首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Of 100 strains of iron-oxidizing bacteria isolated, Thiobacillus ferrooxidans SUG 2-2 was the most resistant to mercury toxicity and could grow in an Fe2+ medium (pH 2.5) supplemented with 6 μM Hg2+. In contrast, T. ferrooxidans AP19-3, a mercury-sensitive T. ferrooxidans strain, could not grow with 0.7 μM Hg2+. When incubated for 3 h in a salt solution (pH 2.5) with 0.7 μM Hg2+, resting cells of resistant and sensitive strains volatilized approximately 20 and 1.7%, respectively, of the total mercury added. The amount of mercury volatilized by resistant cells, but not by sensitive cells, increased to 62% when Fe2+ was added. The optimum pH and temperature for mercury volatilization activity were 2.3 and 30°C, respectively. Sodium cyanide, sodium molybdate, sodium tungstate, and silver nitrate strongly inhibited the Fe2+-dependent mercury volatilization activity of T. ferrooxidans. When incubated in a salt solution (pH 3.8) with 0.7 μM Hg2+ and 1 mM Fe2+, plasma membranes prepared from resistant cells volatilized 48% of the total mercury added after 5 days of incubation. However, the membrane did not have mercury reductase activity with NADPH as an electron donor. Fe2+-dependent mercury volatilization activity was not observed with plasma membranes pretreated with 2 mM sodium cyanide. Rusticyanin from resistant cells activated iron oxidation activity of the plasma membrane and activated the Fe2+-dependent mercury volatilization activity of the plasma membrane.  相似文献   

2.
Available cultures of Thiobacillus ferrooxidans were found to be contaminated with bacteria very similar to Thiobacillus acidophilus. The experiments described were performed with a homogeneous culture of Thiobacillus ferrooxidans.Pyrite (FeS2) was oxidized by Thiobacillus ferrooxidans grown on iron (Fe2+), elemental sulphur (So) or FeS2.Evidence for the direct utilization of the sulphur moiety of pyrite by Thiobacillus ferrooxidans was derived from the following observations: a. Known inhibitors of Fe2+ and So oxidation, NaN3 and NEM, respectively, partially abolished FeS2 oxidation. b. A b-type cytochrome was detectable in FeS2-and So-grown cells but not in Fe2+-grown cells. c. FeS2 and So reduced b-type cytochromes in whole cells grown on So. d. CO2 fixation at pH 4.0 per mole of oxygen consumed was the highest with So, lowest with Fe2+ and medium with FeS2 as substrate. e. Bacterial Fe2+ oxidation was found to be negligible at pH 5.0 whereas both FeS2 and So oxidation was still appreciable above this pH. f. Separation of pyrite and bacteria by means of a dialysis bag caused a pronounced drop of the oxidation rate which was similar to the reduction of pyrite oxidation by NEM; indirect oxidation of the sulphur moiety by Fe3+ was not affected by separation of pyrite and bacteria.Bacterial oxidation and utilization of the sulphur moiety of pyrite were relatively more important with increasing pH.  相似文献   

3.
An enzyme-linked immunofiltration assay (ELIFA) has been developed in order to estimate directly and specifically Thiobacillus ferrooxidans attachment on sulfide minerals. This method derives from the enzyme-linked immunosorbent assay but is performed on filtration membranes which allow the retention of mineral particles for a subsequent immunoenzymatic reaction in microtiter plates. The polyclonal antiserum used in this study was raised against T. ferrooxidans DSM 583 and recognized cell surface antigens present on bacteria belonging to the genus Thiobacillus. This antiserum and the ELIFA allowed the direct quantification of attached bacteria with high sensitivity (104 bacteria were detected per well of the microtiter plate). The mean value of bacterial attachment has been estimated to be about 105 bacteria mg−1 of pyrite at a particle size of 56 to 65 μm. The geometric coverage ratio of pyrite by T. ferrooxidans ranged from 0.25 to 2.25%. This suggests an attachment of T. ferrooxidans on the pyrite surface to well-defined limited sites with specific electrochemical or surface properties. ELIFA was shown to be compatible with the measurement of variable levels of adhesion. Therefore, this method may be used to establish adhesion isotherms of T. ferrooxidans on various sulfide minerals exhibiting different physicochemical properties in order to understand the mechanisms of bacterial interaction with mineral surfaces.  相似文献   

4.
Mn2+ exerted various effects on the growth of Leptothrix discophora strain SS-1 in batch cultures depending on the concentration added to the medium. Concentrations of 0.55 to 5.5 μM Mn2+, comparable to those in the environment from which strain SS-1 was isolated, decreased cell yield and prolonged stationary-phase survival, but did not affect growth rate. Elevated concentrations of 55 to 910 μM Mn2+ also decreased cell yield and prolonged survival, but growth rate was decreased as well. The addition of 1,820 μM Mn2+ caused a decline in cell numbers followed by an exponential rise after 80 h of incubation, indicating the development of a population of cells resistant to Mn2+ toxicity. When 360 μM Mn2+ or less was added to growth flasks, Mn2+ was oxidized to manganese oxide (MnOx, where x is ~2), which appeared as brown particles in the medium. Quantification of Mn oxidation during growth of cultures to which 55 μM Mn2+ was added showed that nearly all of the Mn2+ was oxidized by the beginning of the stationary phase of growth (15 to 25 h). This result suggested that the decrease in cell yield observed at low and moderate concentrations of Mn2+ was related to the formation of MnOx, which may have bound cationic nutrients essential to the growth of SS-1. The addition of excess Fe3+ to cultures containing 55 μM Mn2+ increased cell yield to levels near those found in cultures with no added Mn2+, indicating that iron deprivation by MnOx was at least partly responsible for the decreased cell yield.  相似文献   

5.
Eight strains of Thiobacillus ferrooxidans (laboratory strains Tf-1 [= ATCC 13661] and Tf-2 [= ATCC 19859] and mine isolates SM-1, SM-2, SM-3, SM-4, SM-5, and SM-8) and three strains of Thiobacillus thiooxidans (laboratory strain Tt [= ATCC 8085] and mine isolates SM-6 and SM-7) were grown on ferrous iron (Fe2+), elemental sulfur (S0), or sulfide ore (Fe, Cu, and Zn). The cells were studied for their aerobic Fe2+ - and S0-oxidizing activities (O2 consumption) and anaerobic S0-oxidizing activity with ferric iron (Fe3+) (Fe2+ formation). Fe2+-grown T. ferrooxidans cells oxidized S0 aerobically at a rate of 2 to 4% of the Fe2+ oxidation rate. The rate of anaerobic S0 oxidation with Fe3+ was equal to the aerobic oxidation rate in SM-1, SM-3, SM-4, and SM-5, but was only one-half or less that in Tf-1, Tf-2, SM-2, and SM-8. Transition from growth on Fe2+ to that on S0 produced cells with relatively undiminished Fe2+ oxidation activities and increased S0 oxidation (both aerobic and anaerobic) activities in Tf-2, SM-4, and SM-5, whereas it produced cells with dramatically reduced Fe2+ oxidation and anaerobic S0 oxidation activities in Tf-1, SM-1, SM-2, SM-3, and SM-8. Growth on ore 1 of metal-leaching Fe2+-grown strains and on ore 2 of all Fe2+-grown strains resulted in very high yields of cells with high Fe2+ and S0 oxidation (both aerobic and anaerobic) activities with similar ratios of various activities. Sulfur-grown Tf-2, SM-1, SM-4, SM-6, SM-7, and SM-8 cultures leached metals from ore 3, and Tf-2 and SM-4 cells recovered showed activity ratios similar to those of other ore-grown cells. It is concluded that all the T. ferrooxidans strains studied have the ability to produce cells with Fe2+ and S0 oxidation and Fe3+ reduction activities, but their levels are influenced by growth substrates and strain differences.  相似文献   

6.
We investigated the modulation of cGMP-gated ion channels in single cone photoreceptors isolated from a fish retina. A new method allowed us to record currents from an intact outer segment while controlling its cytoplasmic composition by superfusion of the electropermeabilized inner segment. The sensitivity of the channels to agonists in the intact outer segment differs from that measured in membrane patches detached from the same cell. This sensitivity, measured as the ligand concentration necessary to activate half-maximal currents, K 1/2, also increases as Ca2+ concentration decreases. In electropermeabilized cones, K 1/2 for cGMP is 335.5 ± 64.4 μM in the presence of 20 μM Ca2+, and 84.3 ± 12.6 μM in its absence. For 8Br-cGMP, K 1/2 is 72.7 ± 11.3 μM in the presence of 20 μM Ca2+ and 15.3 ± 4.5 μM in its absence. The Ca2+-dependent change in agonist sensitivity is larger in extent than that measured in rods. In electropermeabilized tiger salamander rods, K 1/2 for 8Br-cGMP is 17.9 ± 3.8 μM in the presence of 20 μM Ca2+ and 7.2 ± 1.2 μM in its absence. The Ca2+-dependent modulation is reversible in intact cone outer segments, but is progressively lost in the absence of divalent cations, suggesting that it is mediated by a diffusible factor. Comparison of data in intact cells and detached membrane fragments from cones indicates that this factor is not calmodulin. At 40 μM 8Br-cGMP, the Ca2+-dependent change in sensitivity in cones is half-maximal at K Ca = 286 ± 66 nM Ca2+. In rods, by contrast, K Ca is ∼50 nM Ca2+. The difference in magnitude and Ca2+ dependence of channel modulation between photoreceptor types suggests that this modulation may play a more significant role in the regulation of photocurrent gain in cones than in rods.  相似文献   

7.
Addition of nickel stimulated growth and nitrogenase activity of Pseudomonas saccharophila under nitrogen-limited chemolithotrophic conditions, apparently because of a significant increase in expression of uptake hydrogenase activity. Inhibition of hydrogenase expression by 50 μM EDTA was relieved by nickel over a wide concentration range (1 to 200 μM). Co2+, Zn2+, Mn2+, and Cu2+ stimulated expression of hydrogenase activity, but to a much lesser degree than nickel, and Fe2+, Mg2+, SeO42−, and SeO32− did not increase expression. Nickel in individual combination with Mg2+, Fe2+, SeO32−, and SeO42− resulted in activities that were essentially the same as that with nickel alone. Hydrogenase synthesis required the presence of nickel, and repression by O2 was alleviated by increasing the concentration of added nickel. Cells placed under hydrogenase derepression conditions showed progressive incorporation of radioactive nickel to a much greater extent than did cells which were not derepressed.  相似文献   

8.
A study of the kinetics of Mn2+ oxidation catalyzed by cell extracts of two bacterial isolates (E1, Pseudomonas III [new isolate] and E4, Citrobacter freundii) isolated from the core of manganese concretions from Greek soils is presented. The reaction velocity of Mn2+ oxidation was determined from the rate of consumption of Mn2+. The oxidation of Mn2+ was followed by measuring changes in Mn2+ concentration by activation analysis and by atomic absorption spectrophotometry. The reaction velocity was directly proportional to cell extract concentration when the reaction time was 1 h. At longer reaction times, the relationship deviated from linearity because substrate concentration became limiting. The rate of Mn2+ oxidation increased with the Mn2+ concentration. Analysis of the results by application of the integrated Michaelis equation for determining Michaelis constants and maximal velocities either in the presence (Km = 3.33 μmol/ml and Vmax = 1.25 μmol/ml·h) or in the absence of maleate buffer (Km = 2.52 μmol/ml and Vmax = 2.04 μmol/ml·h) indicated a strong affinity between the oxidizing system and manganese. All results in this study are consistent with an enzymatic manganese-oxidizing system and give an indication of the mechanism of biological Mn2+ oxidation in soil which differs from that in the marine environment.  相似文献   

9.
The properties of a ferric ion-reducing system which catalyzes the reduction of ferric ion with elemental sulfur was investigated with a pure strain of Thiobacillus ferrooxidans. In anaerobic conditions, washed intact cells of the strain reduced 6 mol of Fe3+ with 1 mol of elemental sulfur to give 6 mol of Fe2+, 1 mol of sulfate, and a small amount of sulfite. In aerobic conditions, the 6 mol of Fe2+ produced was immediately reoxidized by the iron oxidase of the cell, with a consumption of 1.5 mol of oxygen. As a result, Fe2+ production was never observed under aerobic conditions. However, in the presence of 5 mM cyanide, which completely inhibits the iron oxidase of the cell, an amount of Fe2+ production comparable to that formed under anaerobic conditions was observed under aerobic conditions. The ferric ion-reducing system had a pH optimum between 2.0 and 3.8, and the activity was completely destroyed by 10 min of incubation at 60°C. A short treatment of the strain with 0.5% phenol completely destroyed the ferric ion-reducing system of the cell. However, this treatment did not affect the iron oxidase of the cell. Since a concomitant complete loss of the activity of sulfur oxidation by molecular oxygen was observed in 0.5% phenol-treated cells, it was concluded that the ferric ion-reducing system plays an important role in the sulfur oxidation activity of this strain, and a new sulfur-oxidizing route is proposed for T. ferrooxidans.  相似文献   

10.
Fast Kinetics of Fe2+ Oxidation in Packed-Bed Reactors   总被引:6,自引:0,他引:6       下载免费PDF全文
Thiobacillus ferrooxidans was used in fixed-film bioreactors to oxidize ferrous sulfate to ferric sulfate. Glass beads, ion-exchange resin, and activated-carbon particles were tested as support matrix materials. Activated carbon was tested in both a packed-bed bioreactor and a fluidized-bed bioreactor; the other matrix materials were used in packed-bed reactors. Activated carbon displayed the most suitable characteristics for use as a support matrix of T. ferrooxidans fixed-film formation. The reactors were operated within a pH range of 1.35 to 1.5, which effectively reduced the amount of ferric iron precipitation and eliminated diffusion control of mass transfer due to precipitation. The activated-carbon packed-bed reactor displayed the most favorable biomass holdup and kinetic performance related to ferrous sulfate oxidation. The fastest kinetic performance achieved with the activated-carbon packed-bed bioreactor was 78 g of Fe2+ oxidized per liter per h (1,400 mmol of Fe2+ oxidized per liter per h) at a true dilution rate of 40/h, which represents a hydraulic retention time of 1.5 min.  相似文献   

11.
Thiobacillus ferrooxidans is found in many Alaskan and Canadian drainages contaminated by metals dissolved from placer and lode gold mines. We have examined the iron-limited growth and iron oxidation kinetics of a T. ferrooxidans isolate, AK1, by using batch and continuous cultures. Strain AK1 is an arsenic-tolerant isolate obtained from placer gold mine drainage containing large amounts of dissolved arsenic. The steady-state growth kinetics are described with equations modified for threshold ferrous iron concentrations. The maximal specific growth rate (μmax) for isolate AK1 at 22.5°C was 0.070 h−1, and the ferrous iron concentration at which the half-maximal growth rate occurred (Kμ) was 0.78 mM. Cell yields varied inversely with growth rate. The iron oxidation kinetics of this organism were dependent on biomass. We found no evidence of ferric inhibition of ferrous iron oxidation for ferrous iron concentrations between 9.0 and 23.3 mM. A supplement to the ferrous medium of 2.67 mM sodium arsenite did not result in an increased steady-state biomass, nor did it appear to affect the steady-state growth kinetics observed in continuous cultures.  相似文献   

12.
In anaerobic or aerobic conditions in the presence of 5 mM sodium cyanide, an inhibitor of iron oxidase, cupric ion (Cu2+) was reduced enzymatically with elemental sulfur (S0) by washed intact cells of Thiobacillus ferrooxidans AP19-3 to give cuprous ion (Cu+). The rate of Cu2+ reduction was proportional to the concentrations of S0 and Cu2+ added to the reaction mixture. The pH optimum for the cupric ion-reducing system was 5.0, and the activity was completely destroyed by 10-min incubation of cells at 70°C. The activity of Cu2+ reduction with S0 by this strain was strongly inhibited by inhibitors of hydrogen sulfide: ferric ion oxidoreductase (SFORase), such as α,α′-dipyridyl, 4,5-dihydroxy-m-benzene disulfonic acid disodium salts, and diazine dicarboxylic acid bis-(N, N-dimethylamide). A SFORase purified from this strain, which catalyzes oxidation of both hydrogen sulfide and S0 with Fe3+ or Mo6+ as an electron acceptor in the presence of glutathione, catalyzed a reduction of Cu2+ by S0, and the Michaelis constant of SFORase for Cu2+ was 7.2 mM, indicating that a SFORase catalyzes the reduction of not only Fe3+ and Mo6+ but also Cu2+.  相似文献   

13.
The oxidation of pyrite and other sulfides is responsible for the generation of acid mine drainage and acid rock drainage, which leads to further contamination of soil and water. In these processes, microbial oxidation usually prevails over chemical oxidation. To determine the mechanism of microbial oxidation of pyrite, the interaction of Acidithiobacillus ferrooxidans with pyrite was comprehensively studied, and the sulfur transformation in the interaction was disclosed using X-ray photoelectron spectroscopy (XPS) depth profiling. Abundant bacterial cells attach to pyrite surface and form biofilms, which greatly enhances surface corrosion and results in two types of etching pits: bacteria-driven rod-shaped and chemically driven hexagonal etching pits. The details of XPS depth profiles on a reacted pyrite surface reveal that the surface sulfur was first oxidized into elemental sulfur. Thereafter, elemental sulfur was further oxidized to intermediate species S2O32?, SO32?, and ultimately to SO42?. The oxidation sequence of sulfur is S22?/S2?→Sn2?, S0→SO32?, and S2O32?→SO42?. Meanwhile, the remnant ferrous iron in the surface layer was released into solution and subsequently oxidized into Fe3+ by A. ferrooxidans and dissolved oxygen, which in turn enhanced the oxidation of sulfur. Fe3+, sulfate, and other ions (e.g., K+, Na+, NH4+) in the solution precipitated as jarosite, hydroniumjarosite, and ammoniojarosite. On the basis of results, a three-staged model is proposed to interpret the kinetics of microbial oxidation of pyrite.  相似文献   

14.
Hemoglobin-mediated transport of dioxygen (O2) critically depends on the stability of the reduced (Fe2+) form of the heme cofactors. Some protein mutations stabilize the oxidized (Fe3+) state (methemoglobin, Hb M), causing methemoglobinemia, and can be lethal above 30%. The majority of the analyses of factors influencing Hb oxidation are retrospective and give insights only for inner-sphere mutations of heme (His58, His87). Herein, we report the first all-atom molecular dynamics simulations on both redox states and calculations of the Marcus electron transfer (ET) parameters for the α chain Hb oxidation and reduction rates for Hb M. The Hb wild-type (WT) and most of the studied α chain variants maintain globin structure except the Hb M Iwate (H87Y). The mutants forming Hb M tend to have lower redox potentials and thus stabilize the oxidized (Fe3+) state (in particular, the Hb Miyagi variant with K61E mutation). Solvent reorganization (λsolv 73–96%) makes major contributions to reorganization free energy, whereas protein reorganization (λprot) accounts for 27–30% except for the Miyagi and J-Buda variants (λprot ∼4%). Analysis of heme-solvent H-bonding interactions among variants provide insights into the role of Lys61 residue in stabilizing the Fe2+ state. Semiclassical Marcus ET theory-based calculations predict experimental kET for the Cyt b5-Hb complex and provide insights into relative reduction rates for Hb M in Hb variants. Thus, our methodology provides a rationale for the effect of mutations on the structure, stability, and Hb oxidation reduction rates and has potential for identification of mutations that result in methemoglobinemia.  相似文献   

15.
Microbial nitrate-dependent, Fe(II) oxidation (NDFO) is a ubiquitous biogeochemical process in anoxic sediments. Since most microorganisms that can oxidize Fe(II) with nitrate require an additional organic substrate for growth or sustained Fe(II) oxidation, the energetic benefits of NDFO are unclear. The process may also be self-limiting in batch cultures due to formation of Fe-oxide cell encrustations. We hypothesized that NDFO provides energetic benefits via a mixotrophic physiology in environments where cells encounter very low substrate concentrations, thereby minimizing cell encrustations. Acidovorax sp. strain 2AN was incubated in anoxic batch reactors in a defined medium containing 5 to 6 mM NO3, 8 to 9 mM Fe2+, and 1.5 mM acetate. Almost 90% of the Fe(II) was oxidized within 7 days with concomitant reduction of nitrate and complete consumption of acetate. Batch-grown cells became heavily encrusted with Fe(III) oxyhydroxides, lost motility, and formed aggregates. Encrusted cells could neither oxidize more Fe(II) nor utilize further acetate additions. In similar experiments with chelated iron (Fe(II)-EDTA), encrusted cells were not produced, and further additions of acetate and Fe(II)-EDTA could be oxidized. Experiments using a novel, continuous-flow culture system with low concentrations of substrate, e.g., 100 μM NO3, 20 μM acetate, and 50 to 250 μM Fe2+, showed that the growth yield of Acidovorax sp. strain 2AN was always greater in the presence of Fe(II) than in its absence, and electron microscopy showed that encrustation was minimized. Our results provide evidence that, under environmentally relevant concentrations of substrates, NDFO can enhance growth without the formation of growth-limiting cell encrustations.  相似文献   

16.
Denitrification in San Francisco Bay Intertidal Sediments   总被引:23,自引:17,他引:6       下载免费PDF全文
The acetylene block technique was employed to study denitrification in intertidal estuarine sediments. Addition of nitrate to sediment slurries stimulated denitrification. During the dry season, sediment-slurry denitrification rates displayed Michaelis-Menten kinetics, and ambient NO3 + NO2 concentrations (≤26 μM) were below the apparent Km (50 μM) for nitrate. During the rainy season, when ambient NO3 + NO2 concentrations were higher (37 to 89 μM), an accurate estimate of the Km could not be obtained. Endogenous denitrification activity was confined to the upper 3 cm of the sediment column. However, the addition of nitrate to deeper sediments demonstrated immediate N2O production, and potential activity existed at all depths sampled (the deepest was 15 cm). Loss of N2O in the presence of C2H2 was sometimes observed during these short-term sediment incubations. Experiments with sediment slurries and washed cell suspensions of a marine pseudomonad confirmed that this N2O loss was caused by incomplete blockage of N2O reductase by C2H2 at low nitrate concentrations. Areal estimates of denitrification (in the absence of added nitrate) ranged from 0.8 to 1.2 μmol of N2 m−2 h−1 (for undisturbed sediments) to 17 to 280 μmol of N2 m−2 h−1 (for shaken sediment slurries).  相似文献   

17.
Modulation of L-type Ca2+ channels by tonic elevation of cytoplasmic Ca2+ was investigated in intact cells and inside-out patches from human umbilical vein smooth muscle. Ba2+ was used as charge carrier, and run down of Ca2+ channel activity in inside-out patches was prevented with calpastatin plus ATP. Increasing cytoplasmic Ca2+ in intact cells by elevation of extracellular Ca2+ in the presence of the ionophore A23187 inhibited the activity of L-type Ca2+ channels in cell-attached patches. Measurement of the actual level of intracellular free Ca2+ with fura-2 revealed a 50% inhibitory concentration (IC50) of 260 nM and a Hill coefficient close to 4 for Ca2+- dependent inhibition. Ca2+-induced inhibition of Ca2+ channel activity in intact cells was due to a reduction of channel open probability and availability. Ca2+-induced inhibition was not affected by the protein kinase inhibitor H-7 (10 μM) or the cytoskeleton disruptive agent cytochalasin B (20 μM), but prevented by cyclosporin A (1 μg/ ml), an inhibitor of protein phosphatase 2B (calcineurin). Elevation of Ca2+ at the cytoplasmic side of inside-out patches inhibited Ca2+ channels with an IC50 of 2 μM and a Hill coefficient close to unity. Direct Ca2+-dependent inhibition in cell-free patches was due to a reduction of open probability, whereas availability was barely affected. Application of purified protein phosphatase 2B (12 U/ml) to the cytoplasmic side of inside-out patches at a free Ca2+ concentration of 1 μM inhibited Ca2+ channel open probability and availability. Elevation of cytoplasmic Ca2+ in the presence of PP2B, suppressed channel activity in inside-out patches with an IC50 of ∼380 nM and a Hill coefficient of ∼3; i.e., characteristics reminiscent of the Ca2+ sensitivity of Ca2+ channels in intact cells. Our results suggest that L-type Ca2+ channels of smooth muscle are controlled by two Ca2+-dependent negative feedback mechanisms. These mechanisms are based on (a) a protein phosphatase 2B-mediated dephosphorylation process, and (b) the interaction of intracellular Ca2+ with a single membrane-associated site that may reside on the channel protein itself.  相似文献   

18.
Different strains of Thiobacillus ferrooxidans and Thiobacillus thiooxidans were used to catalyze the oxidative dissolution of iron pyrite, FeS2, in nine different coal samples. Kinetic variables and parametric factors that were determined to have a pronounced effect on the rate and extent of oxidative dissolution at a fixed Po2 were: the bacterial strain, the nitrogen/phosphorus molar ratio, the partial pressure of CO2, the coal source, and the total reactive surface area of FeS2. The overall rate of leaching, which exhibited a first-order dependence on the total surface area of FeS2, was analyzed mathematically in terms of the sum of a biochemical rate, ν1, and a chemical rate, ν2. Results of this study show that bacterial desulfurization (90 to 98%) of coal samples which are relatively high in pyritic sulfur can be achieved within a time-frame of 8 to 12 days when pulp densities are ≤20% and particle sizes are ≤74 μm. The most effective strains of T. ferrooxidans were those that were isolated from natural systems, and T. ferrooxidans ATCC 19859 was the most effective pure strain. The most effective nutrient media contained relatively low phosphate concentrations, with an optimal N/P molar ratio of 90:1. These results suggest that minimal nutrient additions may be required for a commercial desulfurization process.  相似文献   

19.
The oxidation of ferrous iron (Fe2+) to ferric iron (Fe3+) with dioxygen (O2) by various strains of Thiobacillus ferrooxidans was studied by measuring the rate of O2 consumption at various Fe2+ concentrations and cell concentrations. The apparent Km values for Fe2+ remained constant at different cell concentrations of laboratory strains ATCC 13661 and ATCC 19859 but increased with increasing cell concentrations of mine isolates SM-4 and SM-5. The latter results are explained by the competitive inhibition of the Fe2+-binding site of a cell by other cells in the reaction mixture. Possible mechanisms involving cell surface properties are discussed.  相似文献   

20.
PVA-cryogels entrapping about 109 cells of Acidithiobacillus ferrooxidans per ml of gel were prepared by freezing-thawing procedure, and the biooxidation of Fe2+ by immobilized cells was investigated in a 0.365 l packed-bed bioreactor. Fe2+ oxidation fits a plug-flow reaction model well. A maximum oxidation rate of 3.1 g Fe2+ l–1 h–1 was achieved at the dilution rate of 0.4 h–1 or higher, while no obvious precipitate was determined at this time. In addition, cell-immobilized PVA-cryogels packed in bioreactor maintained their oxidative ability for more than two months under non-sterile conditions. Nomenclature: C A0 – Concentration of Fe2+ in feed stream (g l–1) C A – Concentration of Fe2 + in outlet stream (g l– 1) D – Dilution rate of the packed-bed bioreactor (h–1) F – Volumetric flow rate of iron solution (l h–1) F A0 – Mass flow rate of Fe2+ in the feed stream (g h–1) K – Kinetic constant (l l–1 h–1) r A – Oxidation rate of Fe2+ (g l–1 h–1) V – Volume of packed-bed bioreactor (l) X A – Conversion ratio of Fe2+ (%)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号