首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions between a naturally-collected algal species and strains of bacteria with which it was closely associated were examined under controlled conditions. Three strains of bacteria, Pseudomonas, Xanthomonas and Flavobacterium, were isolated from Oscillatoria. These bacteria were grown in combination with axenic cultures of the Oscillatoria culture as well as with several additional algal species. Oscillatoria growth was stimulated by all of the bacteria, but other algal species varied in their response. Some were stimulated, but others were inhibited or unaffected by exposure to the bacterial strains. There were also observations indicating that some algae may be able to develop resistance to antagonistic bacteria. These data suggest that succession and dominance of individual algal species may be influenced by interactions with bacteria.  相似文献   

2.
Two substances with antibacterial activity have been concentrated from the culture medium of Stichochrysis immobilis before senescence occurred, and purified, by a Sephadex G-25 filtration followed by 2-dimensional thin-layer chromatography on Merck F-254 silica gel plates. One of the substances is obviously a peptide; 11 different amino acids are linked in a 30 amino acid molecule (MW 3400). It was not possible to assign a chemical group to the second substance (MW ? 2600); it may be related to “humic acids” (Kalle's gelbstoff). Growth of the most sensitive bacteria was completely inhibited by 20-fold, or higher, concentrations of substances from the algal culture filtrate (assuming no loss of substances during the concentration processes). The 54 strains of test bacteria were of various origins, though mostly isolated from algal cultures or obtained directly from the marine environment.  相似文献   

3.
As part of efforts to enhance the strategies employed to manage and mitigate algal blooms and their adverse effects, algicidal bacteria have shown promise as potential suppressors of these events. Nine strains of bacteria algicidal against the toxic dinoflagellate, Alexandrium tamarense, were isolated from the East Sea area, China. Sequence analysis of 16S rDNA showed that all the algicidal bacteria belonged to the γ-proteobacteria subclass and the genera Pseudoalteromonas (strain SP31 and SP44), Alteromonas (strain DH12 and DH46), Idiomarina (strain SP96), Vibrio (strain DH47 and DH51) and Halomonas (strain DH74 and DH77). To assess the algicidal mode of these algicidal bacteria, bacterial cells and the filtrate from bacterial cultures were inoculated into A. tamarense cultures, and fluorescein diacetate vital stain was applied to monitor the growth of the algal cells. The results showed that all the algicidal bacteria exhibited algicidal activity through an indirect attack since algicidal activity was only detected in cell free supernatants but not the bacterial cells. This is the first report of bacteria from the genus Idiomarina showing algicidal activity to the toxic dinoflagellate A. tamarense and these findings would increase our knowledge of bacterial–algal interactions and the role of bacteria during the population dynamics of HABs.  相似文献   

4.
The growth characteristics of an algo-bacterial community (Chlamydomonas reinhardtii and bacterial satellites) were studied, as well as the mechanism and patterns of bacterial effect on algae. Four strains of predominant bacteria were isolated and partially characterized. They were assigned to the following taxa: Rhodococcus terrea, Micrococcus roseus, and Bacillus spp. A pure culture of the alga under study was obtained by plating serial dilutions on agarized media with ampicillin. Within the algo-bacterial association, the alga had a higher growth rate (0.76 day(-1)) and yield (60 microg chlorophyll/ml culture) than in pure cultures (0.4 day(-1) and 10 microg chlorophyll/ml culture, respectively). The viability of the algal cells within the association was retained longer than in pure culture. Among the isolated bacterial satellites, strains B1 and Y1, assigned to the species Rhodococcus terrae, had the highest stimulatory effect on algal growth. The culture liquid of bacteria incubated under the conditions not permitting growth stimulated algal growth; the culture liquid of actively growing bacteria had an opposite effect.  相似文献   

5.
Significant levels of extracellular glutathione (GSH) were detected in aerobically grown cultures of some strains of Salmonella typhimurium LT-2 and in Escherichia coli K-12, B, and B/r but not in cultures of nine freshly isolated clinical isolates of E. coli. Cultures of S. typhimurium generally contained less total GSH (intracellular plus external) than did E. coli cultures. S. typhimurium TA1534 contained about 2 mM intracellular GSH and exported about 30% of its total GSH. The external GSH concentration increased logarithmically during exponential growth and peaked at about 24 microM in early-stationary-phase cultures. External accumulation of GSH was inhibited by 30 mM NaN3. GSH was predominantly exported in the reduced form. Two-dimensional paper chromatography of supernatants from cultures labeled with Na2(35)SO4 confirmed the presence of GSH and revealed five other sulfur-containing compounds in the media of S. typhimurium and E. coli cultures. The five unidentified compounds were not derivatives of GSH.  相似文献   

6.
Interactions between bacteria and species of harmful and/or toxic algae are potentially important factors affecting both the population dynamics and the toxicity of these algae. Recent reports of bacteria lethal to certain harmful algal bloom (HAB) species, coupled with a rapidly evolving interest in attempting to minimize the adverse effects of HABs through various prevention, control, and mitigation strategies, have focused attention on defining the role of algicidal bacteria in bloom termination. The aim of the present study was to determine whether algicidal bacteria active against Gymnodinium breve Davis, a dinoflagellate responsible for frequent and protracted red tides in the Gulf of Mexico, are present in the waters of the west Florida shelf. To date, we have isolated two bacterial strains from this region lethal to G. breve and have begun to characterize the algicidal activity of one of these strains, 41-DBG2. This bacterium, a yellow-pigmented, gram-negative rod, was isolated from waters containing no detectable G. breve cells, suggesting that such bacteria are part of the ambient microbial community and are not restricted to areas of high G. breve abundance. Strain 41-DBG2 produced a dissolved algicidal compound(s) that was released into the growth medium, and the algicide was effective against the four Gulf of Mexico G. breve isolates tested as well as a closely related HAB species that also occurs in this region, Gymnodinium mikimotoi Miyake et Kominami ex Oda. Nonetheless, data showing that a nontoxic isolate of Gymnodinium sanguineum Hirasaka from Florida Bay was not affected indicate that the algicidal activity of this bacterium does exhibit a degree of taxonomic specificity. Our efforts are currently being directed at resolving several critical issues, including the identity of the algicide(s), the mechanisms regulating its production and ability to discriminate between target algal species, and how the growth rate of 41-DBG2 is affected by the presence of G. breve cells. We have also proposed a conceptual model for interactions between algicidal bacteria and their target species to serve as a testable framework for ensuing field studies.  相似文献   

7.
A means for eliminating ice-nucleation-active (INA) bacteria, the microorganisms responsible for frost damage to plants at mild freezing temperatures, is the use as competitors of other naturally occurring, non-nucleating strains. Inactive mutants (INA-) of INA bacteria have been produced by genetic or chemical methods and proposed for biological control of INA populations. Since, however, the application of these INA- mutants in the field may create health hazards to animals, we have studied the possible mutagenic activity of the INA- mutants by examining chromosome aberrations, sister-chromatid exchange (SCE) frequencies, and proliferation kinetics of human lymphocyte cultures. These cultures were treated with: (a) a naturally occurring INA- bacterium (p 767), (b) 2 parental strains (cit 7 and cit 13) of INA bacteria isolated from Citrus orchards, and (c) 2 INA- mutant strains (cit 7 del 1b and cit 13-12), produced, respectively, by chemical modification and by deletion of the corresponding parental strains. Neither whole bacteria nor infiltrates of bacterial growth media, in which toxic metabolic bacterial products might have been released, induced elevation of either chromosome aberrations and SCEs or a cell-division delay. Negative results were also obtained when sonicated bacteria were tested for possible intracellular mutagenic components.  相似文献   

8.
Interactions with the bacterial community are increasingly considered to have a significant influence on marine phytoplankton populations. Here we used a simplified dinoflagellate‐bacterium experimental culture model to conclusively demonstrate that the toxic dinoflagellate Gymnodinium catenatum H. W. Graham requires growth‐stimulatory marine bacteria for postgermination survival and growth, from the point of resting cyst germination through to vegetative growth at bloom concentrations (103 cells · mL?1). Cysts of G. catenatum were germinated and grown in unibacterial coculture with antibiotic‐resistant or antibiotic‐sensitive Marinobacter sp. DG879 or Brachybacterium sp., and with mixtures of these two bacteria. Addition of antibiotics to cultures grown with antibiotic‐sensitive strains of bacteria resulted in death of the dinoflagellate culture, whereas cultures grown with antibiotic‐resistant bacteria survived antibiotic addition and continued to grow beyond the 21 d experiment. Removal of either bacterial type from mixed‐bacterial dinoflagellate cultures (using an antibiotic) resulted in cessation of dinoflagellate growth until bacterial concentration recovered to preaddition concentrations, suggesting that the bacterial growth factors are used for dinoflagellate growth or are labile. Examination of published reports of axenic dinoflagellate culture indicate that a requirement for bacteria is not universal among dinoflagellates, but rather that species may vary in their relative reliance on, and relationship with, the bacterial community. The experimental model approach described here solves a number of inherent and logical problems plaguing studies of algal‐bacterium interactions and provides a flexible and tractable tool that can be extended to examine bacterial interactions with other phytoplankton species.  相似文献   

9.
We examined the proportions of major Betaproteobacteria subgroups within bacterial communities in diverse nonaxenic, monospecific cultures of algae or cyanobacteria: four species of cryptophyta (genera Cryptomonas and Rhodomonas), four species of chlorophyta (genera Pediastrum, Staurastrum, and Chlamydomonas), and two species of cyanobacteria (genera Dolichospermum and Aphanizomenon). In the cryptophyta cultures, Betaproteobacteria represented 48 to 71% of total bacteria, the genus Limnohabitans represented 18 to 26%, and the Polynucleobacter B subcluster represented 5 to 16%. In the taxonomically diverse chlorophyta group, the genus Limnohabitans accounted for 7 to 45% of total bacteria. In contrast, cyanobacterial cultures contained significantly lower proportions of the Limnohabitans bacteria (1 to 3% of the total) than the cryptophyta and chlorophyta cultures. Notably, largely absent in all of the cultures was Polynucleobacter necessarius (Polynucleobacter C subcluster). Subsequently, we examined the growth of Limnohabitans strains in the presence of different algae or their extracellular products (EPP). Two strains, affiliated with Limnohabitans planktonicus and Limnohabitans parvus, were separately inoculated into axenic cultures of three algal species growing in an inorganic medium: Cryptomonas sp., Chlamydomonas noctigama, and Pediastrum boryanum. The Limnohabitans strains cocultured with these algae or inoculated into their EPP consistently showed (i) pronounced population growth compared to the control without the algae or EPP and (ii) stronger growth stimulation of L. planktonicus than of L. parvus. Overall, growth responses of the Limnohabitans strains cultured with algae were highly species specific, which suggests a pronounced niche separation between two closely related Limnohabitans species likely mediated by different abilities to utilize the substrates produced by different algal species.  相似文献   

10.
Marine photosynthetic microalgae are ubiquitously associated with bacteria in nature. However, the influence of these bacteria on algal cultures in bioreactors is still largely unknown. In this study, eighteen different bacterial strains were isolated from cultures of Nannochloropsis sp. CCAP211/78 in two outdoor pilot-scale tubular photobioreactors. The majority of isolates was affiliated with the classes Alphaproteobacteria and Flavobacteriia. To assess the impact of the eighteen strains on the growth of Nannochloropsis sp. CCAP211/78, 24-well plates coupled with custom-made LED boxes were used to simultaneously compare replicate axenic microalgal cultures with addition of individual bacterial isolates. Co-culturing of Nannochloropsis sp. CCAP211/78 with these strains demonstrated distinct responses, which shows that the technique we developed is an efficient method for screening the influence of harmful/beneficial bacteria. Two of the tested strains, namely a strain of Maritalea porphyrae (DMSP31) and a Labrenzia aggregata strain (YP26), significantly enhanced microalgal growth with a 14% and 12% increase of the chlorophyll concentration, respectively, whereas flavobacterial strain YP206 greatly inhibited the growth of the microalga with 28% reduction of the chlorophyll concentration. Our study suggests that algal production systems represent a ‘natural’ source to isolate and study microorganisms that can either benefit or harm algal cultures.  相似文献   

11.
Gymnodinium bloom events are of concern, since they produce toxins, which have unfavorable consequences to marine ecosystems, human health and the economy. This report describes the physico-chemical conditions that were present during the algal bloom event on May 2010 in Bahía Manzanillo and Bahía Santiago, Colima, Mexico. For this, seawater nutrient analysis, phytoplankton counts, identification, and toxicity tests were undertaken. Nutrients in seawater were determined using colorimetric techniques, the higher concentrations (8.88 microM DIN, 0.78 microM PO4 and 24.34 microM SiO2) were related with upwelling waters that promoted the algal bloom that began after registering the year lowest sea-surface temperature, favoring the rapid growth of G. catenatum (up to 1.02 x 10(7) cells/L). Phytoplankton counting was carried out using sedimentation chambers and cells enumerated on appropriated area. The bloom persisted in the bays for approximately two weeks and was associated with toxicity (determined with HPLC) in local oysters (1525.8 microg STXeq/100g), and in phytoplankton (10.9 pg STXeq/cells) samples. Strong variations in cell toxicity (1.4 to 10.9pg STXeq/cells), most likely reflected the availability of inorganic nutrients. The toxin profile of the phytoplankton samples consisted of 11 toxins and resembled those recorded for several strains of G. catenatum isolated from other coastal areas of Mexico.  相似文献   

12.
The growth characteristics of an algo-bacterial community (Chlamydomonas reinhardtii and bacterial satellites) were studied, as well as the mechanism and patterns of bacterial effect on algae. Four strains of predominant bacteria were isolated and partially characterized. They were assigned to the following taxa: Rhodococcus terrea, Micrococcus roseus, and Bacillus spp. A pure culture of the alga under study was obtained by plating serial dilutions on agarized media. Within the algo-bacterial association, the alga had a higher growth rate (0.76 day?1) and yield (60 μg chlorophyll/ml culture) than in pure cultures (0.4 day?1 and 10 μg chlorophyll/ml culture, respectively). The viability of the algal cells within the association was retained longer than in pure culture. Among the isolated bacterial satellites, strains B1 and Y1, assigned to the species Rhodococcus terrae, had the highest stimulatory effect on algal growth. The culture liquid of bacteria incubated under the conditions not permitting growth stimulated algal growth; the culture liquid of actively growing bacteria had an opposite effect.  相似文献   

13.
Corals house a variety of microorganisms which they depend on for their survival, including endosymbiotic dinoflagellates (Symbiodiniaceae) and bacteria. While cnidarian–microorganism interactions are widely studied, Symbiodiniaceae–bacteria interactions are only just beginning to receive attention. Here, we describe the localization and composition of the bacterial communities associated with cultures of 11 Symbiodiniaceae strains from nine species and six genera. Three-dimensional confocal laser scanning and electron microscopy revealed bacteria are present inside the Symbiodiniaceae cells as well as closely associated with their external cell surface. Bacterial pure cultures and 16S rRNA gene metabarcoding from Symbiodiniaceae cultures highlighted distinct and highly diverse bacterial communities occur intracellularly, closely associated with the Symbiodiniaceae outer cell surface and loosely associated (i.e., in the surrounding culture media). The intracellular bacteria are highly conserved across Symbiodiniaceae species, suggesting they may be involved in Symbiodiniaceae physiology. Our findings provide unique new insights into the biology of Symbiodiniaceae.Subject terms: Symbiosis, Microbiome, Marine microbiology  相似文献   

14.
Marine macroalgae cannot develop normal morphology under axenic conditions although normal morphogenesis can be sustained when certain bacteria are present. In this study, bacteria that induced normal morphogenesis in the red alga Pyropia yezoensis (Nori) were identified. The bacteria were isolated from algal media, thalli, tissue debris, and purified protoplasts during protoplast isolation from P. yezoensis laboratory cultures. 16S rRNA gene sequence analysis showed these bacterial isolates belonged to α-Proteobacteria (12 groups), γ-Proteobacteria (3 groups), and Flavobacteria (2 groups). Axenic protoplasts of P. yezoensis generated by removing epiphytic bacteria were co-cultured along with the bacterial isolates. Most axenic protoplasts showed irregular morphogenetic and anaplastic cells; cells with normal morphology were scarce. However, inoculation with 11 strains of Hyphomonas (α-Proteobacteria) led to significantly higher normal morphogenetic rates (4.5–7.3 %, P?Hyphomonas strains were recovered from all experiments; thus, certain Hyphomonas strains can induce normal morphogenesis in P. yezoensis protoplasts. Direct inoculation of the Hyphomonas strain exhibited higher morphogenetic activity than inoculation of its extracellular and intracellular products. This is the first study demonstrating the influence of specific bacteria on protoplast morphology in marine macroalgae.  相似文献   

15.
The aim of this study was to investigate the interactions occurring between peripheral blood phagocytes and strains of S. aureus isolated from different clinical specimens (blood, respiratory tract, pus). To evaluate the sensitivity of microorganisms to bactericidal activity of phagocytes, monocytes and granulocytes separated from peripheral blood by standard density gradient and by counter-current centrifugal elutriation were incubated with suspensions of opsonized bacteria. In parallel, the viability of phagocytes was examined by flow cytometry, and the ability of bacteria to trigger reactive oxygen intermediates (ROI) production was evaluated by chemiluminescence measurement. To investigate efficiency of phagocytosis, bacteria were labelled with fluorescein isothiocyanate (FITC) and the percentage of cells containing FITC-labelled bacteria was analysed by flow cytometry. The data obtained show that strains of S. aureus originated from different clinical specimens, differ in their sensitivity to bactericidal activity of phagocytes--strains isolated from the blood show the highest, but strains isolated from respiratory tract show the lowest sensitivity for killing. These strains differ too in their ability to trigger monocyte CL response. Contrary, there was no difference in toxicity of bacteria against phagocytes. Strains isolated from peripheral blood showed significant negative correlation between the ability to trigger CL response and toxicity against phagocytes.  相似文献   

16.
从太湖水华水体中分离纯化细菌,再将细菌的LB液体和固体斜面纯培养物分别收集后感染铜绿微囊藻(Microcystis aeruginosa)细胞,从中筛选出7株具有溶藻活性的细菌,并对其中一株溶藻细菌THW7的溶藻方式及溶藻活性物质对铜绿微囊藻生理活性的影响进行了初步研究。结果表明:仅采用细菌的LB液体纯培养物进行溶藻细菌筛选会存在误筛或高估溶藻效率的风险,而采用细菌的固体斜面纯培养物进行筛选则可避免以上风险;溶藻细菌THW7通过分泌胞外活性物质的方式间接溶藻;在THW7无菌滤液胁迫下,铜绿微囊藻的生长受到显著抑制(P<0.01), 10d溶藻效率可达94.38%,光合系统活性也显著降低(P<0.01), MDA含量积累,SOD、POD、CAT活性整体呈现先升高后降低的趋势且显著高于对照组(P<0.01)。推测菌株THW7分泌的溶藻活性物质可能作用于铜绿微囊藻细胞的光合系统Ⅱ,阻碍电子传递,抑制其光合作用过程,并对藻细胞产生氧化损伤,破坏藻细胞细胞膜的完整性,从而实现溶藻作用。  相似文献   

17.
Isolation and cultivation are a crucial step in elucidating the physiology, biogeochemistry, and ecosystem role of microorganisms. Many abundant marine bacteria, including the widespread Roseobacter clade-affiliated (RCA) cluster group, have not been cultured with traditional methods. Using novel techniques of cocultivation with algal cultures, we have accomplished successful isolation and propagation of a strain of the RCA cluster. Our experiments revealed that, in addition to growing on alga-excreted organic matter, additions of washed bacterial cells led to significant biomass decrease of dinoflagellate cultures as measured by in vivo fluorescence. Bacterial filtrate did not adversely affect the algal cultures, suggesting attachment-mediated activity. Using an RCA cluster-specific rRNA probe, we documented increasing attachment of these algicidal bacteria during a dinoflagellate bloom, with a maximum of 70% of the algal cells colonized just prior to bloom termination. Cross-correlation analyses between algal abundances and RCA bacterial colonization were statistically significant, in agreement with predator-prey models suggesting that RCA cluster bacteria caused algal bloom decline. Further investigation of molecular databases revealed that RCA cluster bacteria were numerically abundant during algal blooms sampled worldwide. Our findings suggest that the widespread RCA cluster bacteria may exert significant control over phytoplankton biomass and community structure in the oceans. We also suggest that coculture with phytoplankton may be a useful strategy to isolate and successfully grow previously uncultured but ecologically abundant marine heterotrophs.  相似文献   

18.
Nearly two hundred microalgal strains (174 Chlorophyta and 23 Cyanobacteria) were screened against some bacteria, filamentous fungi and yeasts using a disc-diffusion type bioassay. From this initial screening, 10 Chlorophyta strains from three genera (Desmococcus, Chlorella and Scenedesmus) were selected because of their high antimicrobial activity. These 10 strains were partially purified and tested using MIC antimicrobial and microtiter IC50 anticancer assays. These preselected algal strains showed a high incidence of antibacterial activity against both Gram-positive (9 out of 10 species) and Gram-negative (7 out of 10 species) bacteria. The extracts were also effective against some tumour cell lines.  相似文献   

19.
The influence of different factors on the lysis of the red microalga, Rhodella reticulata, by Cytophaga sp. LR2 was studied. The pathogenic bacterial strain was more resistant than the alga to the physiological parameters studied, which assured long-term survival of bacteria in algal cultures. Cytophaga sp. LR2 infected R. reticulata at temperatures between 15 and 30 degrees C, in the illuminated as well as the non-illuminated cultures, at pH values between 5.0 and 9.0, and in the presence of NaCl and CaCl2 in the culture medium. SEM showed a different morphology of the bacteria in algal cultures from those of axenic cultures of Cytophaga. Observations of specific associations between algal and bacterial cells revealed that the role of the slime extrusions on the bacterial surface was attachment of Cytophaga to algal cells, and that their clumping leads to rapid lysis.  相似文献   

20.
We demonstrated that the production of reactive oxygen species (ROS) by U937 macrophage-like cells was suppressed upon infection with a wild type Legionella pneumophila strain, whereas such suppression was not observed in the case of infection with intracellular growth-deficient mutants. This was supported not only by measuring ROS released into the supernatants of cell cultures by chemiluminescence assaying but also by detecting intracellular ROS with a fluorescent probe, 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (APF), under a confocal laser scanning microscope. Furthermore, more than 60% of the phagosomes containing intracellular growth-deficient mutants were colocalized with p47(phox), which is the cytosolic subunit of NADPH oxidase, consistently throughout the observation period in an early stage of bacterial infection. In contrast, the colocalization of p47(phox) was suppressed after infection with the wild type strain. These results suggest that the interference with ROS production by U937 cells infected with wild type L. pneumophila is due to a failure of NADPH oxidase activation through inhibition of p47(phox) recruitment to phagosomes harboring bacteria. The results also highlighted the difference in the nature of phagosomes between ones harboring the wild type and ones the intracellular growth-deficient strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号