首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A set of lactobacilli were investigated by polyphasic analysis. Multilocus sequence analysis, DNA typing, microarray analysis, and in silico whole-genome alignments provided a remarkably consistent pattern of similarity within the Lactobacillus acidophilus complex. On microarray analysis, 17 and 5% of the genes from Lactobacillus johnsonii strain NCC533 represented variable and strain-specific genes, respectively, when tested against four independent isolates of L. johnsonii. When projected on the NCC533 genome map, about 10 large clusters of variable genes were identified, and they were enriched around the terminus of replication. A quarter of the variable genes and two-thirds of the strain-specific genes were associated with mobile DNA. Signatures for horizontal gene transfer and modular evolution were found in prophages and in DNA from the exopolysaccharide biosynthesis cluster. On microarray hybridizations, Lactobacillus gasseri strains showed a shift to significantly lower fluorescence intensities than the L. johnsonii test strains, and only genes encoding very conserved cellular functions from L. acidophilus hybridized to the L. johnsonii array. In-silico comparative genomics showed extensive protein sequence similarity and genome synteny of L. johnsonii with L. gasseri, L. acidophilus, and Lactobacillus delbrueckii; moderate synteny with Lactobacillus casei; and scattered X-type sharing of protein sequence identity with the other sequenced lactobacilli. The observation of a stepwise decrease in similarity between the members of the L. acidophilus group suggests a strong element of vertical evolution in a natural phylogenetic group. Modern whole-genome-based techniques are thus a useful adjunct to the clarification of taxonomical relationships in problematic bacterial groups.  相似文献   

2.
3.
The human intestinal isolate Lactobacillus johnsonii NCC 533 (La1) is a probiotic strain with well-documented antimicrobial properties. Previous research has identified the production of lactic acid and bacteriocins as important factors, but that other unidentified factors are also involved. We used the recently published genome sequence of L. johnsonii NCC 533 to search for novel antipathogen factors and identified three potential gene products that may catalyze the synthesis of the known antimicrobial factor hydrogen peroxide, H(2)O(2). In this work, we confirmed the ability of NCC 533 as well as eight different L. johnsonii strains and Lactobacillus gasseri to produce H(2)O(2) when resting cells were incubated in the presence of oxygen, and that culture supernatant containing NCC 533-produced H(2)O(2) was effective in killing the model pathogen Salmonella enterica serovar Typhimurium SL1344 in vitro.  相似文献   

4.
Oxygen relieves the CO2 and acetate dependency of Lactobacillus johnsonii NCC 533. The probiotic Lactobacillus johnsonii NCC 533 is relatively sensitive to oxidative stress; the presence of oxygen causes a lower biomass yield due to early growth stagnation. We show however that oxygen can also be beneficial to this organism as it relieves the requirement for acetate and CO2 during growth. Both on agar- and liquid-media, anaerobic growth of L. johnsonii NCC 533 requires CO2 supplementation of the gas phase. Switching off the CO2 supply induces growth arrest and cell death. The presence of molecular oxygen overcomes the CO2 dependency. Analogously, L. johnsonii NCC 533 strictly requires media with acetate to sustain anaerobic growth, although supplementation at a level that is 100-fold lower (120 microM) than the concentration in regular growth medium for lactobacilli already suffices for normal growth. Analogous to the CO2 requirement, oxygen supply relieves this acetate-dependency for growth. The L. johnsonii NCC 533 genome indicates that this organism lacks genes coding for pyruvate formate lyase (PFL) and pyruvate dehydrogenase (PDH), both CO2 and acetyl-CoA producing systems. Therefore, C1- and C2- compound production is predicted to largely depend on pyruvate oxidase activity (POX). This proposed role of POX in C2/C1-generation is corroborated by the observation that in a POX deficient mutant of L. johnsonii NCC 533, oxygen is not able to overcome acetate dependency nor does it relieve the CO2 dependency.  相似文献   

5.
Requirement for maturation of Escherichia coli bacteriophage lambda   总被引:6,自引:0,他引:6  
During infection a λ phage that is incapable of DNA replication requires recombination for maturation. If two prophages are situated in tandem, this requirement for DNA replication and recombination is bypassed. In physical experiments using the DNA cutting assay of Freifelder et al. (1973), the DNA of a sex factor containing one or two prophages defective in both excision and DNA replication is cut efficiently only when two prophages are in tandem. We interpret this to mean that λ can only be matured from a structure of greater than unit length, and hypothesize that the structure must contain two joined ends (AR-joints).  相似文献   

6.
Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like "swarms" of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework.  相似文献   

7.
Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like “swarms” of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework.  相似文献   

8.
The genes encoding cholera toxin, the principal virulence factor of Vibrio cholerae, are part of the circular single-stranded DNA genome of CTXphi. In toxigenic V. cholerae strains, the CTXphi genome is typically found in integrated arrays of tandemly arranged CTX prophages. Infected cells that lack a chromosomal integration site harbour the CTXphi genome as a plasmid (pCTX). We studied the replication of pCTX and found several indications that this plasmid replicates via a rolling-circle (RC) mechanism. The initiation and termination sites for pCTX plus-strand DNA synthesis were mapped to a 22 bp sequence that contains inverted repeats and a nonanucleotide motif found in the plus-strand origins of several RC replicons. Furthermore, similar to other RC replicons, replication of plasmids containing duplicated pCTX origins resulted in the deletion of sequences between the two origins and the formation of a single chimeric origin. Our previous work revealed that CTX prophage arrays give rise to hybrid CTX virions that contain sequences derived from two adjacent prophages. We now report that the boundaries between the sequences contributed to virions by the upstream and the downstream prophages in an array correspond to the site at which synthesis of plus-strand pCTX DNA is initiated and terminated. These data support the model that plus-strand CTXphi DNA is generated from chromosomal prophages via a novel process analogous to RC replication.  相似文献   

9.
Genetic diversity and genomic rearrangements are a driving force in bacterial evolution and niche adaptation. We sequenced and annotated the genome of Lactobacillus johnsonii DPC6026, a strain isolated from the porcine intestinal tract. Although the genome of DPC6026 is similar in size (1.97 mbp) and GC content (34.8%) to the sequenced human isolate L. johnsonii NCC 533, a large symmetrical inversion of approximately 750 kb differentiated the two strains. Comparative analysis among 12 other strains of L. johnsonii including 8 porcine, 3 human and 1 poultry isolate indicated that the genome architecture found in DPC6026 is more common within the species than that of NCC 533. Furthermore a number of unique features were annotated in DPC6026, some of which are likely to have been acquired by horizontal gene transfer (HGT) and contribute to protection against phage infection. A putative type III restriction-modification system was identified, as were novel Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) elements. Interestingly, these particular elements are not widely distributed among L. johnsonii strains. Taken together these data suggest intra-species genomic rearrangements and significant genetic diversity within the L. johnsonii species and indicate towards a host-specific divergence of L. johnsonii strains with respect to genome inversion and phage exposure.  相似文献   

10.
Typing phages for Salmonella and the prophages of their typical propagation strains were analyzed at the DNA level. Most of them belong to the P22 branch of the lambdoid phages. Acquisition of new plating properties of the typing phages by propagation in particular strains can be due to different host specific modifications of the DNA or to recombination events with residing prophages which are reflected by changes in the respective DNA restriction patterns. It is concluded that the actually available set of typing phages is a historically unique combination of strains.  相似文献   

11.

Background

Periodic spacing of A-tracts (short runs of A or T) with the DNA helical period of ~10?C11?bp is characteristic of intrinsically bent DNA. In eukaryotes, the DNA bending is related to chromatin structure and nucleosome positioning. However, the physiological role of strong sequence periodicity detected in many prokaryotic genomes is not clear.

Results

We developed measures of intensity and persistency of DNA curvature-related sequence periodicity and applied them to prokaryotic chromosomes and phages. The results indicate that strong periodic signals present in chromosomes are generally absent in phage genomes. Moreover, chromosomes containing prophages are less likely to possess a persistent periodic signal than chromosomes with no prophages.

Conclusions

Absence of DNA curvature-related sequence periodicity in phages could arise from constraints associated with DNA packaging in the viral capsid. Lack of prophages in chromosomes with persistent periodic signal suggests that the sequence periodicity and concomitant DNA curvature could play a role in protecting the chromosomes from integration of phage DNA.  相似文献   

12.

Background  

Prophages integrated within the chromosomes of Campylobacter jejuni isolates have been demonstrated very recently. Prior work with Campylobacter temperate bacteriophages, as well as evidence from prophages in other enteric bacteria, suggests these prophages might have a role in the biology and virulence of the organism. However, very little is known about the genetic variability of Campylobacter prophages which, if present, could lead to differential phenotypes in isolates carrying the phages versus those that do not. As a first step in the characterization of C. jejuni prophages, we investigated the distribution of prophage DNA within a C. jejuni population assessed the DNA and protein sequence variability within a subset of the putative prophages found.  相似文献   

13.
Approximately 70% of sequenced bacterial genomes contain prophage-like structures, yet little effort has been made to use this information to determine the functions of these elements. The recent genomic sequencing of the marine bacterium Silicibacter sp. strain TM1040 revealed five prophage-like elements in its genome. The genomes of these prophages (named prophages 1 to 5) are approximately 74, 30, 39, 36, and 15 kb long, respectively. To understand the function of these prophages, cultures of TM1040 were treated with mitomycin C to induce the production of viral particles. A significant increase in viral counts and a decrease in bacterial counts when treated with mitomycin C suggested that prophages were induced from TM1040. Transmission electron microscopy revealed one dominant type of siphovirus, while pulsed-field gel electrophoresis demonstrated two major DNA bands, equivalent to 35 and 75 kb, in the lysate. PCR amplification with primer sets specific to each prophage detected the presence of prophages 1, 3, and 4 in the viral lysate, suggesting that these prophages are inducible, but not necessarily to the same level, while prophages 2 and 5 are likely defective or non-mitomycin C-inducible phages. The combination of traditional phage assays and modern microbial genomics provides a quick and efficient way to investigate the functions and inducibility of prophages, particularly for a host harboring multiple prophages with similar sizes and morphological features.  相似文献   

14.
Approximately 70% of sequenced bacterial genomes contain prophage-like structures, yet little effort has been made to use this information to determine the functions of these elements. The recent genomic sequencing of the marine bacterium Silicibacter sp. strain TM1040 revealed five prophage-like elements in its genome. The genomes of these prophages (named prophages 1 to 5) are approximately 74, 30, 39, 36, and 15 kb long, respectively. To understand the function of these prophages, cultures of TM1040 were treated with mitomycin C to induce the production of viral particles. A significant increase in viral counts and a decrease in bacterial counts when treated with mitomycin C suggested that prophages were induced from TM1040. Transmission electron microscopy revealed one dominant type of siphovirus, while pulsed-field gel electrophoresis demonstrated two major DNA bands, equivalent to 35 and 75 kb, in the lysate. PCR amplification with primer sets specific to each prophage detected the presence of prophages 1, 3, and 4 in the viral lysate, suggesting that these prophages are inducible, but not necessarily to the same level, while prophages 2 and 5 are likely defective or non-mitomycin C-inducible phages. The combination of traditional phage assays and modern microbial genomics provides a quick and efficient way to investigate the functions and inducibility of prophages, particularly for a host harboring multiple prophages with similar sizes and morphological features.  相似文献   

15.
16.
Nonspecific cytotoxic cells (NCC) are the teleost equivalent of mammalian lymphokine-activated natural killer cells. The cytotoxic activities of NCC are enhanced by stress-activated serum factors (SASF) present in tilapia acute-phase serum. In the present study purified NCC and xenogeneic target HL-60 tumor cells and nuclei were distinguishable in mixtures determined by flow cytometry. NCC activated by target HL-60 cells undergo activation-induced programmed cell death (AIPCD) during 12- to 16-h killing assays as shown by Annexin-V binding and nuclear DNA fragmentation results. Annexin-V binding studies also demonstrated that NCC kill HL-60 cells by an apoptotic mechanism. NCC are protected from AIPCD by 4-h preincubation in 50% SASF. Pretreatment also produced more than a fourfold increase in NCC cytotoxicity (effector/target (E:T) ratio = 100:1). In the absence of SASF preincubation, the percentage of apoptotic NCC increased from 8 to 91% at E:T ratios of 1:0 and 1:1, respectively. Kinetic studies (E:T = 10:1) demonstrated that the percentage of NCC exhibiting HL-60-dependent AIPCD increased between 0.1 and 12 h and then decreased inversely with total cell necrosis over the next 60 h. Preincubation of NCC with SASF protected NCC from AIPCD for over 72 h. Crosslinkage of the NCCRP-1 receptor with monoclonal antibody (mab) 5C6 produced AIPCD between 1 and 100 microg/mL mab concentrations. Preincubation with SASF completely protected NCC from mab 5C6-dependent AIPCD. SASF-mediated protection of NCC from AIPCD was dependent upon divalent cations, as demonstrated by increases in DNA hypoploidy of 38, 67, and 88% following preincubation in the presence of 10, 100, and 1000 microM EDTA, respectively. SASF also protected NCC from glucocorticoid- (i. e., dexamethasone) induced apoptosis. Combined, these results demonstrated that NCC activity is down-regulated by AIPCD. Release of SASF into the peripheral circulation may prevent negative regulation of NCC by AIPCD by increasing recycling capacity. Results are discussed in the context of the effects of acute stressors on innate immunity.  相似文献   

17.
CTXphi is a filamentous, lysogenic bacteriophage whose genome encodes cholera toxin, the primary virulence factor produced by Vibrio cholerae. CTX prophages in O1 El Tor and O139 strains of V. cholerae are found within arrays of genetically related elements integrated at a single locus within the V. cholerae large chromosome. The prophages of O1 El Tor and O139 strains generally yield infectious CTXphi. In contrast, O1 classical strains of V. cholerae do not produce CTXphi, although they produce cholera toxin and they contain CTX prophages integrated at two sites. We have identified the second site of CTX prophage integration in O1 classical strains and characterized the classical prophage arrays genetically and functionally. The genes of classical prophages encode functional forms of all of the proteins needed for production of CTXphi. Classical CTX prophages are present either as solitary prophages or as arrays of two truncated, fused prophages. RS1, a genetic element that is closely related to CTXphi and is often interspersed with CTX prophages in El Tor strains, was not detected in classical V. cholerae. Our model for CTXphi production predicts that the CTX prophage arrangements in classical strains will not yield extrachromosomal CTX DNA and thus will not yield virions, and our experimental results confirm this prediction. Thus, failure of O1 classical strains of V. cholerae to produce CTXphi is due to overall deficiencies in the structures of the arrays of classical prophages, rather than to mutations affecting individual CTX prophage genes.  相似文献   

18.
Cell division cycle of cultured neural precursor cells from Drosophila   总被引:1,自引:0,他引:1  
In Drosophila neuroblast cells, which give rise to the embryonic nervous system, undergo a limited number of asymmetric cell divisions. These cell lineages result in the formation of clusters of neurons when neuroblasts are isolated and cultured. A significant proportion of these neural cell clusters (NCC) arise from individual precursor cells. The formation of NCC containing more than two neurons is repressed when DNA synthesis is inhibited. Cell division during NCC development was examined by [3H]thymidine autoradiography. The pattern of DNA synthesis by neural cells was that expected based on observations in situ. The pattern in individual NCC was consistent with single precursor origins for more than 80% of NCC, under our conditions of culture. Based on this, we show that the largest neural precursors at gastrulation undergo the most cell divisions in culture. The neuroblast cell division cycle averages approximately 1.5 hr, and is similar to that of blastoderm cells.  相似文献   

19.
Bacteriophage Mu was the first transposable phage to be discovered and still serves as the model for a large family of related transposable phages and prophages. The Mu genome sequence is known (NC-000929.1 GI:9633494), but not all of the genes have been assigned to the ORFs in the genome sequence. For this paper, we have sequenced an approximately 3-kb DNA region containing four predicted ORFs, Mup35-Mup38, from lysogens containing amber mutant prophages defective in either the J or the K gene. Amber mutations in prophages with J gene mutations mapped to the Mup36 ORF, and those in the K gene were found in Mup37, identifying the ORFs corresponding to these genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号