首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A mAb (I/24) has been generated that is specific for a determinant on mouse CD45 molecules. Reactivity of this mAb with a panel of CD45 transfected cell lines demonstrated that the determinant recognized is dependent upon expression of one or more CD45 variable exons and that exon C is sufficient for its expression. The exon C-specific epitope detected by I/24 is expressed at high density on essentially all B lymphocytes and at an intermediate density on the vast majority of CD8+ splenic T cells. Two distinct subpopulations of CD4+ splenic T cells were detected, a minor subpopulation that expresses this exon determinant at high density and a major subpopulation that expresses it at a much lower density. This first identification of a CD45RC-specific reagent allowed a comparison of the expression of exon A-, exon B-, and exon C-specific determinants on peripheral and thymic lymphoid populations. When splenic lymphocytes were analyzed for expression of CD45RA (reactive with mAb 14.8), CD45RB (reactive with mAb 23G2 or mAb 16.A), and CD45RC (reactive with mAb I/24) determinants, it was found that each of these CD45 determinants had a distinct pattern of expression on CD4+ and CD8+ T cells and B cells. CD45RB and RC epitopes were also detected at high density on a small proportion (0.7 to 4.1%) of thymocytes. Both CD45RB and RC epitopes were found predominantly on CD4-CD8- and CD4-CD8+ thymocytes but were also found on small numbers of CD4+CD8+ and CD4+CD8- cells. The population of thymocytes that expressed CD45RB and CD45RC determinants displayed a novel TCR CD3 phenotype characterized by a level of expression that was intermediate between that seen in the larger CD3 bright and CD3 dull populations of thymocytes.  相似文献   

3.
4.
CD45, the leukocyte common Ag, has been shown to characterize T cell development both within the thymus and among peripheral T cells. The work reported here demonstrates that human multinegative (MN) thymocytes, depleted of cells bearing CD3, CD4, CD8, and CD19, express predominantly the high molecular mass CD45RA isoform, and lack low molecular mass CD45RB isoforms and CD45R0 as detected by immunofluorescence. By immunoprecipitation of surface-labeled CD45 molecules from MN thymocytes, a proportion of the CD45 is in fact of low molecular mass but does not include epitopes recognized by CD45R0, nor by CD45RB mAb specific for the p190. This suggests either glycosylation variants of CD45RB/CD45R0 undetectable by our mAb, or underglycosylated CD45RA. MN thymocytes lack TCR-alpha beta mRNA confirming their early developmental stage. Upon culture with IL-2 or with mitogenic combinations of anti-CD2/CD28 mAb, MN thymocytes differentiate to acquire CD3, TCR-alpha beta, and in some cases CD4 and/or CD8. We have predicted that maintenance of CD45RA and lack of CD45R0 expression is fundamental to generative thymic development. If correct, this demands that unlike peripheral T cells, differentiation of MN thymocytes should be accompanied by prolonged expression of high molecular mass CD45 isoforms. Analysis of CD45 isoform expression during MN thymocyte development confirms this prediction and indicates that expression of CD45RA is maintained, at increasing density, for at least 8 to 12 days of culture. Unlike peripheral blood T cells, this is accompanied by the gradual acquisition of firstly the p190 isoforms of CD45RB and later by CD45R0, resulting in a population of CD3+TCR-alpha beta cells coexpressing CD45RA/RBp190/R0. Dot blot analysis of mRNA from differentiating MN thymocytes indicates prolonged expression of mRNA encoding CD45 exons a, b, and c, again in contrast to peripheral T cells which lose all mRNA for alternatively spliced CD45 exons within the first 24 h poststimulation. This is discussed in the context of negative selection during thymic development and interconversion of T cell subsets.  相似文献   

5.
The human CD45 gene encodes five isoforms of a transmembrane tyrosine phosphatase that differ in their extracellular domains as a result of alternative splicing of exons 4-6. Expression of the CD45 isoforms is tightly regulated in peripheral T cells such that resting cells predominantly express the larger CD45 isoforms, encoded by mRNAs containing two or three variable exons. In contrast, activated T cells express CD45 isoforms encoded by mRNAs lacking most or all of the variable exons. We have previously identified the sequences within CD45 variable exon 4 that control its level of inclusion into spliced mRNAs. Here we map the splicingregulatory sequences within CD45 variable exons 5 and 6. We show that, like exon 4, exons 5 and 6 each contain an exonic splicing silencer (ESS) and an exonic splicing enhancer (ESE), which together determine the level of exon inclusion in na?ve cells. We further demonstrate that the primary activation-responsive silencing motif in exons 5 and 6 is homologous to that in exon 4 and, as in exon 4, binds specifically to the protein heterogeneous nuclear ribonucleoprotein L. Together these studies reveal common themes in the regulation of the CD45 variable exons and provide a mechanistic explanation for the observed physiological expression of CD45 isoforms.  相似文献   

6.
7.
Previous work has suggested that the generative lineage within the human thymus can be defined by the selective expression of CD45 isoforms and is CD45RO- and predominantly CD45RA+. In order to physically localize these cells we have stained frozen sections of human thymus with antibodies to CD45RO (p180), and CD45RA (p205/P220), as well as with CD1 and HLA class I to define cortical and medullary areas, respectively. In the cortex, 70 to 90% of thymocytes were CD45RO+, whereas only 0.5% expressed CD45RA. Medullary cells were 30% CD45RO+, 29% CD45RA+; approximately 40% did not express detectable levels of either isoform but did express CD45 common determinants. To assess the degree of proliferation of cells expressing CD45 isoforms, we stained adjacent sections, or used double staining, with Ki67, an antibody that detects a nuclear Ag on proliferating cells. We found that CD45RA+ thymocytes are predominantly a resting medullary population with a small component in cell cycle, consistent with our analysis of human thymocytes by immunofluorescence, and with data in murine systems defining the generative lineage. To confirm that the CD1- or low, CD45RO-CD45RA+ thymocytes defined by immunofluorescence analysis were likely to have a medullary location, we analyzed the CD4/CD8 subset distribution of CD1-cells. From 80 to 90% of CD1-thymocytes are CD4+ or CD8+ single positives or CD-8- double negatives. CD1-thymocytes also include 12 to 14% CD4+8+ cells with a probable medullary location. A similar analysis of lymphocytes expressing a high density of HLA class I, which have a medullary location, confirmed the existence of CD4+8+ thymocytes in the medulla. Purified CD3-4-8- cells, previously shown to be CD1-CD45RA+, were also shown to bear a high density of HLA class I, indicating a medullary location. Correlative localization of a panel of Ag thus supports the argument for a medullary location of the thymic generative lineage.  相似文献   

8.
The 180- and 190-kDa isoforms of CD45 are preferentially expressed on the helper inducer (memory) subset of CD4 cells. In order to generate monoclonal antibodies against the extracellular domains of these isoforms and determine whether they could regulate the function and activation of these cells, we developed a mAb, anti-4H2D, by immunizing Balb/c mice with an isogenic mouse pre-B cell line expressing the human 190-kDa CD45 isoform. Anti-4H2D reacts with approximately 60% of T cells, 70% of CD4 cells, and 60% of CD8 cells. The CD4 cell population defined by this mAb corresponds functionally and phenotypically to that defined by the CD45RO+CD29+ subset. Western blotting demonstrated that anti-4H2D reacts primarily with the 190-kDa isoform of CD45 and to a minor extent, the 205- and 180-kDa CD45 isoforms. Interestingly, this mAb reacted with only a subpopulation of mature thymocytes and peripheral T cells, despite the fact that the 190-kDa CD45 isoform, as well as CD45RO and CD29, is more widely distributed on cells of hematopoietic origin. The 4H2D epitope was neuraminidase sensitive, indicating that anti-4H2D reacts with a carbohydrate epitope which is present on only a subset of the T cells containing the 190-kDa CD45 isoform epitopes. Functional studies showed that soluble anti-4H2D augmented T cell proliferation induced by the CD2 and CD3 pathways, and treatment of T cells with this mAb up-regulated [Ca2+]i flux induced by both anti-CD2 and anti-CD3 mAbs. These results suggest that the 190-kDa CD45 isoform on human CD4 cells is heterogeneous and that the 190-kDa isoform recognized by anti-4H2D regulates the function and activation of CD4 helper T cells.  相似文献   

9.
The origin of TCR-alphabeta+ CD4-CD8- cells is unclear, yet accumulating evidence suggests that they do not represent merely a default pathway of unselected thymocytes. Rather, they arise by active selection as evidenced by their absence in mice lacking expression of class I MHC. TCR-alphabeta+ CD4-CD8- cells also preferentially accumulate in mice lacking expression of Fas/APO-1/CD95 (lpr) or Fas-ligand (gld), suggesting that this subset might represent a subpopulation destined for apoptosis in normal mice. Findings from mice bearing a self-reactive TCR transgene support this view. In the current study we observe that in normal mice, TCR-alphabeta+ CD4-CD8- thymocytes contain a high proportion of cells undergoing apoptosis. The apoptotic subpopulation is further identified by its expression of B220 and IL2Rbeta and the absence of surface CD2. The CD4-CD8- B220+ phenotype is also enriched in T cells that recognize endogenous retroviral superantigens, and can be induced in TCR transgenic mice using peptide/MHC complexes that bear high affinity, but not low affinity, for TCR. A model is presented whereby the TCR-alphabeta+ CD2- CD4-CD8- B220+ phenotype arises from high intensity TCR signals. This model is broadly applicable to developing thymocytes as well as mature peripheral T cells and may represent the phenotype of self-reactive T cells that are increased in certain autoimmune conditions.  相似文献   

10.
The effect of cyclosporin A (CsA) on early T cell development was studied by two-color flow cytometric and biochemical analyses using the fetal thymus organ culture system. Addition of CsA to organ culture resulted in a decreased cell yield and complete inhibition of the appearance of TCR-alpha beta-bearing, single positive thymocytes (both CD4+CD8- and CD4-CD8+). Furthermore, the generation of CD4+CD8+ thymocytes was markedly inhibited by CsA treatment, whereas the development of CD3-, CD4-CD8+ thymocytes and TCR-gamma delta-bearing, CD4-CD8- thymocytes was not affected. These results suggest that CsA induces a maturational arrest of T cells entirely within the thymic environment, and indicate that CsA-induced inhibition occurs at more than one stage of intrathymic T cell development.  相似文献   

11.
The CD45 molecule was analyzed from murine intestinal intraepithelial lymphocytes (IEL). Immunofluorescent staining of CD8+ IEL revealed varying degrees of reactivity with mAb specific for CD45-restricted determinants, some which are typically expressed only by B cells. Immunoprecipitation of CD45 molecules from IEL yielded an array of proteins with apparent (m.w.) ranging from 180,000 to 260,000. The m.w. 260,000 form was restricted to IEL, was distinct from the B220 molecule, and was the only CD45 isoform that expressed the CD45-associated carbohydrate differentiation Ag CT1. Moreover, the CT1 determinant was present on cells of the Thy-1- but not the Thy-1+ IEL subset. Sequential immunoprecipitation studies indicated that expression of the m.w. 260,000 protein was not restricted to CT1+ cells. The protein composition of the m.w. 260,000 CD45 isoform was examined by using the polymerase chain reaction for analysis of CD45 variable exon usage. In contrast to B cells in which the major CD45 mRNA contained all three variable exons (exons 4, 5, and 6), IEL CD45 mRNA contained significant amounts of two-exon, single exon, and zero variable exon forms. Restriction enzyme analysis identified the single exon form as exon 5 and the two-exon form as a mixture of exons 4 and 5 and exons 5 and 6. Metabolic labeling of CD45 in pulse-chase experiments suggested that the generation of this high m.w. protein was caused by post-translational modifications, perhaps glycosylation. Overall, the results indicated that the high m.w. form of CD45 and the addition of the CT1 determinant were generated via IEL-specific post-translational modifications and not by novel alternate exon usage.  相似文献   

12.
We previously reported that IL-7 maintains the viability and differentiation potential of CD25 (IL-2R p55) positive CD3-CD4-CD8- thymic pre-T cells in vitro. This culture system is suitable for studying signals that regulate differentiation of T cell precursors in the thymus. In this study, we screened cytokines for their capacity to induce CD4 or CD8 in murine thymic pre-T cells cultured with IL-7. Of 15 cytokines tested, only transforming growth factor (TGF-beta) and TNF-alpha induced CD8 (Lyt-2), while no cytokine was able to induce CD4 on CD25+CD3-CD4-CD8- thymocytes. The combination of TGF-beta and TNF-alpha was synergistic, and the majority of cells recovered after 2 to 3 days in culture expressed CD8 (but not CD3 or CD4). A similar effect of TGF-beta and TNF-alpha was observed using day-15 fetal thymocytes, CD3+CD4-CD8- or CD3+CD4+CD8- adult thymocytes, although the combination of these cytokines resulted in an additive rather than a synergistic effect in these subsets. In contrast, neither TGF-beta nor TNF-alpha induced CD8 expression on splenic CD4+CD8- T cells. These observations suggest a role for these cytokines in the induction of CD8 expression in CD8- thymocyte subsets including CD3-CD4-CD8- thymic pre-T cells.  相似文献   

13.
The heat-stable antigen (HSA), recognized by the monoclonal antibodies M1/69, B2A2, and J11d, is low or absent on the surface of most murine peripheral T cells but present on all but 3% of thymocytes. The CD4-CD8+ and CD4+CD8- or "single positive" thymic populations may be divided into further subgroups based on surface HSA expression. One group, CD4-CD8+ and expressing very high levels of HSA (HSA++), is an immature, T cell antigen receptor (TcR) negative, outer cortical blast cell. However, a further subdivision of CD4-CD8+ and CD4+CD8- single positives may be made, into those negative to low for HSA (HSA-) and those expressing moderate amounts of HSA (HSA+). The proportion of HSA- single positives is low in the thymus of young mice, whereas the proportion of HSA+ single positives is similar to that of the adult. Both the HSA- and the HSA+ subsets of single positive thymocytes from adult mice are CD3+ and express the normal peripheral T cell incidence of V beta 8 determinants on the TcR. On stimulation with concanavalin A in limit-dilution culture both HSA- and HSA+ subsets of single positive thymocytes give a high frequency of proliferating clones, and the clones from both HSA- and HSA+ subsets of CD4-CD8+ thymocytes are cytotoxic. Thus both HSA- and HSA+ single positive thymocytes are functionally mature. The HSA- subsets of single positive thymocytes differ from the HSA+ subsets in being slightly larger in size, in expressing higher levels of MEL-14, in binding more peanut agglutinin, and in including a proportion of cells expressing high levels of the Pgp-1 glycoprotein. It is suggested that HSA- CD4-CD8+ and HSA- CD4+CD8- thymocytes are more mature than their HSA+ counterparts, and might represent a previously activated or "memory" thymic subpopulation.  相似文献   

14.
In this report, we investigate the effect of cyclosporin A (CsA) on lymphopoiesis, and demonstrate that CsA selectively abrogates the development of CD4+CD8- and CD4-CD8+ T cells (single positive cells) in the thymus. This developmental arrest results in the complete absence of mature T cells (assessed both by phenotypic and functional analyses) in the spleen of syngeneic bone marrow transplanted mice subsequently treated with CsA. In contrast to its remarkable effect on T cells, CsA had no detectable effect on B cells differentiation. In the thymus, the generation of CD4+CD8+ thymocytes was not affected by CsA treatment, and CD4-CD8- thymocytes of CsA-treated mice expressed surface markers characteristic of normal CD4-CD8- thymocytes, and exhibited normal functional activity when stimulated with anti-CD3 antibody. Thus, CsA appears to prevent the generation of mature, single positive T cells without affecting the development of immature T cells in the thymus. In addition to its immunosuppressive effect on immunocompetent cells, these results indicate a novel feature of CsA, which involves arrest of T cell differentiation, a finding that may be important for applications in clinical bone marrow transplantation.  相似文献   

15.
This study follows our previous investigation describing the production of four cytokines (IL-2, IL-4, IFN-gamma, and TNF-alpha) by subsets of thymocytes defined by the expression of CD3, 4, 8, and 25. Here we investigate in greater detail subpopulations of CD4-CD8- double negative (DN) thymocytes. First we divided immature CD25-CD4-CD8-CD3- (CD25- triple negative) (TN) thymocytes into CD44+ and CD44- subsets. The CD44+ population includes very immature precursor T cells and produced high titers of IL-2, TNF-alpha, and IFN-gamma upon activation with calcium ionophore and phorbol ester. In contrast, the CD44- subset of CD25- TN thymocytes did not produce any of the cytokines studied under similar activation conditions. This observation indicates that the latter subset, which differentiates spontaneously in vitro into CD4+CD8+, already resembles CD4+CD8+ thymocytes (which do not produce any of the tested cytokines). We also subdivided the more mature CD3+ DN thymocytes into TCR-alpha beta- and TCR-gamma delta-bearing subsets. These cells produced cytokines upon activation with solid phase anti-CD3 mAb. gamma delta TCR+ DN thymocytes produced IL-2, IFN-gamma and TNF-alpha, whereas alpha beta TCR+ DN thymocytes produced IL-4, IFN-gamma, and TNF-alpha but not IL-2. We then studied alpha beta TCR+ DN T cells isolated from the spleen and found a similar cytokine production profile. Furthermore, splenic alpha beta TCR+ DN cells showed a TCR V beta gene expression profile reminiscent of alpha beta TCR+ DN thymocytes (predominant use of V beta 8.2). These observations suggest that at least some alpha beta TCR+ DN splenocytes are derived from alpha beta TCR+ DN thymocytes and also raises the possibility that these cells may play a role in the development of Th2 responses through their production of IL-4.  相似文献   

16.
A novel thymocyte subpopulation expressing an unusual TCR repertoire was identified by high surface expression of the Ly-6C Ag. Ly-6C+ thymocytes were distributed among all four CD4/CD8 thymocyte subsets, and represented a readily identifiable subpopulation within each one. Ly-6C+ thymocytes express TCR-alpha beta, arise late in ontogeny, and appear in the CD4/CD8 developmental pathway after birth in a sequence that resembles that followed by conventional Ly-6C- cells during fetal ontogeny. Most interestingly, adult Ly-6C+ thymocytes express an unusual TCR-V beta repertoire that is identical to that expressed by CD4-CD8-TCR-alpha beta+ thymocytes in its overexpression of TCR-V beta 8 and in its expression of some potentially autoreactive TCR-V beta specificities. This unusual TCR-V beta repertoire was even expressed by Ly-6C+ thymocytes contained within the CD4+ CD8- 'single positive' thymocyte subset. Thus, expression of this unusual TCR-V beta repertoire is not limited to CD4-CD8-thymocytes, and is unlikely to be a consequence of their double negative phenotype. Rather, we think that Ly-6C+TCR-alpha beta+ thymocytes and CD4-CD8-TCR-alpha beta+ are developmentally interrelated, a conclusion supported by several lines of evidence including the selective failure of both Ly-6C+ and CD4-CD8-TCR-alpha beta+ thymocyte subsets to appear in TCR-beta transgenic mice. In contrast, peripheral Ly-6C+ T cells are developmentally distinct from Ly-6C+ thymocytes in that peripheral Ly-6C+ T cells expressed a conventional TCR-V beta repertoire and developed normally in TCR-beta transgenic mice in which Ly-6C+ thymocytes failed to arise. We conclude that: 1) expression of a skewed TCR-V beta repertoire is a characteristic of Ly-6C+TCR-alpha beta+ thymocytes as well as CD4-CD8-TCR-alpha beta+ thymocytes, and is not unique to thymocytes expressing neither CD4 nor CD8 accessory molecules; and 2) Ly-6C+ thymocytes are developmentally linked to CD4-CD8-TCR-alpha beta+ thymocytes, but not to Ly-6C+ peripheral T cells. We suggest that Ly-6C+TCR-alpha beta+ thymocytes are not the developmental precursors of Ly-6C+ peripheral T cells, but rather may be the developmental precursors of CD4-CD8-TCR-alpha beta+ thymocytes.  相似文献   

17.
IL-7 maintains the T cell precursor potential of CD3-CD4-CD8- thymocytes.   总被引:10,自引:0,他引:10  
We and other investigators have reported that IL-4 (in the presence of PMA) or IL-7 (used alone) induce proliferation of both adult and fetal (gestation day 15) CD4-CD8- thymocytes. These results suggested that these cytokines may be growth factors for pre-T cells. However, we recently observed that among adult CD4-CD8- thymocytes, only the CD3+ subset proliferates in response to IL-7, whereas IL-4 + PMA induces proliferative responses in both CD3- and CD3+ subsets. Thus, we concluded that IL-7 used alone is not a potent growth stimulus for adult thymic CD3-CD4-CD8- triple negative (TN) T cell precursors. Interestingly, the viability of adult TN thymocytes in culture was improved by IL-7 for up to 1 wk, in spite of the inability of IL-7 to induce significant [3H]TdR incorporation in these cells. After culture in IL-7 for 4 days, the viable cells remained CD4-CD8-, but 25 to 35% expressed CD3 whereas the rest remained CD3-. In contrast, most of the cells cultured with IL-4 + PMA for 4 days remained TN. To investigate whether adult TN thymocytes that survive in vitro in the presence of IL-4 + PMA or IL-7 retain T cell progenitor potential, we tested whether they could reconstitute lymphoid cell-depleted (2-deoxyguanosine-treated) fetal thymus organ cultures. Our results demonstrate that TN cells cultured in IL-7 retain T cell progenitor potential.  相似文献   

18.
The source of IL-4 required for priming naive T cells into IL-4-secreting effectors has not been clearly identified. Here we show that upon TCR stimulation, thymus NK1-CD4+8- T cells produced IL-4, the magnitude of which was inversely correlated with age. This IL-4 production response by Th2-prone BALB/c mice was approximately 9-fold that of Th1-prone C57BL/10 mice. More than 90% of activated NK1-CD4+8- thymocytes did not use the invariant V alpha 14-J alpha 281 chain characteristic of typical CD1-restricted NK1+CD4+ T cells. Stat6-null NK1-CD4+8- thymocytes produced bioactive IL-4, with induction of IL-4 mRNA expression within 1 h of stimulation. Our results support the possibility that TCR repertoire-diverse conventional NK1-CD4+ T cells are a potential IL-4 source for directing naive T cells toward Th2/type 2 CD8+ T cell (Tc2) effector development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号