ghosts with antisera to human λ chain and to the dansyl group.  相似文献   

5.
The stoichiometry and the reactivity of the sulfhydryl groups of a human liver acid phosphatase have been studied. The smallest (Mr = 14,400) of the three molecular-weight forms of acid phosphatase from human liver, recently purified and characterized in our laboratory, was treated with various sulfhydryl group-specific reagents: p-hydroxymercuribenzoate, p-hydroxymercuriphenylsulfonate, fluorescein mercuriacetate, methyl methanethiosulfonate, p-nitrophenoxycarbonyl methyl disulfide, and thiosulfate. A total loss of enzymatic activity was obtained in each case. By spectrophotometric titration with 5,5′-dithiobis(2-nitrobenzoate) and p-hydroxymercuriphenylsulfonate it was shown that there are six free sulfhydryls per protein molecule, consistent with the amino acid analysis of this enzyme. The same number was deduced as a result of inactivation studies carried out with p-hydroxymercuribenzoate and p-hydroxymercuriphenylsulfonate. A total loss of activity was obtained at reagent to enzyme ratios of 6:1 in both cases. Similar results were obtained upon inactivation by p-nitrophenoxycarbonyl methyl disulfide, where the enzyme was found to possess only 10% residual activity at an inhibitor-to-enzyme ratio of 6:1. With fluorescein mercuriacetate as an inactivator, total loss of activity was found at a 2.5 times molar excess of this reagent over protein. Both the stoichiometry of inactivation and fluorescence titration experiments suggest that fluorescein mercuriacetate can function as a bifunctional sulfhydryl group reagent. The activity of a totally inactivated enzyme preparation obtained following reaction with excess of p-nitrophenoxycarbonyl methyl disulfide or with methyl methanethiolsulfonate could be almost completely restored upon treatment with dithiothreitol. These data are consistent with the interpretation that in each enzyme molecule, there are six free sulfhydryl groups of almost equal reactivity, at least one of which is essential for enzymatic activity.  相似文献   

6.
Calcium-activated phosphoenolpyruvate carboxykinase fromEscheria coli is not inactivated by a number of sulfhydryl-directed reagents [5,5′-dithiobis(2-nitrobenzoate), iodoacetate, N-ethylmaleimide, N-(1-pyrenyl)maleimide or N-(iodoacetyl)-N′-(5-sulfo-l-naphthylethylenediamine)], unlike phosphoenolpyruvate carboxykinase from other organisms. On the other hand, the enzyme is rapidly inactivated by the arginyl-directed reagents 2,3-butanedione and 1-pyrenylglyoxal. The substrates, ADP plus PEP in the presence of Mn2+, protect the enzyme against inactivation by the diones. Quantitation of pyrenylglyoxal incorporation indicates that complete inactivation correlates with the binding of one inactivator molecule per mole of enzyme. Chemical modification by pyridoxal 5′-phosphate also produces inactivation of the enzyme, and the labeled protein shows a difference spectrum with a peak at 325 nm, characteristic of a pyridoxyl derivative of lysine. The inactivation by this reagent is also prevented by the substrates. Binding stoichiometries of 1.25 and 0.30mol of reagent incorporated per mole of enzyme were found in the absence and presence of substrates, respectively. The results suggest the presence of functional arginyl and lysyl residues in or near the active site of the enzyme, and indicate lack of reactive functional sulfhydryl groups.  相似文献   

7.
A gel filtration method employing 14C-chloromercuribenzoic acid is described for the quantitative determination of sulfhydryl groups in microgram quantities of protein. The method has been applied to several native proteins, hemoglobin, monoamine oxidase, and yeast cytochrome c. In all cases values in close agreement with known literature values were obtained. Horse heart cytochrome c and lysozyme, which have no sulfhydryl groups, did not bind the mercurial reagent. Modifications of the method are described for determining the sulfhydryl content of denatured proteins in the presence of sodium lauryl sulfate. The precision of the method was found to be compatible with known methods for determining the sulfhydryl composition of proteins.  相似文献   

8.
p-Nitrophenoxycarbonyl methyl disulfide has been synthesized for use as a quantitating agent for methanethiolation of protein sulfhydryl groups. This reagent reacts specifically and quantitatively with cysteine residues of proteins to yield an unsymmetrical disulfide containing a CH3S group and concomitantly releases the chromophore, p-nitrophenol. Titration of the sulfhydryl groups of glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) with this reagent has been studied. Incorporation of CH3S as measured by the release of p-nitrophenol paralleled the loss of sulfhydryl group dependent activity of the enzyme. The enzyme was found inactive on modification of four of the eight sulfhydryl groups present in the enzyme. Stability of p-nitrophenoxycarbonyl methyl disulfide has also been studied in different buffer systems. The rate of decomposition of the p-nitrophenyl ester due to hydrolysis was found negligible below a pH of 8.0 compared to its rate of reaction with free sulfhydryl groups.  相似文献   

9.
Rabbit liver arylsulfatase A (aryl-sulfate sulfhydrolase, EC 3.1.6.1) monomers of 130 kDa contain two free sulfhydryl groups as determined by spectrophotometric titration using 5,5'-dithiobis(2-nitrobenzoate) and by labeling with the fluorescent probe 5-(iodoacetamidoethyl)aminonaphthalene-1-sulfonic acid. Fluorescence quenching data indicate that the reactive sulfhydryl is present in proximity to one or more tryptophan residues. Chemical modification of the sulfhydryl groups does not alter the distinctive pH-dependent aggregation property of the arylsulfatase A. The free sulfhydryls of the enzyme react with numerous sulfhydryl reagents. Based on the reactions of iodoacetic acid, methyl methanethiosulfonate, 5,5'-dithiobis(2-nitrobenzoate) and 5-(iodoacetamidoethyl)aminonaphthalene-1-sulfonic acid with the sulfhydryl groups of arylsulfatase A, it is concluded that free sulfhydryls are not essential for the enzyme activity. In contrast, the observed inactivation of the enzyme by p-hydroxymercuribenzoate or p-hydroxymercuriphenylsulfonate is probably due to a modification of a histidine residue, consistent with previous reports that histidine is near the active site of arylsulfatase A. p-Hydroxymercuribenzoate and p-hydroxymercuriphenylsulfonate are able to react both with cysteine and with histidine residues of the protein molecule.  相似文献   

10.
Aminoacylase I from porcine kidney (EC 3.5.1.14) contains seven cysteine residues per subunit. Three sulfhydryl groups are accessible to modification by 4-hydroxymercuribenzoate (p-MB). The kinetics of the reaction suggest that only one of these groups affects acylase activity when modified by p-MB. Its reaction rate increases 2-3-fold when the essential metal ion of aminoacylase is removed. Modification of metal-free apoenzyme by N-ethylmaleimide (NEM) abolishes its activity without impairing Zn2+ binding. This indicates that the sulfhydryl group reacting with NEM is not directly coordinated to the metal. DTNB (5,5'-Dithio-bis(2-nitrobenzoate), Ellman's reagent) also modifies three sulfhydryl groups per subunit. In this case, the reactivities of native aminoacylase and apoenzyme are not significantly different. N-Hydroxy-2-aminobutyrate, a strong aminoacylase inhibitor, substantially increases the reactivity of the slowest reacting sulfhydryl in both native enzyme and metal-free aminoacylase. It appears that binding of the inhibitor or removal of the metal ion induces conformational changes of the amino-acylase active site that render a buried sulfhydryl group more accessible to modification.  相似文献   

11.
12.
Changes in the chemical reactivity of the sulfhydryl groups of (Na+ + K+)-dependent ATPase can be indicative of conformational changes induced by activating ions. Cyanylation of these groups by 5 mM 2-nitro-5-thiobenzoic acid caused a partial inhibition of enzymatic activity. Both this loss and the incorporation of radioactive cyanide from the 14C-labeled reagent were reduced by inclusion of 50 mM ATP and 150 mM Na+ in the incubation. When 10 mM Mg++ was added in addition, the inactivation was not different from that produced by cyanylation reagent alone, but the radioactive labeling of protein increased significantly. The data indicate that the sulfhydryl groups of this enzyme exist in two populations, one of which must be free if the enzyme is to function. The other, not essential for enzymatic activity, becomes accessible only when the Na+ and Mg++-dependent phosphorylation of the enzyme alters its conformation. Inactivation of the enzyme by freezing and thawing increases the incorporation of radioactivity but destroys the responsiveness of labeling to cations and ATP.  相似文献   

13.
The equilibrium constant of the reaction of 5,5'-dithiobis(2-nitrobenzoate) with the CysF9[93]beta sulfhydryl group of hemoglobin decreases by 2 to 3 orders of magnitude between pH 5.6 and 9. The reaction is coupled to the ionizations of two groups on the protein. At 25 degrees C one group has a pK(a) of 5.31+/-0.2 when hemoglobin is in its (tertiary) r conformation, typified by the thiolate anion form of CysF9[93]beta; this changes to 7.73+/-0.4 in the (tertiary) t conformation, typified by the mixed disulfide form of the sulfhydryl. The second group ionizes with a pK(a) of 7.11+/-0.4 in the r conformation; this changes to 8.38+/-0.2 in the t conformation. K(rt), the equilibrium constant for the r<-->t isomerization process, is 0.22+/-0.06. The standard enthalpy and entropy changes for the isomerization are DeltaH(o)(rt)=24.2 kJ mol(-1) and DeltaS(o)(rt)=68.8 JK(-1)mol(-1), respectively.  相似文献   

14.
The six sulfhydryl groups in each subunit of the alanyl-tRNA synthetase of Escherichia coli react with sulfhydryl reagents with at least four different rates. One reacts very rapidly with 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB), and a second reacts somewhat less rapidly with this reagent. These two groups are required for transfer activity, which is lost in proportion to the extent of derivatization. Two other groups react more slowly, with a consequent loss of exchange activity. The remaining two sulfhydryl groups do not react with DTNB until the protein is denatured. The inactivations are reversed by dithiothreitol. Two sulfhydryl groups react with N-ethylmaleimide (NEM) and with a spin-label derivative of NEM. These reactions resemble the modification of two sulfhydryl groups with DTNB, in that they also inactivate the transfer reaction but not the ATP:PPi exchange. The two spin labels are incorporated at similar rates but are in very different environments, one highly exposed and one highly immobilized. These groups do not interact with Mn2+, which is bound to the enzyme in the absence of ATP.  相似文献   

15.
gamma-Glutamylcysteine synthetase (isolated from rat kidney) has one sulfhydryl group that reacts with 5,5'-dithiobis-(2-nitrobenzoate). This single exposed sulfhydryl group is not required for enzyme activity. The enzyme is potently inactivated by cystamine, which apparently interacts with a sulfhydryl group at the active site to form a mixed disulfide. 5,5'-Dithiobis-(2-nitrobenzoate) does not interact with the sulfhydryl group that reacts with cystamine. After the enzyme was 90% inactivated by reaction with cystamine, 3.4 mol of 5,5'-dithiobis-(2-nitrobenzoate) reacted per mol of enzyme, indicating that binding of cystamine exposes sulfhydryl groups which are apparently buried or unreactive in the native enzyme. L-Glutamate (but not D-glutamate or L-alpha-aminobutyrate) protected against inactivation by cystamine. In contrast, ATP enhanced the rate of inactivation by cystamine, and the apparent Km value for this effect is similar to that for ATP in the catalytic reaction. Studies on the structural features of cystamine that facilitate its interaction with the enzyme showed that selenocystamine, monodansylcystamine, and N-[2[2-aminoethyl)-dithio)ethyl]-4-azido-2-nitrobenzeneamine are also good inhibitors. Whereas S-(S-methyl)cysteamine-Sepharose does not interact with the enzyme (Seelig, G. F., and Meister, A. (1982) J. Biol. Chem. 257, 5092-5096), S-(S-methyl)cysteamine is a potent inhibitor; 1 mol of this compound completely inactivated 1 mol of enzyme. In the course of this work, a useful modification of the method for isolating this enzyme from kidney was developed.  相似文献   

16.
A biotin-containing, thiol-specific reagent, 3-(N-maleimido-propionyl) biocytin (MPB), was synthesized and used to biotinylate various proteins via native or artificially induced sulfhydryl groups. In combination with appropriate avidin- or streptavidin-conjugated markers (i.e., fluorescent, enzyme-conjugated, electron-dense, etc.), MPB essentially constitutes a universal, multipurpose, thiol-specific probe. The reagent could be used to detect protein SH groups on dot blots with sensitivities in the femtomole range. The labeling was very specific for sulfhydryl groups or reduced S-S bonds; proteins lacking free SH groups were unlabeled by this method. Due to the long spacer between the biotinyl group and the reactive maleimide, improved adsorption of biotinylated proteins to avidin columns was achieved. An SH-containing enzyme (beta-galactosidase) was biotinylated with MPB, and the resultant biotinylated enzyme could be used as an efficient histochemical probe. The use of this reagent is recommended to biotinylate proteins which contain nonessential SH groups or which can be easily thiolylated prior to reaction with MPB.  相似文献   

17.
A study of the sulfhydryl groups of rat brain hexokinase   总被引:1,自引:0,他引:1  
Rat brain hexokinase (ATP: d-hexose-6-phosphotransferase, EC 2.7.1.1) is rapidly inactivated by reaction with 5,5′-dithiobis-(2-nitrobenzoate). The inactivation follows monophasic first-order kinetics in either the absence of ligands (k = 0.641 min?1 at 25 °C) or in the presence of saturating levels of ATP (free or complexed with Mg2+) or P1; the inactivation rate is slightly increased (k ? 0.7 min ?1) in the presence of ATP or P1. In contrast, glucose and glucose-6-P markedly decrease the inactivation rate; inactivation in the presence of these ligands is biphasic, with two first-order rates (k ? 0.5 min?1 and 0.01 min?1) being distinguishable.The enzyme contains 14 sulfhydryl groups which react with 5,5′-dithiobis-(2-nitrobenzoate); reaction of these groups in the native enzyme is complete after 2 hr at 25 °C, or in approx 5 min with the urea or guanidine-denatured enzyme. In the native enzyme, three classes of sulfhydryl groups are distinguishable and are designated as F-, I-, or S-type based on their fast (k ? 0.7 min?1), intermediate (k ? 0.5-0.7 min?1), or slow (k ? 0.02 min?1 rates of reaction with 5,5′-dithiobis-(2-nitrobenzoate). The correlation of inactivation rates with the rates for reaction of the I-type sulfhydryls indicates that the I-type sulfhydryls include residues necessary for catalytic activity. The F-type residues are clearly not required for activity.The effects of ATP, P1, glucose, and glucose-6-P on the reactivity of the sulfhydryls have been determined. As in the absence of ligands, S-, I-, and F-type sulfhydryls could be distinguished. In the presence of saturating concentrations of these ligands, the F, I, and S classes of sulfhydryls contained respectively: with ATP, 1, 4, and 7 residues; with P1, 1, 3, and 7 residues; with glucose, 1, 2, and 5 residues; with glucose-6-P, 1, 2, and 1 residues. Comparison with rate constants for inactivation in the presence of these ligands again indicated that I-type sulfhydryls were particularly important in maintenance of enzyme activity. The present results indicate considerable similarity between the reactivity of the sulfhydryl residues in rat brain hexokinase and the sulfhydryls of the bovine brain enzyme [V. D. Redkar and U. W. Kenkare (1972), J. Biol. Chem., 247, 7576–7584].  相似文献   

18.
On site heterogeneity in sturgeon muscle GPDH: a kinetic approach   总被引:1,自引:0,他引:1  
The kinetics and stoichiometry of the reaction of sturgeon muscle glyceraldchyde-3-PO4-dehydrogenase (GPDH) with the disulfide interchange reagent bis(2,2' dithio-bis(5-nitrobenzoate) (DTNB) has been studied in detail. The native enzyme, a tetramer of covalently identical subunits, reacts relatively rapidly with precisely four equivalents of reagent, although there are three cysteine residues per subunit (12 per tetratner). Reaction of these four cystcines leads to total catalytic inactivation; the extent of inactivation is proportional to the fractional reaction. The rate of reaction is dependent on the extent of bound NAD: reactivity being very much greater at unliganded sites. The reaction with apo-enzyme is fastest, bimolecular and monophasic. Over a wide range of NAD concentration, however, the reaction of enzyme with a large molar excess of reagent is precisely biphasic, and each individual kinetic experiment can be analytically described by two pseudo first-order (NAD concentration-dependent) rate constants and two unequal NAD concentration-insensitive amplitudes. The biphasicity in rate is quantitatively explainable on the basis of a C2 symmetry for the tetrameric subunits with a tighter binding of NAD at two of the four sites, if high reactivity is exclusively dependent on the absence of bound NAD. The inequality in the two amplitudes, however, requires either a more complex or a more dynamic model. Arguments are presented for the appropriateness of a C2 symmetry model in which intramolecular transconformational isomerization of tight and loose NAD binding sites is possible. The equilibrium constant for the isomerization is estimable from the macroscopic specific rates and amplitudes. This “flip-over” C2 symmetry model is apropos to all situations of negative cooperativity in ligand binding to tetramers, as is discussed.  相似文献   

19.
A reagent has been sought for the selective derivatization of protein sulfhydryl groups that will allow the spectrophotometric determination of the cysteine and cystine content of intact proteins. 2-Vinylquinoline appears to be that reagent. Protein sulfhydryl groups were reacted with 2-vinylquinoline to yield the protein-linked S-2-(2-quinolylethyl)-l-cysteine (Qe-cysteine). After urea and other excess reagents were removed, the modified proteins were examined spectrophotometrically. The extinction coefficient (10,000) and absorption maximum (318 mμ) of the protein-linked vinylquinoline derivatives were identical to those of the model Qe-cysteine. Optimum conditions for the reaction require an equimolar concentration of 2-vinylquinoline to all sulfhydryls and a 4 hr reaction period. The total cysteine and cysteine contents of the proteins, when determined under these conditions, were in excellent agreement with standard literature values.  相似文献   

20.
2-Bromo-3-(5-imidazolyl)propionic acid, a zinc-directed thiol reagent, inactivates the enzyme 5-aminolevulinic acid dehydratase from bovine liver (5-aminolevulinate hydro-lyase (adding 5-aminolevulinate and cyclizing, EC 4.2.1.24). The substrate, 5-aminolevulinic acid, completely protects against inactivation. The reagent inhibits the zinc-containing enzyme to a greater extent than the zinc-deprived enzyme; and it competes with the zinc chelator 1,10-phenanthroline. The reagent alkylates essential sulfhydryl groups of the enzyme, since the extent of the inactivation depends on the reduction of the enzyme protein by thiol compounds. It is concluded that the zinc site, the substrate site and the essential sulfhydryl groups are in close proximity in the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号