首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Variation in the intensity of schooling behavior in fishes suggests that the benefits of aggregation are balanced by certain costs. We examined the proximity of group members to each other in juvenile walleye pollock, Theragra chalcogramma, under different environmental conditions. Food availability, simulated by a gradient of six ration treatments, had a major influence on group cohesion, with increasing dispersion as food level decreased. Group cohesion also decreased at night relative to daytime levels. Small juveniles (x=53 mm TL) maintained on high rations were highly responsive to the potential threat of a predator, with groups becoming more cohesive and remaining so for up to an hour after the initial threat. A chronic threat (continual presence of predators) resulted in tighter group cohesion than an acute threat (single simulated attack). Small juveniles maintained on low rations were less responsive to predation threats and recovered quickly, supporting the hypothesis that hunger induces risk-taking behavior. Large juveniles (x=149 mm TL) did not change their degree of aggregation in response to either type of predation threat. An overall plasticity in the degree of cohesiveness among group members indicates that walleye pollock are capable of gradually modifying their schooling behavior according to the environmental context.  相似文献   

4.
Flexible behavioral response to avoid encountering predators has never been reported in lotic, cased caddisfly larvae with low mobility. However, an earlier laboratory experiment found the growth of such a caddisfly species, Glossosoma sp., decreased in the presence of a predatory sculpin, Cottus nozawae. We conducted laboratory experiments to test whether Glossosoma responses to sculpin varied according to resource level and/or time of day. Lower periphyton biomass resulted in increased movement at any time of day, but was followed by decreased grazing success of Glossosoma in the morning when they were sampled. Although sculpins were active in the morning, evening and night but never in the afternoon, movements of Glossosoma were suppressed by sculpin stimuli only in the morning, when food intake of Glossosoma also decreased, regardless of periphyton biomass. Glossosoma reduced the risk of predation by sculpin by flexibly controlling its grazing activities during the most risky period of the day (i.e. morning). Even in the morning in the presence of sculpin, lower resource levels resulted in longer movement distances similar to those in predator-free conditions, suggesting that lower resource availability promotes predation risk in natural streams inhabited by predatory sculpin.  相似文献   

5.
Ontogenetic diet shifts are a widespread phenomenon among vertebrates, although their relationships with life history traits are poorly known. We analyzed the relative importance of body size, age and maturity stage as determinants of the diet of a marine top predator, the copper shark, Carcharhinus brachyurus, by examining stomach contents using a multiple-hypothesis modeling approach. Copper sharks shifted their diet as size and age increased and as they became sexually mature, incorporated larger prey as they grew, and had a discrete shift in diet with body size, with only individuals larger than ≈200 cm total length able to prey on chondrichthyans. Body size was the most important trait explaining the consumption of chondrichthyans, while age determined the consumption of pelagic teleosts. Pelagic teleosts were consumed mostly by medium-aged sharks, a result, probably, of a risk-reducing feeding strategy at young ages coupled with either a senescence-related decline in performance or a change in sensory capabilities as sharks age. Copper sharks of all sizes were able to cut prey in pieces, implying that gape limitation (i.e., the impossibility of eating prey larger than a predator’s mouth) did not play a role in producing the diet shift. Our results suggest that, contrary to the current practice of setting minimum but not maximum size limits in catches, any plan to conserve or restore the ecological function of sharks, through their predatory control of large prey, should aim to maintain the largest individuals.  相似文献   

6.
In many amphibian larvae a suite of morphological and behavioural characters varies together in an induced defence against predators, but it remains unclear which features are functionally related to defence. We independently manipulated behaviour and morphology in tadpoles of Hyla versicolor and assessed their consequences for swimming performance and predator escape. Data on burst swimming showed that tadpoles which accelerated rapidly were elongate, with shallow bodies and tails. Predator escape was measured by exposing tadpoles to predators (larval Anax dragonflies or larval Ambystoma salamanders) and recording time until death. Tadpoles were first reared for 30 days in ponds containing either caged Anax or no predators; individuals responded to predators by developing large brightly coloured tails and short bodies. We placed tadpoles of both morphological phenotypes into plastic tubs, and manipulated their behaviour using food and chemical cues from predators. Mortality risk experienced by the predator‐induced phenotype was about half that of the no‐predator phenotype, and risk increased with time spent swimming. An interaction between morphology and behaviour arose because increasing activity caused higher risk for tadpoles with deep tail fins but not shallow tail fins.  相似文献   

7.
1. In a laboratory batch culture experiment, a diapause response of Daphnia magna to a simulated threat of fish predation was tested at various light intensities, which under natural conditions determine potential vulnerability of Daphnia to visual planktivorous fish. 2. Under moderate light intensity (1.4 μmol m?2 s?1) that allows effective predation by fish, the proportion of females producing dormant eggs was significantly higher than under dim light conditions (0.001 μmol m?2 s?1) that are not favourable for visual detection of prey. Production of dormant eggs was not observed in complete darkness or in treatments missing fish kairomones, irrespective of tested light conditions. 3. The observed phenomenon is interpreted as a flexible response of prey to the conditional risk of predation assessed by Daphnia according to the presence of fish‐derived cues on the one hand and the presence of dark refugia on the other. Irrespective of the presence of fish kairomones, Daphnia may not produce resting eggs as long as a safe, dark, bottom zone is accessible.  相似文献   

8.
Little is known about the flow of chemical information fromhigher to lower levels within the animal food chain. However,this information may determine the behavior and distributionof many animals (e.g., that of potential prey) when exposedto direct and indirect cues of predation risk. We used herbivorousspider mites, Tetranychus urticae Koch (Tetranychidae) as amodel to examine the foraging and oviposition decisions thatprey make when exposed to these cues. We conducted laboratorytests to determine if the previous presence of predators (directcues) on leaf discs or the presence of injured conspecifics(indirect cues) alters the distribution of adults and eggs ofT. urticae. When given a choice, after 24 h, fewer adults and eggswere found on leaf discs that had previously contained specialistspider mite predators, Phytoseiulus persimilis Athias-Henriot (Phytoseiidae),than on discs unexposed to predators. Also, more T. urticaeemigrated from predator-exposed discs than from unexposed discs orfrom those that had previously contained nonpredatory mites(Tyrophagus putrescentiae, Acaridae). Finally, fewer T. urticaeforaged and laid eggs on predator-exposed discs or on thosewith artificially damaged conspecifics (eggs or dead adults)than on discs with intact conspecifics. Tetranychus urticaeprobably recognizes infochemicals (kairomones) from its predatorsor cues from injured spider mites and consequently avoids feedingor ovipositing in areas exposed to these cues. Recognition and avoidanceof kairomones from specialist predators by this prey are likelyto be hereditary, but avoidance of injured conspecifics maybe an adaptation to avoid predators that are not inherentlyrecognized. We discuss the behavioral and ecological implicationsof our findings.  相似文献   

9.
10.
In spring and early summer, a small population of the large-bodied Daphnia pulicaria coexists with a much larger population of the medium-sized hybrid Daphnia galeata × hyalina in the epilimnion of Lake Maarsseveen (The Netherlands). When large shoals of juvenile perch (Perca fluviatilis) appear in the open water, both species start to migrate vertically. Since D. pulicaria has a larger body-size than D. galeata × hyalina, and is therefore competitive dominant over the hybrid, it is unlikely that both species interact via their common food resource, but they react both to fish predation. However, since they differ in size, and therefore in vulnerability for fish predation, both species adopt different strategies. The smaller bodied, and less vulnerable D. galeata × hyalina exhibits diel vertical migration ascending to the surface at dusk, and staying there during the night. In this way, benefiting from the higher temperatures of the surface layers. In contrast, the large-bodied, and more vulnerable D. pulicaria selects the deep cold hypolimnion water layers as refuge against fish predation. In this way it benefits from a safe habitat, free from fish predators, but on the other hand suffers from low water temperatures, which decrease its fitness. It is likely that the relatively higher temperature in the upper water layers serves as a proximate factor for the downward migration of D. pulicaria.  相似文献   

11.
12.
13.
14.
Phenotypic plasticity can be important for local adaptation, because it enables individuals to survive in a novel environment until genetic changes have been accumulated by genetic accommodation. By analysing the relationship between development rate and growth rate, it can be determined whether plasticity in life-history traits is caused by changed physiology or behaviour. We extended this to examine whether plasticity had been aiding local adaptation, by investigating whether the plastic response had been fixed in locally adapted populations. Tadpoles from island populations of Rana temporaria, locally adapted to different pool-drying regimes, were monitored in a common garden. Individual differences in development rate were caused by different foraging efficiency. However, developmental plasticity was physiologically mediated by trading off growth against development rate. Surprisingly, plasticity has not aided local adaptation to time-stressed environments, because local adaptation was not caused by genetic assimilation but on selection on the standing genetic variation in development time.  相似文献   

15.
We examined environmental and social factors affecting reproductivesuccess across a 20-year data set of individually known cheetahson the Serengeti Plains of Tanzania. Because cheetahs are seeninfrequently and are not amenable to mark–recapture techniques,we devised a model to estimate time of death for individualsthat disappeared from our records. We found that males had markedlylower survival than females. Recruitment was negatively affectedby rainfall but positively affected by numbers of Thomson'sgazelles, the cheetahs' chief prey. There was a negative associationbetween recruitment and numbers of lions, demonstrating thatthe high rates of predation observed in previous studies haveimplications for the dynamics of cheetah populations. Recruitmentwas related to mother's age, peaking when she reached 6–7years. Sociality affected survival in two ways. First, adolescentsliving in temporary sibling groups had higher survival thansingletons, particularly males with sisters. Second, adult malesliving in coalitions had higher survival than singletons inperiods when other coalitions were numerous, yet they had lowersurvival when other coalitions were rare. These results corroborateobservations of enhanced prey capture by female adolescentsand antipredator benefits for adolescents in groups, as wellas competitive advantages for adult males in groups. Furthermore,our findings stress the importance of interactions between environmentaland social factors in affecting reproductive success in mammals.  相似文献   

16.
Many prey animals experience temporal variation in the risk of predation and therefore face the problem of allocating their time between antipredator efforts and other activities like feeding and breeding. We investigated time allocation of prey animals that balanced predation risk and feeding opportunities. The predation risk allocation hypothesis predicts that animals should forage more in low- than in high-risk situations and that this difference should increase with an increasing attack ratio (i.e. difference between low- and high-risk situations) and proportion of time spent at high risk. To test these predictions we conducted a field test using bank voles (Clethrionomys glareolus) as a prey and the least weasel (Mustela nivalis nivalis) as a predator. The temporal pattern and intensity of predation risk were manipulated in large outdoor enclosures and the foraging effort and patch use of voles were measured by recording giving-up densities. We did not observe any variation in feeding effort due to changes in the level of risk or the proportion of time spent under high-risk conditions. The only significant effect was found when the attack ratio was altered: the foraging effort of voles was higher in the treatment with a low attack ratio than in the treatment with a high attack ratio. Thus the results did not support the predation risk allocation hypothesis and we question the applicability of the hypothesis to our study system. We argue that the deviation between the observed pattern of feeding behaviour of bank voles and that predicted by the predation risk allocation hypothesis was mostly due to the inability of voles to accurately assess the changes in the level of risk. However, we also emphasise the difficulties of testing hypotheses under outdoor conditions and with mammals capable of flexible behavioural patterns.  相似文献   

17.
Gradients (isophenes) in modifications of butterfly wing morphology (colour, pattern, size) to the north and west of Britain are shown to correlate closely with contemporary environmental gradients, whereas their alleged formation as infra-specific units in Devensian refugia off western Britain is unsubstantiated. A model is described which explains the transformation in phenotypes in relationship to climate, especially ambient temperatures and radiation levels. In cooler, less predictable summer conditions to the north and west, selection has favoured modifications in adult phenotypes that maintain efficiency in thermoregulation, mate advertisement and predator escape. The form that wing modifications take depends mainly on basking posture (lateral, dorsal-absorption and reflectance), which determines the allocation and interaction of functions on different wing surfaces. It is also dependent on hostplant-habitat structure, which influences thermal stability and the milieu of predators and conspecifics, and other behavioural norms (mate-locating behaviour) and biological attributes (size, robustness, speed and mode of flight, chemical defences) which affect their relationships with predators and conspecifics. The significance of Quaternary palaeoenvironments to phenetic transformations is discussed as is the relevance of the model to the development of phenotypes in arctic endemic butterflies. Differences in phenotypes of butterflies which occupy arctic and temperate montane environments are also predicted by the model.  相似文献   

18.
New Zealand's native frogs (genus Leiopelma) display a very high degree of endemism and belong to a distinctive and ancient evolutionary lineage. All four extant species are considered to be threatened or endangered, but the mechanisms behind their decline are poorly understood. Many of the potential factors causing population declines are confounded for the two species living on the mainland; in particular, habitat degradation and the presence of introduced mammalian pests have been difficult to disentangle in the past. Here we present data on a population of Hochstetter's Frog (Leiopelma hochstetteri) living in a pest‐free mainland sanctuary, the 3363‐ha Maungatautari Ecological Island. Survey data from this population shows a fourfold increase in numbers between 2009 and 2012 from a very low initial density. Our results suggest that for Hochstetter's Frog at least, and possibly the other mainland species of Leiopelma, introduced mammals are a major driving factor in population declines. Given that the frog population at Maungatautari was discovered by serendipity when planning for the pest‐free sanctuary was already well underway, this also highlights the conservation value of large pest‐free areas and ecosystem‐level management.  相似文献   

19.
Summary Territory size is usually explained by balancing the benefits of increased size against the costs of defense. An alternative hypothesis for animals that maintain refuges is that the costs of large territories lie in the predation risk associated with leaving the refuge. An optimum territory size is discovered, given only this cost and no cost of defense. Predation risk is also considered a determinant of the value of a territory's location within a colony. Risk relative to location is discovered to be a binary variable, either low or high, depending upon the speed of the predator.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号