首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Attenuated molecular clones of simian immunodeficiency virus (SIVmac) are important tools for studying the correlates of protective immunity to lentivirus infection in nonhuman primates. The most highly attenuated SIVmac mutants fail to induce disease but also fail to induce immune responses capable of protecting macaques from challenge with pathogenic virus. We recently described a novel attenuated virus, SIVmac-M4, containing multiple mutations in the transmembrane protein (TM) intracytoplasmic domain. This domain has been implicated in viral assembly, infectivity, and cytopathogenicity. Whereas parental SIVmac239-Nef(+) induced persistent viremia and simian AIDS in rhesus macaques, SIVmac-M4 induced transient viremia in juvenile and neonatal macaques, with no disease for at least 1 year postinfection. In this vaccine study, 8 macaques that were infected as juveniles (n = 4) or neonates (n = 4) with SIVmac-M4 were challenged with pathogenic SIVmac251 administered through oral mucosa. At 1 year postchallenge, six of the eight macaques had low to undetectable plasma viremia levels. Assays of cell-mediated immune responses to SIVmac Gag, Pol, Env, and Nef revealed that all animals developed strong CD8(+) T-cell responses to Gag after challenge but not before. Unvaccinated control animals challenged with SIVmac251 developed persistent viremia, had significantly weaker SIV-specific T-cell responses, and developed AIDS-related symptoms. These findings demonstrate that SIVmac-M4, which contains a full-length Nef coding region and multiple point mutations in the TM, can provide substantial protection from mucosal challenge with pathogenic SIVmac251.  相似文献   

2.
Pigtail macaques (PTM) are an excellent model for HIV research; however, the dynamics of simian immunodeficiency virus (SIV) SIVmac239 infection in PTM have not been fully evaluated. We studied nine PTM prior to infection, during acute and chronic SIVmac239 infections, until progression to AIDS. We found PTM manifest clinical AIDS more rapidly than rhesus macaques (RM), as AIDS-defining events occurred at an average of 42.17 weeks after infection in PTM compared to 69.56 weeks in RM (P = 0.0018). However, increased SIV progression was not associated with increased viremia, as both peak and set-point plasma viremias were similar between PTM and RM (P = 0.7953 and P = 0.1006, respectively). Moreover, this increased disease progression was not associated with rapid CD4(+) T cell depletion, as CD4(+) T cell decline resembled other SIV/human immunodeficiency virus (HIV) models. Since immune activation is the best predictor of disease progression during HIV infection, we analyzed immune activation by turnover of T cells by BrdU decay and Ki67 expression. We found increased levels of turnover prior to SIV infection of PTM compared to that observed with RM, which may contribute to their increased disease progression rate. These data evaluate the kinetics of SIVmac239-induced disease progression and highlight PTM as a model for HIV infection and the importance of immune activation in SIV disease progression.  相似文献   

3.
A striking characteristic of the simian immunodeficiency virus (SIV) and of the human immunodeficiency virus type 2 (HIV-2) is the presence of a nonsense mutation in the env gene resulting in the synthesis of a truncated transmembrane protein lacking the cytoplasmic domain. By mutagenesis of an infectious molecular clone of SIVmac142, we investigated the function of the cytoplasmic domain and the significance of the env nonsense mutation. When the nonsense codon (TAG) was replaced by a glutamine codon (CAG), the virus infected HUT78 cells with markedly delayed kinetics. This negative effect was counterselected in vitro as reversion of the slow phenotype frequently occurred. The sequencing of one revertant revealed the presence of a new stop codon three nucleotides 5' to the original mutation. Deletions or an additional nonsense mutation introduced 3' to the original stop codon did not modify SIV infectivity. In contrast, the same deletions or nonsense mutation introduced in the clone in which the stop codon was replaced by CAG abolished infectivity. These results indicated that the envelope domain located 3' to the stop codon is not necessary for in vitro replication. However, the presence of this domain in SIV transmembrane protein leads to a reduced infectivity. This negative effect might correspond to a function controlling the rate of spread of the virus during in vivo infection.  相似文献   

4.
Although gamma interferon (IFN-gamma) is a key mediator of antiviral defenses, it is also a mediator of inflammation. As inflammation can drive lentiviral replication, we sought to determine the relationship between IFN-gamma-related host immune responses and challenge virus replication in lymphoid tissues of simian-human immunodeficiency virus 89.6 (SHIV89.6)-vaccinated and unvaccinated rhesus macaques 6 months after challenge with simian immunodeficiency virus SIVmac239. Vaccinated-protected monkeys had low tissue viral RNA (vRNA) levels, vaccinated-unprotected animals had moderate tissue vRNA levels, and unvaccinated animals had high tissue vRNA levels. The long-term challenge outcome in vaccinated monkeys was correlated with the relative balance between SIV-specific IFN-gamma T-cell responses and nonspecific IFN-gamma-driven inflammation. Vaccinated-protected monkeys had slightly increased tissue IFN-gamma mRNA levels and a high frequency of IFN-gamma-secreting T cells responding to in vitro SIVgag peptide stimulation; thus, it is likely that they could develop effective anti-SIV cytotoxic T lymphocytes in vivo. In contrast, both high tissue IFN-gamma mRNA levels and strong in vitro SIV-specific IFN-gamma T-cell responses were detected in lymphoid tissues of vaccinated-unprotected monkeys. Unvaccinated monkeys had increased tissue IFN-gamma mRNA levels but weak in vitro anti-SIV IFN-gamma T-cell responses. In addition, in lymphoid tissues of vaccinated-unprotected and unvaccinated monkeys, the increased IFN-gamma mRNA levels were associated with increased Mig/CXCL9, IP-10/CXCL10, and CXCR3 mRNA levels, suggesting that increased Mig/CXCL9 and IP-10/CXCL10 expression resulted in recruitment of CXCR3(+) activated T cells. Thus, IFN-gamma-driven inflammation promotes SIV replication in vaccinated-unprotected and unvaccinated monkeys. Unlike all unvaccinated monkeys, most monkeys vaccinated with SHIV89.6 did not develop IFN-gamma-driven inflammation, but they did develop effective antiviral CD8(+)-T-cell responses.  相似文献   

5.
By superinfection of human immunodeficiency virus type 2 (HIV-2) strain HIV-2ben-infected macaques with simian immunodeficiency virus (SIV) strain SIVmac, we investigated the mutual influences of an apathogenic and a pathogenic virus in vivo. Four rhesus and two cynomolgus monkeys were infected with HIV-2ben in 1988 and 1989, respectively. Virus could be reisolated from five of six animals 6 weeks after infection. The monkeys remained healthy over the next 2 to 3 years. PCR for viral RNA became negative, and virus could no longer be reisolated by coculture. All six macaques were superinfected with the pathogenic SIVmac251/32H. Subsequently, five monkeys became persistently viremic, while one animal was protected against the SIVmac infection. In the peripheral blood mononuclear cells and cocultures of the five viremic animals, DNA from both HIV-2 and SIVmac was present. The plasma contained RNA from both viruses. Thus, superinfection with SIVmac activated HIV-2. A proliferative T-cell response against both HIV-2 and SIVmac was measured in all animals after superinfection. Such a response was regularly seen after infection with the apathogenic HIV-2 but never when the pathogenic SIVmac alone was administered. While naive control monkeys inoculated with SIVmac251/32H regularly develop AIDS-like symptoms soon after infection and have to be killed, none of the preinfected animals has developed AIDS-like symptoms, but two of six animals developed tumors. After the SIVmac challenge, however, apoptotic lymphocytes were detected in the peripheral blood mononuclear cells of all animals. Thus, the presence of an apathogenic viral variant seems to retard the disease occurring after infection with a pathogenic virus rather than to confirm total protection. This partial protection appears to depend on a specific proliferative T-cell response early after infection.  相似文献   

6.
Gastrointestinal (GI) disease is a debilitating feature of human immunodeficiency virus (HIV) infection that can occur in the absence of histopathological abnormalities or identifiable enteropathogens. However, the mechanisms of GI dysfunction are poorly understood. The present study was undertaken to characterize changes in resident and inflammatory cells in the enteric nervous system (ENS) of macaques during the acute stage of simian immunodeficiency virus (SIV) infection to gain insight into potential pathogenic mechanisms of GI disease. Ganglia from duodenum, ileum, and colon were examined in healthy and acutely infected macaques by using a combination of routine histology, double-label immunofluorescence and in situ hybridization. Evaluation of tissues from infected macaques showed progressive infiltration of myenteric ganglia by CD3+ T cells and IBA1+ macrophages beginning as early as 8 days postinfection. Quantitative image analysis revealed that the severity of myenteric ganglionitis increased with time after SIV infection and, in general, was more severe in ganglia from the small intestine than in ganglia from the colon. Despite an abundance of inflammatory cells in myenteric ganglia during acute infection, the ENS was not a target for virus infection. This study provides evidence that the ENS may be playing a role in the pathogenesis of GI disease and enteropathy in HIV-infected people.  相似文献   

7.
Comparative studies were performed to determine the neuropathogenesis of infection in macaques with simian human immunodeficiency virus (SHIV)89.6P and SHIV(KU). Both viruses utilize the CD4 receptor and CXCR4 co-receptor. However, in addition, SHIV89.6P uses the CCR5 co-receptor. Both agents are dual tropic for CD4+ T cells and blood-derived macrophages of rhesus macaques. Following inoculation into macaques, both caused rapid elimination of CD4+ T cells but they varied greatly in mechanisms of neuropathogenesis. Two animals infected with SHIV89.6P developed typical lentiviral encephalitis in which multinucleated giant cell formation, nodular accumulations of microglial cells, activated macrophages and astrocytes, and perivascular accumulations of mononuclear cells were present in the brain. Many of the macrophages in these lesions contained viral RNA. Three macaques infected with SHIV(KU) and killed on days 6, 11 and 18, respectively, developed a slowly progressive infection in the CNS but macrophages were not productively infected and there were no pathological changes in the brain. Two other animals infected with this virus and killed several months later showed minimal infection in the brain even though one of the two developed encephalitis of unknown etiology. The basic difference in the mechanisms of neuropathogenesis by the two viruses may be related to co-receptor usage. SHIV89.6P, in utilizing the CCR5 co-receptor, caused neuropathogenic effects that are similar to other neurovirulent primate lentiviruses.  相似文献   

8.
Comparative studies were performed to determine the neuropathogenesis of infection in macaques with simian human immunodeficiency virus (SHIV)89.6P and SHIVKU. Both viruses utilize the CD4 receptor and CXCR4 co-receptor. However, in addition, SHIV89.6P uses the CCR5 co-receptor. Both agents are dual tropic for CD4+ T cells and blood-derived macrophages of rhesus macaques. Following inoculation into macaques, both caused rapid elimination of CD4+ T cells but they varied greatly in mechanisms of neuropathogenesis. Two animals infected with SHIV89.6P developed typical lentiviral encephalitis in which multinucleated giant cell formation, nodular accumulations of microglial cells, activated macrophages and astrocytes, and perivascular accumulations of mononuclear cells were present in the brain. Many of the macrophages in these lesions contained viral RNA. Three macaques infected with SHIVKU and killed on days 6, 11 and 18, respectively, developed a slowly progressive infection in the CNS but macrophages were not productively infected and there were no pathological changes in the brain. Two other animals infected with this virus and killed several months later showed minimal infection in the brain even though one of the two developed encephalitis of unknown etiology. The basic difference in the mechanisms of neuropathogenesis by the two viruses may be related to co-receptor usage. SHIV89.6P, in utilizing the CCR5 co-receptor, caused neuropathogenic effects that are similar to other neurovirulent primate lentiviruses.  相似文献   

9.
Simian immunodeficiency virus (SIV) infection of macaques is a model for human immunodeficiency virus (HIV) infection. We have previously reported the construction and characterization of an SIV vector with a deletion in the nef gene (SIV(delta nef)) and expressing gamma interferon (SIV(HyIFN)) (L. Giavedoni and T. Yilma, J. Virol. 70:2247-2251, 1996). We now show that rhesus macaques vaccinated with SIV(HyIFN) have a lower viral load than a group similarly immunized with SIV(delta nef). Viral loads remained low in the SIV(HyIFN)-vaccinated group even though SIV expressing gamma interferon could not be isolated after 6 weeks postimmunization in these animals. All immunized and two naive control macaques became infected when challenged with virulent SIV(mac251), at 25 weeks postvaccination. In contrast to the two naive controls that died by 12 and 18 weeks postchallenge, all vaccinated animals remained healthy for more than 32 weeks. In addition, postchallenge cell-associated virus load was significantly lower in SIV(HyIFN)-immunized animals than in the group vaccinated with SIV(delta nef). These findings indicate that cytokine-expressing viruses can provide a novel approach for development of safe and efficacious live attenuated vaccines for AIDS.  相似文献   

10.
Although live attenuated vaccines can provide potent protection against simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus challenges, the specific immune responses that confer this protection have not been determined. To test whether cellular immune responses mediated by CD8+ lymphocytes contribute to this vaccine-induced protection, we depleted rhesus macaques vaccinated with the live attenuated virus SIVmac239Delta3 of CD8+ lymphocytes and then challenged them with SIVmac251 by the intravenous route. While vaccination did not prevent infection with the pathogenic challenge virus, the postchallenge levels of virus in the plasmas of vaccinated control animals were significantly lower than those for unvaccinated animals. The depletion of CD8+ lymphocytes at the time of challenge resulted in virus levels in the plasma that were intermediate between those of the vaccinated and unvaccinated controls, suggesting that CD8+ cell-mediated immune responses contributed to protection. Interestingly, at the time of challenge, animals expressing the Mamu-A*01 major histocompatibility complex class I allele showed significantly higher frequencies of SIV-specific CD8+ T-cell responses and lower neutralizing antibody titers than those in Mamu-A*01- animals. Consistent with these findings, the depletion of CD8+ lymphocytes abrogated vaccine-induced protection, as judged by the peak postchallenge viremia, to a greater extent in Mamu-A*01+ than in Mamu-A*01- animals. The partial control of postchallenge viremia after CD8+ lymphocyte depletion suggests that both humoral and cellular immune responses induced by live attenuated SIV vaccines can contribute to protection against a pathogenic challenge and that the relative contribution of each of these responses to protection may be genetically determined.  相似文献   

11.
Human cytomegalovirus (HCMV) possesses low pathogenic potential in an immunocompetent host. In the immunosuppressed host, however, a wide spectrum of infection outcomes, ranging from asymptomatic to life threatening, can follow either primary or nonprimary infection. The variability in the manifestations of HCMV infection in immunosuppressed individuals implies that there is a threshold of host antiviral immunity that can effectively limit disease potential. We used a nonhuman primate model of CMV infection to assess the relationship between CMV disease and the levels of developing anti-CMV immunity. Naive rhesus macaques were inoculated with rhesus cytomegalovirus (RhCMV) followed 2 or 11 weeks later by inoculation with pathogenic simian immunodeficiency virus SIVmac239. Two of four monkeys inoculated with SIV at 2 weeks after inoculation with RhCMV died within 11 weeks with simian AIDS (SAIDS), including activated RhCMV infection. Neither animal had detectable anti-SIV antibodies. The other two animals died 17 and 27 weeks after SIV inoculation with either SAIDS or early lymphoid depletion, although no histological evidence of activated RhCMV was observed. Both had weak anti-SIV antibody titers. RhCMV antibody responses for this group of monkeys were significantly below those of control animals inoculated with only RhCMV. In addition, all animals of this group had persistent RhCMV DNA in plasma and high copy numbers of RhCMV in tissues. In contrast, animals that were inoculated with SIV at 11 weeks after RhCMV infection rarely exhibited RhCMV DNA in plasma, had low copy numbers of RhCMV DNA in most tissues, and did not develop early onset of SAIDS or activated RhCMV. SIV antibody titers were mostly robust and sustained in these monkeys. SIV inoculation blunted further development of RhCMV humoral responses, unlike the normal pattern of development in control monkeys following RhCMV inoculation. Anti-RhCMV immunoglobulin G levels and avidity were slightly below control values, but levels maintained were higher than those observed following SIV infection at 2 weeks after RhCMV inoculation. These findings demonstrate that SIV produces long-lasting insults to the humoral immune system beginning very early after SIV infection. The results also indicate that anti-RhCMV immune development at 11 weeks after infection was sufficient to protect the host from acute RhCMV sequelae following SIV infection, in contrast to the lack of protection afforded by only 2 weeks of immune response to RhCMV. As previously observed, monkeys that were not able to mount a significant immune response to SIV were the most susceptible to SAIDS, including activated RhCMV infection. Rapid development of SAIDS in animals inoculated with SIV 2 weeks after RhCMV inoculation suggests that RhCMV can augment SIV pathogenesis, particularly during primary infection by both viruses.  相似文献   

12.
The presence of sperm in testicular tissue of rhesus macaques that died as a result of infection with simian immunodeficiency virus (SIV) was related to age and body weight. Depressed testosterone levels were not associated with elevated LH levels. The data suggest that azoospermia in the SIV-infected macaques was due to cachexia and not a direct effect of virus on the testis, supporting a similar hypothesis regarding azoospermia in men infected with human immunodeficiency virus.  相似文献   

13.
Infection with human or simian immunodeficiency virus (SIV) is characterized by the rapid turnover of both viral particles and productively infected cells. It has recently been reported that the clearance of SIV in vivo is exceedingly fast, with half-lives on the order of minutes. The underlying mechanism or site responsible for this rapid clearance, however, remains unknown. To investigate this issue, we chose to infuse infectious SIVmac239 grown from autologous peripheral blood mononuclear cells that were radioactively labeled by [(35)S]methionine and [(35)S]cysteine. This approach eliminates from the viral membrane alloantigens that may have a significant impact on viral clearance. In addition, this approach also permits identification of the sites of viral clearance by measuring the radioactive intensity, even if degradation of SIV RNA occurs in tissues. We now report that the half-life of infused SIV in blood is extremely close to estimates from a previous study, in which unlabeled SIV grown in a heterologous cell line was used. The allogeneic effect due to the presence of human antigens on the surfaces of virions may, therefore, play a minimal role in the high rate of virion clearance. Moreover, close to 30% of infused radioactivity was found in the liver and measureable amounts were detected in the lungs (5.4%), lymph nodes (3.0%), and spleen (0.4%). The detection of a significant proportion of infused virus in the liver suggests that viral clearance from circulation is mediated by a common, nonspecific mechanism, such as the phagocytic functions of the reticuloendothelial system. The rapid clearance and degradation of exogenously infused virions may pose a major obstacle for gene therapy with viral vectors, unless strategies to overcome the rapid in vivo elimination of these particles are developed.  相似文献   

14.
The simian immunodeficiency virus of macaques (SIVmac) is a lentivirus which induces an AIDS-like disease in rhesus monkeys. We have explored the virus-specific cellular immune response in SIVmac-infected rhesus monkeys. Con A-activated, IL-2 expanded PBL of some SIVmac-infected rhesus monkeys lyse autologous B lymphoblastoid cell lines infected with a recombinant vaccinia virus that carries the SIVmac gag gene. This lysis is mediated by CD8+ lymphocytes and is MHC class I restricted. Moreover, these effector lymphocytes do not express the NK cell-associated molecules NKH1 or CD16. These cells are, therefore, CTL. In a limited prospective study of SIVmac-infected rhesus monkeys, the presence of the SIVmac gag-specific CTL activity in PBL correlated with both a reduced efficiency in isolating SIVmac from PBL of these monkeys and their extended survival. This method for assessing SIVmac gag-specific cellular immunity in rhesus monkeys will be important not only in investigating the immunopathogenesis of SIVmac-induced disease, but also in evaluating the capacity of candidate AIDS vaccines to elicit a cell-mediated immune response in this animal model.  相似文献   

15.
One rhesus macaque displayed severe encephalomyelitis and another displayed severe enterocolitis following infection with molecularly cloned simian immunodeficiency virus (SIV) strain SIVmac239. Little or no free anti-SIV antibody developed in these two macaques, and they died relatively quickly (4 to 6 months) after infection. Manifestation of the tissue-specific disease in these macaques was associated with the emergence of variants with high replicative capacity for macrophages and primary infection of tissue macrophages. The nature of sequence variation in the central region (vif, vpr, and vpx), the env gene, and the nef long terminal repeat (LTR) region in brain, colon, and other tissues was examined to see whether specific genetic changes were associated with SIV replication in brain or gut. Sequence analysis revealed strong conservation of the intergenic central region, nef, and the LTR. However, analysis of env sequences in these two macaques and one other revealed significant, interesting patterns of sequence variation. (i) Changes in env that were found previously to contribute to the replicative ability of SIVmac for macrophages in culture were present in the tissues of these animals. (ii) The greatest variability was located in the regions between V1 and V2 and from "V3" through C3 in gp120, which are different in location from the variable regions observed previously in animals with strong antibody responses and long-term persistent infection. (iii) The predominant sequence change of D-->N at position 385 in C3 is most surprising, since this change in both SIV and human immunodeficiency virus type 1 has been associated with dramatically diminished affinity for CD4 and replication in vitro. (iv) The nature of sequence changes at some positions (146, 178, 345, 385, and "V3") suggests that viral replication in brain and gut may be facilitated by specific sequence changes in env in addition to those that impart a general ability to replicate well in macrophages. These results demonstrate that complex selective pressures, including immune responses and varying cell and tissue specificity, can influence the nature of sequence changes in env.  相似文献   

16.
We have examined the frequency of infection of monocyte-derived and alveolar macrophages isolated from rhesus macaques inoculated with simian immunodeficiency virus (SIVmac) utilizing a semiquantitative PCR methodology. Animals were inoculated with either pathogenic (SIVmac239) or nonpathogenic (SIVmac1A11) molecularly cloned viruses of SIVmac, or with uncloned pathogenic SIVmacBIOL. The frequency of SIV DNA in macrophages was highest early after infection and at terminal stages of disease, whereas during the asymptomatic period, SIV DNA was present at very low levels in macrophages.  相似文献   

17.
Background Tuberculosis (TB) and AIDS together present a devastating public health challenge. Over 3 million deaths every year are attributed to these twin epidemics. Annually, ~11 million people are coinfected with HIV and Mycobacterium tuberculosis (Mtb). AIDS is thought to alter the spontaneous rate of latent TB reactivation. Methodology Macaques are excellent models of both TB and AIDS. Therefore, it is conceivable that they can also be used to model coinfection. Using clinical, pathological, and microbiological data, we addressed whether latent TB infection in rhesus macaques can be reactivated by infection with simian immunodeficiency virus (SIV). Results A low‐dose aerosol infection of rhesus macaques with Mtb caused latent, asymptomatic TB infection. Infection of macaques exhibiting latent TB with a rhesus‐specific strain of SIV significantly reactivated TB. Conclusions Rhesus macaques are excellent model of TB/AIDS coinfection and can be used to study the phenomena of TB latency and reactivation.  相似文献   

18.
There is an urgent need for active immunization strategies that, if administered shortly after birth, could protect infants in developing countries from acquiring human immunodeficiency virus (HIV) infection through breast-feeding. Better knowledge of the immunogenic properties of vaccine candidates in infants and of the effect of maternal antibodies on vaccine efficacy will aid in the development of such a neonatal HIV vaccine. Simian immunodeficiency virus (SIV) infection of infant macaques is a useful animal model of pediatric HIV infection with which to address these questions. Groups of infant macaques were immunized at birth and 3 weeks of age with either modified vaccinia virus Ankara (MVA) expressing SIV Gag, Pol, and Env (MVA-SIVgpe) or live-attenuated SIVmac1A11. One MVA-SIVgpe-immunized group had maternally derived anti-SIV antibodies prior to immunization. Animals were challenged orally at 4 weeks of age with a genetically heterogeneous stock of virulent SIVmac251. Although all animals became infected, the immunized animals mounted better antiviral antibody responses, controlled virus levels more effectively, and had a longer disease-free survival than the unvaccinated infected monkeys. Maternal antibodies did not significantly reduce the efficacy of the MVA-SIVgpe vaccine. In conclusion, although the tested vaccines delayed the onset of AIDS, further studies are warranted to determine whether a vaccine that elicits stronger early immune responses at the time of virus exposure may be able to prevent viral infection or AIDS in infants.  相似文献   

19.
Monoclonal antibody SF8/5E11, which recognizes the transmembrane protein (TMP) of simian immunodeficiency virus of macaque monkeys (SIVmac), displayed strict strain specificity. It reacted with cloned and uncloned SIVmac251 but not with cloned SIVmac142 and SIVmac239 on immunoblots. This monoclonal antibody neutralized infection by cloned, cell-free SIVmac251 and inhibited formation of syncytia by cloned SIVmac251-infected cells; these activities were specific to cloned SIVmac251 and did not occur with the other viruses. Site-specific mutagenesis was used to show that TMP amino acids 106 to 110 (Asp-Trp-Asn-Asn-Asp) determined the strain specificity of the monoclonal antibody. This strain-specific neutralizing determinant is located within a variable region of SIVmac and human immunodeficiency virus type 2 (HIV-2) which includes conserved, clustered sites for N-linked glycosylation. The determinant corresponds exactly to a variable, weak neutralizing epitope in HIV-1 TMP which also includes conserved, clustered sites for N-linked glycosylation. Thus, the location of at least one neutralizing epitope appears to be common to both SIVmac and HIV-1. Our results suggest a role for this determinant in the viral entry process. Genetic variation was observed in this neutralizing determinant following infection of a rhesus monkey with molecularly cloned SIVmac239; variant forms of the strain-specific, neutralizing determinant accumulated during persistent infection in vivo. Selective pressure from the host immune response in vivo may result in sequence variation in this neutralizing determinant.  相似文献   

20.
To identify viral determinants of simian immunodeficiency virus (SIV) virulence, two pairs of reciprocal recombinants constructed from a pathogenic (SIVmac239) and a nonpathogenic (SIVmac1A11) molecular clone of SIV were tested in rhesus macaques. A large 6.2-kb fragment containing gag, pol, env, and the regulatory genes from each of the cloned (parental) viruses was exchanged to produce one pair of recombinant viruses (designated SIVmac1A11/239gag-env/1A11 and SIVmac239/1A11gag-env/239 to indicate the genetic origins of the 5'/internal/3' regions, respectively, of the virus). A smaller 1.4-kb fragment containing the external env domain of each of the parental viruses was exchanged to create the second pair (SIVmac1A11/239env/1A11 and SIVmac239/1A11env/239) of recombinant viruses. Each of the two parental and four recombinant viruses was inoculated intravenously into four rhesus macaques, and all 24 animals were viremic by 4 weeks postinoculation (p.i.). Virus could not be isolated from peripheral blood mononuclear cells (PBMC) of any animals infected with SIVmac1A11 after 6 weeks p.i. but was consistently isolated from all macaques inoculated with SIVmac239 for 92 weeks p.i. Virus isolation was variable from animals infected with recombinant viruses; SIVmac1A11/239gag-env/1A11 and SIVmac239/1A11env/239 were isolated most frequently. Animals inoculated with SIVmac239 had 10 to 100 times more virus-infected PBMC than those infected with recombinant viruses. Three animals infected with SIVmac239 died with simian AIDS (SAIDS) during the 2-year observation period after inoculation, and the fourth SIVmac239-infected animal had clinical signs of SAIDS. Two animals infected with recombinant viruses died with SAIDS; one was infected with SIVmac239/1A11gag-env/239, and the other was infected with SIVmac1A11/239gag-env/1A11. The remaining 18 macaques remained healthy by 2 years p.i., and 13 were aviremic. One year after inoculation, peripheral lymph nodes of some of these healthy, aviremic animals harbored infected cells. All animals seroconverted within the first few weeks of infection, and the magnitude of antibody response to SIV was proportional to the levels and duration of viremia. Virus-suppressive PBMC were detected within 2 to 4 weeks p.i. in all animals but tended to decline as viremia disappeared. There was no association of levels of cell-mediated virus-suppressive activity and either virus load or disease progression. Taken together, these results indicate that differences in more than one region of the viral genome are responsible for the lack of virulence of SIVmac1A11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号