首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prp19p is a protein found in the nucleus, cytosol or lipid droplets depending on the cell type. Prp19p participates in pre-mRNA splicing, in neuronal/astroglial cell fate decisions or in adipocyte lipid droplet biogenesis. In this study, the motifs of Prp19p that are necessary for its localization to lipid droplets or the nucleus in 3T3-L1 adipocytes are investigated using a series of truncated mutants of Prp19p that were fused to EGFP and transiently introduced into differentiated 3T3-L1 adipocytes. Immunofluorescence microscopy revealed that a domain of amino acids 167–250 is necessary for the recruitment of Prp19p to lipid droplets and that a domain of amino acids 1–166 is necessary for the recruitment of Prp19p to a nucleus.  相似文献   

2.
This study aimed to investigate the relationship between newly formed lipid droplets and lipid droplet surface proteins, including perilipin, adipose differentiation related protein (ADRP), and p200 kDa protein (p200) in 3T3-L1 preadipocytes, during lipogenesis. Sterol ester was used to induce nascent lipid droplets in 3T3-L1 preadipocytes and the sequence of lipids and lipid droplet surface proteins was studied using a combination of immunohistochemistry and Nile red staining/Oil red O. We demonstrated that, although most growing lipid droplets appeared to have a lipid core surrounded by a fluorescent rim of ADRP, perilipin, and p200, tiny protein aggregates of ADRP, perilipin, or p200 could also be found to occur in the absence of lipid accumulation. In addition, ADRP associated with nascent lipid droplets prior to that of perilipin or p200. We provide evidence that lipid droplet surface proteins, especially ADRP and perilipin, are important in serving as a nucleation center for the assembly of lipid to form nascent lipid droplets.  相似文献   

3.
Perilipin and ADRP, located on the surface of intracellular lipid droplets, are proposed to be involved in adipocyte lipid metabolism. The aim of the present study was to investigate the effect of PKA and PKC activities on the distribution of perilipin and ADRP in primary cultured adrenal cells, and the role of ERK in PMA- and calphostin C-induced steroidogenesis. Immunofluorescence staining indicated that in addition to p160, a capsular protein of steroidogenic lipid droplets, perilipin and ADRP were localized on the lipid droplet surface. Stimuli such as activation of PKA by db cAMP or inhibition of PKC by calphostin C, which increase corticosterone synthesis in various magnitudes, caused detachment of p160 and perilipin, but not ADRP, from the lipid droplet surface. Activation of PKC by PMA induced increase in corticosterone synthesis, however, it did not affect the distribution of perilipin, p160, or ADRP on the lipid droplet surface, suggesting the presence of mechanisms for promoting sterodiogensis other than causing detachment of lipid droplet surface proteins. We further demonstrated that ERK pathway was involved in PMA-induced steroidogenesis, since PD98059, specific inhibitor of MEK, blocked the increases in steroidogenesis and phosphorylation of ERK caused by PMA, but not by cAMP-PKA. These data indicate that p160, perilipin, and ADRP were all located on the lipid droplet surface in rat adrenal cells. On the basis of its non-responsiveness to lipolytic stimulation, ADRP may be a structural protein of the lipid droplet surface, whereas their immediate response to lipolytic stimuli suggest that perilipin and p160 are functional proteins. PKC regulates adrenal steroidogenesis through ERK cascade, whereas PKA pathway does not involve ERK.  相似文献   

4.
The yeast protein Prp19p is essential for pre-mRNA splicing and is associated with the spliceosome concurrently with or just after dissociation of U4 small nuclear RNA. In splicing extracts, Prp19p is associated with several other proteins in a large protein complex of unknown function, but at least one of these proteins is also essential for splicing (W.-Y. Tarn, C.-H. Hsu, K.-T. Huang, H.-R. Chen, H.-Y. Kao, K.-R. Lee, and S.-C. Cheng, EMBO J. 13:2421–2431, 1994). To identify proteins in the Prp19p-associated complex, we have isolated trans-acting mutations that exacerbate the phenotypes of conditional alleles of prp19, using the ade2-ade3 sectoring system. A novel splicing factor, Snt309p, was identified through such a screen. Although the SNT309 gene was not essential for growth of Saccharomyces cerevisiae under normal conditions, yeast cells containing a null allele of the SNT309 gene were temperature sensitive and accumulated pre-mRNA at the nonpermissive temperature. Far-Western blot analysis revealed direct interaction between Prp19p and Snt309p. Snt309p was shown to be a component of the Prp19p-associated complex by Western blot analysis. Immunoprecipitation studies demonstrated that Snt309p was also a spliceosomal component and associated with the spliceosome in the same manner as Prp19p during spliceosome assembly. These results suggest that the functions of Prp19p and Snt309p in splicing may require coordinate action of these two proteins.  相似文献   

5.
Prp19 is the founding member of the NineTeen Complex, or NTC, which is a spliceosomal subcomplex essential for spliceosome activation. To define Prp19 connectivity and dynamic protein interactions within the spliceosome, we systematically queried the Saccharomyces cerevisiae proteome for Prp19 WD40 domain interaction partners by two-hybrid analysis. We report that in addition to S. cerevisiae Cwc2, the splicing factor Prp17 binds directly to the Prp19 WD40 domain in a 1:1 ratio. Prp17 binds simultaneously with Cwc2 indicating that it is part of the core NTC complex. We also find that the previously uncharacterized protein Urn1 (Dre4 in Schizosaccharomyces pombe) directly interacts with Prp19, and that Dre4 is conditionally required for pre-mRNA splicing in S. pombe. S. pombe Dre4 and S. cerevisiae Urn1 co-purify U2, U5, and U6 snRNAs and multiple splicing factors, and dre4Δ and urn1Δ strains display numerous negative genetic interactions with known splicing mutants. The S. pombe Prp19-containing Dre4 complex co-purifies three previously uncharacterized proteins that participate in pre-mRNA splicing, likely before spliceosome activation. Our multi-faceted approach has revealed new low abundance splicing factors connected to NTC function, provides evidence for distinct Prp19 containing complexes, and underscores the role of the Prp19 WD40 domain as a splicing scaffold.  相似文献   

6.
In mature adipocytes, triglyceride is stored within lipid droplets, which are coated with the protein perilipin, which functions to regulate lipolysis by controlling lipase access to the droplet in a hormone-regulatable fashion. Adipocyte differentiation-related protein (ADRP) is a widely expressed lipid droplet binding protein that is coexpressed with perilipin in differentiating fat cells but is minimally present in fully differentiated cultured adipocytes. We find that fibroblasts ectopically expressing C/EBPalpha (NIH-C/EBPalpha cells) differentiate into mature adipocytes that simultaneously express perilipin and ADRP. In response to isoproterenol, perilipin is hyperphosphorylated, lipolysis is enhanced, and subsequently, ADRP expression increases coincident with it surrounding intracellular lipid droplets. In the absence of lipolytic stimulation, inhibition of proteasomal activity with MG-132 increased ADRP levels to those of cells treated with 10 mum isoproterenol, but ADRP does not surround the lipid droplet in the absence of lipolytic stimulation. We overexpressed a perilipin A construct in NIH-C/EBPalpha cells where the six serine residues known to be phosphorylated by protein kinase A were changed to alanine (Peri A Delta1-6). These cells show no increase in ADRP expression in response to isoproterenol. We propose that ADRP can replace perilipin on existing lipid droplets or those newly formed as a result of fatty acid reesterification, under dynamic conditions of hormonally stimulated lipolysis, thus preserving lipid droplet morphology/structure.  相似文献   

7.
8.
The PAT family of lipid droplet proteins includes 5 members in mammals: perilipin, adipose differentiation-related protein (ADRP), tail-interacting protein of 47 kDa (TIP47), S3–12, and OXPAT. Members of this family are also present in evolutionarily distant organisms, including insects, slime molds and fungi. All PAT proteins share sequence similarity and the ability to bind intracellular lipid droplets, either constitutively or in response to metabolic stimuli, such as increased lipid flux into or out of lipid droplets. Positioned at the lipid droplet surface, PAT proteins manage access of other proteins (lipases) to the lipid esters within the lipid droplet core and can interact with cellular machinery important for lipid droplet biogenesis. Genetic variations in the gene for the best-characterized of the mammalian PAT proteins, perilipin, have been associated with metabolic phenotypes, including type 2 diabetes mellitus and obesity. In this review, we discuss how the PAT proteins regulate cellular lipid metabolism both in mammals and in model organisms.  相似文献   

9.
Despite the critical role lipid droplets play in maintaining energy reserves and lipid stores for the cell, little is known about the regulation of the lipid or protein components within the lipid droplet. Although immunofluorescence of intact cells as well as Western analysis of isolated lipid droplets revealed that sterol carrier protein-2 (SCP-2) was not associated with lipid droplets, SCP-2 expression significantly altered the structure of the lipid droplet. First, the targeting of fatty acid and cholesterol to the lipid droplets was significantly decreased. Second, the content of several proteins important for lipid droplet function was differentially increased (perilipin A), reduced severalfold (adipose differentiation-related protein (ADRP), vimentin), or almost completely eliminated (hormone-sensitive lipase and proteins >93 kDa) in the isolated lipid droplet. Third, the distribution of lipids within the lipid droplets was significantly altered. Double labeling of cells with 12-(N-methyl)-N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-octadecanoic acid (NBD-stearic acid) and antisera to ADRP showed that 70, 24, and 13% of lipid droplets contained ADRP, NBD-stearic acid, or both, respectively. SCP-2 expression decreased the level of ADRP in the lipid droplet but increased the proportion wherein ADRP and NBD-stearic acid colocalized by 3-fold. SCP-2 expression also decreased the lipid droplet fatty acid and cholesterol mass (nmol/mg protein) by 5.2- and 6.6-fold, respectively. Finally, SCP-2 expression selectively altered the pattern of esterified fatty acids in favor of polyunsaturated fatty acids within the lipid droplet. Displacement studies showed differential binding affinity of ADRP for cholesterol and fatty acids. These data suggested that SCP-2 and ADRP play a significant role in regulating fatty acid and cholesterol targeting to lipid droplets as well as in determining their lipid and protein components.  相似文献   

10.
Five proteins of the perilipin (Plin) family such as Plin1 (perilipin) Plin2 (adipose differentiation-related protein), Plin3 (tail-interacting protein of 47 kDa), Plin4 (S3-12), and Plin5 (myocardial lipid droplet protein) are characterized as lipid droplet (LD) proteins in adipocytes. Recent reports have demonstrated that fat-specific protein 27 (FSP27) and hypoxia-inducible protein 2 (HIG2) are also thought to be novel LD proteins in addition to proteins of the Plin family. Growing evidence have shown that LD proteins play a role in the pathophysiology in the fatty liver disease which is characterized by hepatocytes containing LD with excessive neutral lipid. Studies showed LD proteins such as Plin1, Plin2, Plin3, Plin5, FSP27, and HIG2 are expressed in the liver steatosis. Among them, a high fat diet increases expression of Plin2 and/or FSP27 through activation of peroxisome proliferator-activated receptor γ to develop fatty liver. In this article, recent advances on the role of LD proteins in pathophysiology of fatty liver diseases are summarized.  相似文献   

11.
The PAT family proteins, named after perilipin, adipophilin, and the tail-interacting protein of 47 kDa (TIP47), are implicated in intracellular lipid metabolism. They associate with lipid droplets, but how is completely unclear. From immunofluorescence studies, they are reported to be restricted to the outer membrane monolayer enveloping the lipid droplet and not to enter the core. Recently, we found another kind of lipid droplet-associated protein, caveolin-1, inside lipid droplets. Using freeze-fracture immunocytochemistry and electron microscopy, we now describe the distributions of perilipin and caveolin-1 and of adipophilin and TIP47 in lipid droplets of adipocytes and macrophages. All of these lipid droplet-associated proteins pervade the lipid droplet core and hence are not restricted to the droplet surface. Moreover, lipid droplets are surprisingly heterogeneous with respect to their complements and their distribution of lipid droplet-associated proteins. Whereas caveolin-1 is synthesized in the endoplasmic reticulum and is transferred to the lipid droplet core by inundating lipids during droplet budding, the PAT proteins, which are synthesized on free ribosomes in the cytoplasm, evidently target to the lipid droplet after it has formed. How the polar lipid droplet-associated proteins are accommodated among the essentially hydrophobic neutral lipids of the lipid droplet core remains to be determined.  相似文献   

12.
The majority of eukaryotic cells synthesize neutral lipids and package them into cytosolic lipid droplets. In vertebrates, triacylglycerol-rich lipid droplets of adipocytes provide a major energy storage depot for the body, whereas cholesteryl ester-rich droplets of many other cells provide building materials for local membrane synthesis and repair. These lipid droplets are coated with one or more of five members of the perilipin family of proteins: adipophilin, TIP47, OXPAT/MLDP, S3-12, and perilipin. Members of this family share varying levels of sequence similarity, lipid droplet association, and functions in stabilizing lipid droplets. The most highly studied member of the family, perilipin, is the most abundant protein on the surfaces of adipocyte lipid droplets, and the major substrate for cAMP-dependent protein kinase [protein kinase A (PKA)] in lipolytically stimulated adipocytes. Perilipin serves important functions in the regulation of basal and hormonally stimulated lipolysis. Under basal conditions, perilipin restricts the access of cytosolic lipases to lipid droplets and thus promotes triacylglycerol storage. In times of energy deficit, perilipin is phosphorylated by PKA and facilitates maximal lipolysis by hormone-sensitive lipase and adipose triglyceride lipase. A model is discussed whereby perilipin serves as a dynamic scaffold to coordinate the access of enzymes to the lipid droplet in a manner that is responsive to the metabolic status of the adipocyte.  相似文献   

13.
The PAT family of lipid storage droplet proteins comprised five members, each of which has become an established regulator of cellular neutral lipid metabolism. Perilipin 5 (also known as lsdp-5, MLDP, PAT-1, and OXPAT), the most recently discovered member of the family, has been shown to localize to two distinct intracellular pools: the lipid storage droplet (LD), and a poorly characterized cytosolic fraction. We have characterized the denser of these intracellular pools and find that a population of perilipin 5 not associated with large LDs resides in complexes with a discrete density (~1.15 g/ml) and size (~575 kDa). Using immunofluorescence, western blotting of isolated sucrose density fractions, native gradient gel electrophoresis, and co-immunoprecipitation, we have shown that these small (~15 nm), perilipin 5-encoated structures do not contain the PAT protein perilipin 2 (ADRP), but do contain perilipin 3 and several other as of yet uncharacterized proteins. The size and density of these particles as well as their susceptibility to degradation by lipases suggest that like larger LDs, they have a neutral lipid rich core. When treated with oleic acid to promote neutral lipid deposition, cells ectopically expressing perilipin 5 experienced a reorganization of LDs in the cell, resulting in fewer, larger droplets at the expense of smaller ones. Collectively, these data demonstrate that a portion of cytosolic perilipin 5 resides in high density lipid droplet complexes that participate in cellular neutral lipid accumulation.  相似文献   

14.
All eukaryotic organisms store excess lipid in intracellular lipid droplets. These dynamic structures are associated with and regulated by numerous proteins. Perilipin 2, an abundant protein on most lipid droplets, promotes neutral lipid accumulation in lipid droplets. However, the mechanism by which perilipin 2 binds to and remains anchored on the lipid droplet surface is unknown. Here we identify features of the lipid droplet surface that influence perilipin 2 localization. We show that perilipin 2 binding to the lipid droplet surface requires both hydrophobic and electrostatic interactions. Reagents that disrupt these interactions also decrease binding. Moreover, perilipin 2 binding does not depend on other lipid droplet-associated proteins but is influenced by the lipid composition of the surface. Perilipin 2 binds to synthetic vesicles composed of dioleoylphosphatidylcholine, a phospholipid with unsaturated acyl chains. Decreasing the temperature of the binding reaction, or introducing phospholipids with saturated acyl chains, decreases binding. We therefore demonstrate a role for surface lipids and acyl chain packing in perilipin 2 binding to lipid droplets. The ability of the lipid droplet phospholipid composition to impact protein binding may link changes in nutrient availability to lipid droplet homeostasis.  相似文献   

15.
The PAT family of lipid storage droplet proteins comprised five members, each of which has become an established regulator of cellular neutral lipid metabolism. Perilipin 5 (also known as lsdp-5, MLDP, PAT-1, and OXPAT), the most recently discovered member of the family, has been shown to localize to two distinct intracellular pools: the lipid storage droplet (LD), and a poorly characterized cytosolic fraction. We have characterized the denser of these intracellular pools and find that a population of perilipin 5 not associated with large LDs resides in complexes with a discrete density (~ 1.15 g/ml) and size (~ 575 kDa). Using immunofluorescence, western blotting of isolated sucrose density fractions, native gradient gel electrophoresis, and co-immunoprecipitation, we have shown that these small (~ 15 nm), perilipin 5-encoated structures do not contain the PAT protein perilipin 2 (ADRP), but do contain perilipin 3 and several other as of yet uncharacterized proteins. The size and density of these particles as well as their susceptibility to degradation by lipases suggest that like larger LDs, they have a neutral lipid rich core. When treated with oleic acid to promote neutral lipid deposition, cells ectopically expressing perilipin 5 experienced a reorganization of LDs in the cell, resulting in fewer, larger droplets at the expense of smaller ones. Collectively, these data demonstrate that a portion of cytosolic perilipin 5 resides in high density lipid droplet complexes that participate in cellular neutral lipid accumulation.  相似文献   

16.
U-box-containing Prp19p is an integral component of the Prp19p-associated complex (the nineteen complex, or NTC) that is essential for activation of the spliceosome. Prp19p makes numerous protein-protein contacts with other NTC components and is required for NTC stability. Here we show that Prp19p forms a tetramer in vitro and in vivo and we map the domain required for its oligomerization to a central tetrameric coiled-coil. Biochemical and in vivo analyses are consistent with Prp19p tetramerization providing an interaction surface for a single copy of its binding partner, Cef1p. Electron microscopy showed that the isolated Prp19p tetramer is an elongated particle consisting of four globular WD40 domains held together by a central stalk consisting of four N-terminal U-boxes and four coiled-coils. These structural and functional data provide a basis for understanding the role of Prp19p as a key architectural component of the NTC.  相似文献   

17.
The yeast Saccharomyces cerevisiae Prp19p protein is an essential splicing factor and a spliceosomal component. It is not tightly associated with small nuclear RNAs (snRNAs) but is associated with a protein complex consisting of at least eight proteins. We have identified two novel components of the Prp19p-associated complex, Ntc30p and Ntc20p. Like other identified components of the complex, both Ntc30p and Ntc20p are associated with the spliceosome in the same manner as Prp19p immediately after or concurrently with dissociation of U4, indicating that the entire complex may bind to the spliceosome as an intact form. Neither Ntc30p nor Ntc20p directly interacts with Prp19p, but both interact with another component of the complex, Ntc85p. Immunoprecipitation analysis revealed an ordered interactions of these components in formation of the Prp19p-associated complex. Although null mutants of NTC30 or NTC20 showed no obvious growth phenotype, deletion of both genes impaired yeast growth resulting in accumulation of precursor mRNA. Extracts prepared from such a strain were defective in pre-mRNA splicing in vitro, but the splicing activity could be restored upon addition of the purified Prp19p-associated complex. These results indicate that Ntc30p and Ntc20p are auxiliary splicing factors the functions of which may be modulating the function of the Prp19p-associated complex.  相似文献   

18.
Fat-specific protein (FSP)27/Cidec is most highly expressed in white and brown adipose tissues and increases in abundance by over 50-fold during adipogenesis. However, its function in adipocytes has remained elusive since its discovery over 15 years ago. Here we demonstrate that FSP27/Cidec localizes to lipid droplets in cultured adipocytes and functions to promote lipid accumulation. Ectopically expressed FSP27-GFP surrounds lipid droplets in 3T3-L1 adipocytes and colocalizes with the known lipid droplet protein perilipin. Immunostaining of endogenous FSP27 in 3T3-L1 adipocytes also confirmed its presence on lipid droplets. FSP27-GFP expression also markedly increases lipid droplet size and enhances accumulation of total neutral lipids in 3T3-L1 preadipocytes as well as other cell types such as COS cells. Conversely, RNA interference-based FSP27/Cidec depletion in mature adipocytes significantly stimulates lipolysis and reduces the size of lipid droplets. These data reveal FSP27/Cidec as a novel adipocyte lipid droplet protein that negatively regulates lipolysis and promotes triglyceride accumulation.  相似文献   

19.
Lipid droplets are intracellular energy storage organelles composed of a hydrophobic core of neutral lipid, surrounded by a monolayer of phospholipid and a diverse array of proteins. The function of the vast majority of these proteins with regard to the formation and/or turnover of lipid droplets is unknown. Our laboratory was the first to report that microsomal triglyceride transfer protein (MTP), a lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins, was expressed in adipose tissue of humans and mice. In addition, our studies suggested that MTP was associated with lipid droplets in both brown and white fat. Our observations led us to hypothesize that MTP plays a key role in lipid droplet formation and/or turnover. The objective of these studies was to gain insight into the function of MTP in adipocytes. Using molecular, biochemical, and morphologic approaches we have shown: 1) MTP protein levels increase nearly five-fold as 3T3-L1 cells differentiate into adipocytes. 2) As 3T3-L1 cells undergo differentiation, MTP moves from the juxtanuclear region of the cell to the surface of lipid droplets. MTP and perilipin 2, a major lipid droplet surface protein, are found on the same droplets; however, MTP does not co-localize with perilipin 2. 3) Inhibition of MTP activity has no effect on the movement of triglyceride out of the cell either as a lipid complex or via lipolysis. 4) MTP is found associated with lipid droplets within hepatocytes from human fatty livers, suggesting that association of MTP with lipid droplets is not restricted to adipocytes. In summary, our data demonstrate that MTP is a lipid droplet-associated protein. Its location on the surface of the droplet in adipocytes and hepatocytes, coupled with its known function as a lipid transfer protein and its increased expression during adipocyte differentiation suggest a role in lipid droplet biology.  相似文献   

20.
The Prp19p protein of the budding yeast Saccharomyces cerevisiae is an essential splicing factor and is associated with the spliceosome during the splicing reaction. We have previously shown that Prp19p is not tightly associated with small nuclear ribonucleoprotein particles but is associated with a protein complex consisting of at least eight protein components. By sequencing components of the affinity-purified complex, we have identified Cef1p as a component of the Prp19p-associated complex, Ntc85p. Cef1p could directly interact with Prp19p and was required for pre-mRNA splicing both in vivo and in vitro. The c-Myb DNA binding motif at the amino terminus of Cef1p was required for cellular growth but not for interaction of Cef1p with Prp19p or Cef1p self-interaction. We have identified a small region of 30 amino acid residues near the carboxyl terminus required for both cell viability and protein-protein interactions. Cef1p was associated with the spliceosome in the same manner as Prp19p, i.e. concomitant with or immediately after dissociation of U4. The anti-Cef1p antibody inhibited binding to the spliceosome of Cef1p, Prp19p, and at least three other components of the Prp19p-associated complex, suggesting that the Prp19p-associated complex is likely associated with the spliceosome and functions as an integral complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号