首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Increased catabolism of arginine by arginase is increasingly viewed as an important pathophysiological factor in cardiovascular disease, including atherosclerosis induced by high cholesterol diets. Whereas previous studies have focused primarily on effects of high cholesterol diets on arginase expression and arginine metabolism in specific blood vessels, there is no information regarding the impact of lipid diets on arginase activity or arginine bioavailability at a systemic level. We, therefore, evaluated the effects of high fat (HF) and high fat-high cholesterol (HC) diets on arginase activity in plasma and tissues and on global arginine bioavailability (defined as the ratio of plasma arginine to ornithine + citrulline) in apoE(-/-) and wild-type C57BL/6J mice. HC and HF diets led to reduced global arginine bioavailability in both strains. The HC diet resulted in significantly elevated plasma arginase in both strains, but the HF diet increased plasma arginase only in apoE(-/-) mice. Elevated plasma arginase activity correlated closely with increased alanine aminotransferase levels, indicating that liver damage was primarily responsible for elevated plasma arginase. The HC diet, which promotes atherogenesis, also resulted in increased arginase activity and expression of the type II isozyme of arginase in multiple tissues of apoE(-/-) mice only. These results raise the possibility that systemic changes in arginase activity and global arginine bioavailability may be contributing factors in the initiation and/or progression of cardiovascular disease.  相似文献   

2.
Assay and kinetics of arginase   总被引:1,自引:0,他引:1  
A sensitive colorimetric assay for arginase was developed. Urea produced by arginase was hydrolyzed to ammonia by urease, the ammonia was converted to indophenol, and the absorbance was measured at 570 nm. The assay is useful with low concentrations of arginase (0.5 munit or less than 1 ng rat liver arginase) and with a wide range of arginine concentrations (50 microM to 12.5 mM). Michaelis-Menten kinetics and a Km for arginine of 1.7 mM were obtained for Mn2+-activated rat liver arginase; the unactivated enzyme did not display linear behavior on double-reciprocal plots. The kinetic data for unactivated arginase indicated either negative cooperativity or two types of active sites on the arginase tetramer with different affinities for arginine. The new assay is particularly well suited for kinetic studies of activated and unactivated arginase.  相似文献   

3.
Nitrogen regulation of arginase in Neurospora crassa.   总被引:5,自引:3,他引:2       下载免费PDF全文
The final products of the arginine catabolism that can be utilized as a nitrogen source in Neurospora crassa are ammonium, glutamic acid, and glutamine. The effect of these compounds on arginase induction by arginine was studied. In wild-type strain 74-A, induction by arginine was almost completely repressed by glutamic acid plus ammonium, whereas ammonium or glutamic acid alone had only moderate effects. Arginine products of catabolism also repressed arginase induction. A mutant, ure-1, which lacks urease activity, hyperinduced its arginase with arginine as a nitrogen source. The addition of either ammonium or glutamine produced effects similar to those in the wild-type strain. The effect of ammonium on arginase induction is mediated through its conversion into glutamine. This was demonstrated in mutant am-1, which lacks L-glutamate dehydrogenase activity. In this mutant, the effect of glutamic acid was reduced, and, with ammonium, it was completely lost. The addition of glutamine or glutamic acid plus ammonium to this strain decreased by threefold the induction of arginase by arginine. Proline, a final product of arginine catabolism, competitively inhibited arginase activity. This effect and the repression of arginase by glutamine are examples of negative modulation of the first enzyme in a catabolic pathway by its final products.  相似文献   

4.
It has been found that, in Neurospora crassa, arginine synthesized from exogenous citrulline was not as effectively hydrolyzed as exogenous arginine. This was explained by the observed inhibition of arginase in vitro and in vivo by citrulline. The high arginine pool formed from exogenous citrulline feedback inhibits the arginine pathway. These two factors allow exogenous citrulline to be used adventitiously and efficiently as an arginine source. Finally, it was found that ornithine was a strong inhibitor of arginase. This suggests that the characteristically high ornithine pool of minimal cultures of Neurospora may act to control a potentially wasteful catabolism of endogenous arginine by arginase.  相似文献   

5.
Mammals express two isoforms of arginase, designated types I and II. Arginase I is a component of the urea cycle, and inherited defects in arginase I have deleterious consequences in humans. In contrast, the physiologic role of arginase II has not been defined, and no deficiencies in arginase II have been identified in humans. Mice with a disruption in the arginase II gene were created to investigate the role of this enzyme. Homozygous arginase II-deficient mice were viable and apparently indistinguishable from wild-type mice, except for an elevated plasma arginine level which indicates that arginase II plays an important role in arginine homeostasis.  相似文献   

6.
The syntheses of arginase and ornithine transaminase were studied in two strains ofSaccharomyces cerevisiae, viz. strain B and strain α-Σ1278b. Derepression of both enzymes during nitrogen starvation was shown only by strain B, non-specific induction of arginase only by strain α-Σ1278b. This different response of both strains studied reveals substantial differences in the regulation of enzyme synthesis among yeast strains of one and the same species. The specific enzyme activities observed in chemostat cultures with arginine as the nitrogen source and different sugars, at variable carbon to nitrogen ratios, did not indicate the involvement of carbon catabolite repression in the regulation of arginase and ornithine transaminase syntheses. Specific arginase activities observed in the continuous cultures varied widely and did not show a correlation with the intracellular arginine concentration. Extracellular steady-state arginine concentrations higher than about 0.1mm, in addition to abundant energy supply, were found to be required for high production of arginase. It is suggested that, besides intracellular arginine, extracellular arginine may provide an induction signal necessary for full-scale induction of arginase synthesis. A possible intermediary role of arginine permeases or of other membrane proteins is discussed.  相似文献   

7.
Endothelial cells (EC) metabolize L-arginine mainly by arginase, which exists as two distinct isoforms, arginase I and II. To understand the roles of arginase isoforms in EC arginine metabolism, bovine coronary venular EC were stably transfected with the Escherichia coli lacZ gene (lacZ-EC, control), rat arginase I cDNA (AI-EC), or mouse arginase II cDNA (AII-EC). Western blots and enzymatic assays confirmed high-level expression of arginase I in the cytosol of AI-EC and of arginase II in mitochondria of AII-EC. For determining arginine catabolism, EC were cultured for 24 h in DMEM containing 0.4 mM L-arginine plus [1-(14)C]arginine. Urea formation, which accounted for nearly all arginine consumption by these cells, was enhanced by 616 and 157% in AI-EC and AII-EC, respectively, compared with lacZ-EC. Arginine uptake was 31-33% greater in AI-EC and AII-EC than in lacZ-EC. Intracellular arginine content was 25 and 11% lower in AI-EC and AII-EC, respectively, compared with lacZ-EC. Basal nitric oxide (NO) production was reduced by 60% in AI-EC and by 47% in AII-EC. Glutamate and proline production from arginine increased by 164 and 928% in AI-EC and by 79 and 295% in AII-EC, respectively, compared with lacZ-EC. Intracellular content of putrescine and spermidine was increased by 275 and 53% in AI-EC and by 158 and 43% in AII-EC, respectively, compared with lacZ-EC. Our results indicate that arginase expression can modulate NO synthesis in bovine venular EC and that basal levels of arginase I and II are limiting for endothelial syntheses of polyamines, proline, and glutamate and may have important implications for wound healing, angiogenesis, and cardiovascular function.  相似文献   

8.
Nitric oxide (NO) and polyamines play essential roles in many developmental processes and abiotic stress responses in plants. NO and polyamines are metabolized from arginine through NO synthase (NOS) and arginine decarboxylase (ADC), respectively. Function of arginase, another important enzyme involved in arginine metabolism, in abiotic stress remains largely unknown. In the recent study, we have dissected the impact of arginase on arginine metabolism and abiotic stress responses through manipulating AtARGAHs expression. The results suggested that manipulation of arginase expression modulated accumulation of arginine and direct downstream products of arginine catabolism. AtARGAHs knockout lines exhibited increased accumulation of polyamines and NO and enhanced abiotic stress tolerance, while AtARGAHs overexpressing lines displayed the opposite results. Notably, we highlighted that Arabidopsis arginase plays distinctive and dual roles in the crosstalk between polyamines and NO signaling during abiotic stress responses, mediating both arginine metabolism and reactive oxygen species (ROS) accumulation. It is likely that accumulation of both NO and polyamines might activate abiotic stress responses in the plant.  相似文献   

9.
Because L-arginine is degraded by hepatic arginase to ornithine and urea and is transported by the regulated 2A cationic amino acid y(+) transporter (CAT2A), hepatic transport may regulate plasma arginine concentration. Groups of rats (n = 6) were fed a diet of either low salt (LS) or high salt (HS) for 7 days to test the hypothesis that dietary salt intake regulates plasma arginine concentration and renal nitric oxide (NO) generation by measuring plasma arginine and ornithine concentrations, renal NO excretion, and expression of hepatic CAT2A, and arginase. LS rats had lower excretion of NO metabolites and cGMP, lower plasma arginine concentration (LS: 83 +/- 7 vs. HS: 165 +/- 10 micromol/l, P < 0.001), but higher plasma ornithine concentration (LS: 82 +/- 6 vs. HS: 66 +/- 4 micromol/l, P < 0.05) and urea excretion. However, neither the in vitro hepatic arginase activity nor the mRNA for hepatic arginase I was different between groups. In contrast, LS rats had twice the abundance of mRNA for hepatic CAT2A (LS: 3.4 +/- 0.4 vs. HS: 1.6 +/- 0.5, P < 0.05). The reduced plasma arginine concentration with increased plasma ornithine concentration and urea excretion during LS indicates increased arginine metabolism by arginase. This cannot be ascribed to changes in hepatic arginase expression but may be a consequence of increased hepatic arginine uptake via CAT2A.  相似文献   

10.
Bacillus licheniformis has two pathways of arginine catabolism. In well-aerated cultures, the arginase route is present, and levels of catabolic ornithine carbamoyltransferase were low. An arginase pathway-deficient mutant, BL196, failed to grow on arginine as a nitrogen source under these conditions. In anaerobiosis, the wild type contained very low levels of arginase and ornithine transaminase. BL196 grew normally on glucose plus arginine in anaerobiosis and, like the wild type, had appreciable levels of catabolic transferase. Nitrate, like oxygen, repressed ornithine carbamoyltransferase and stimulated arginase synthesis. In aerobic cultures, arginase was repressed by glutamine in the presence of glucose, but not when the carbon-energy source was poor. In anaerobic cultures, ammonia repressed catabolic ornithine carbamoyltransferase, but glutamate and glutamine stimulated its synthesis. A second mutant, derived from BL196, retained the low arginase and ornithine transaminase levels of BL196 but produced high levels of deiminase pathway enzymes in the presence of oxygen.  相似文献   

11.
Todd CD  Gifford DJ 《Planta》2003,217(4):610-615
Following germination of loblolly pine (Pinus taeda L.) seeds, storage proteins in the embryo and megagametophyte are broken down to provide nitrogen, in the form of amino acids, to the developing seedling. A substantial portion of the free amino acids released in this process is arginine. Arginine is hydrolyzed in the cotyledons of the seedling by the enzyme arginase (EC 3.5.3.1), which is under developmental control. It has been shown previously that the seedling is able to initiate arginase gene expression in vitro in the absence of the megagametophyte, however, presence of the megagametophyte causes a greater accumulation of arginase protein and mRNA. Using an in vitro culture system we show that arginine itself may be responsible for up-regulating arginase activity. Application of exogenous arginine to cotyledons of seedlings germinated in the absence of the megagametophyte caused an increase in total shoot pole arginase activity as well as arginase specific activity. Arginine was also able to induce arginase mRNA accumulation in the same tissue.  相似文献   

12.
Excess nitric oxide (NO) induces apoptosis of some cell types, including macrophages. As NO is synthesized by NO synthase (NOS) from arginine, a common substrate of arginase, these two enzymes compete for arginine. There are two known isoforms of arginase, types I and II. Using murine macrophage-like RAW 264.7 cells, we asked if the induction of arginase II would downregulate NO production and hence prevent apoptosis. When cells were exposed to lipopolysaccharide (LPS) and interferon-γ (IFN-γ), the inducible form of NOS (iNOS) was induced, production of NO was elevated, and apoptosis followed. When dexamethasone and cAMP were further added, both iNOS and arginase II were induced, NO production was much decreased, and apoptosis was prevented. When the cells were transfected with an arginase II expression plasmid and treated with LPS/IFN-γ, some cells were rescued from apoptosis. An arginase I expression plasmid was also effective. On the other hand, transfection with the arginase II plasmid did not prevent apoptosis when a NO donor SNAP or a high concentration (12 mM) of arginine was added. These results indicate that arginase II prevents NO-dependent apoptosis of RAW 264.7 cells by depleting intracellular arginine and by decreasing NO production.  相似文献   

13.
The present study investigated the ability of the arginine analog L-NAME (N(omega)-Nitro-L-arginine methyl ester) to modulate the activity of arginase. L-NAME inhibited the activity of arginase in lysates from rat colon cancer cells and liver. It also inhibited the arginase activity of tumor cells in culture. Furthermore, in vivo treatment of rats with L-NAME inhibited arginase activity in tumor nodules and liver, and the effect persisted after treatment ceased. The effect of L-NAME on arginase requires consideration when it is used in vivo in animal models with the aim of inhibiting endothelial NO-synthase, another enzyme using arginine as substrate.  相似文献   

14.
Arginine is a crucial amino acid that serves to modulate the cellular immune response during infection. Arginine is also a common substrate for both inducible nitric oxide synthase (iNOS) and arginase. The generation of nitric oxide from arginine is responsible for efficient immune response and cytotoxicity of host cells to kill the invading pathogens. On the other hand, the conversion of arginine to ornithine and urea via the arginase pathway can support the growth of bacterial and parasitic pathogens. The competition between iNOS and arginase for arginine can thus contribute to the outcome of several parasitic and bacterial infections. There are two isoforms of vertebrate arginase, both of which catalyze the conversion of arginine to ornithine and urea, but they differ with regard to tissue distribution and subcellular localization. In the case of infection with Mycobacterium, Leishmania, Trypanosoma, Helicobacter, Schistosoma, and Salmonella spp., arginase isoforms have been shown to modulate the pathology of infection by various means. Despite the existence of a considerable body of evidence about mammalian arginine metabolism and its role in immunology, the critical choice to divert the host arginine pool by pathogenic organisms as a survival strategy is still a mystery in infection biology.  相似文献   

15.
The present study investigated the ability of the arginine analog L -NAME (Nω-Nitro- L -arginine methyl ester) to modulate the activity of arginase. L -NAME inhibited the activity of arginase in lysates from rat colon cancer cells and liver. It also inhibited the arginase activity of tumor cells in culture. Furthermore, in vivo treatment of rats with L -NAME inhibited arginase activity in tumor nodules and liver, and the effect persisted after treatment ceased. The effect of L -NAME on arginase requires consideration when it is used in vivo in animal models with the aim of inhibiting endothelial NO-synthase, another enzyme using arginine as substrate.  相似文献   

16.
After seed germination, hydrolysis of storage proteins provides a nitrogen source for the developing seedling. In conifers the majority of these reserves are located in the living haploid megagametophyte tissue. In the developing loblolly pine (Pinus taeda L.) seedling an influx of free amino acids from the megagametophyte accompanies germination and early seedling growth. The major component of this amino acid pool is arginine, which is transported rapidly and efficiently to the seedling without prior conversion. This arginine accounts for nearly half of the total nitrogen entering the cotyledons and is likely a defining factor in early seedling nitrogen metabolism. In the seedling, the enzyme arginase is responsible for liberating nitrogen, in the form of ornithine and urea, from free arginine supplied by the megagametophyte. In this report we investigate how the seedling uses arginase to cope with the large arginine influx. As part of this work we have cloned an arginase cDNA from a loblolly pine expression library. Analysis of enzyme activity data, accumulation of arginase protein and mRNA abundance indicates that increased arginase activity after seed germination is due to de novo synthesis of the enzyme. Our results suggest that arginase is primarily regulated at the RNA level during loblolly pine seed germination and post-germinative growth.  相似文献   

17.
Although chickens are uricotelic and do not have a significant urea-ornithine cycle in any tissue, the kidneys contain a high concentration of arginase which apparently functions to regulate degradation of dietary arginine. A series of investigations has been made to determine the intracellular localization of this arginase in chicken kidney.Tissue fractionation using sucrose density gradients and differential centrifugation showed an association of arginase activity with certain marker enzymes and with fractions identified as mitochondria by electron microscopy. This is consistent with the localization of the arginase in the mitochondrial matrix of chicken kidney cells. Such a finding has significance in understanding the regulation of arginine degradation in chickens.  相似文献   

18.
19.
Ornithine decarboxylase (ODC) catalyzes the first step in the polyamine biosynthetic pathway, a highly regulated pathway in which activity increases during rapid growth. Other enzymes also metabolize ornithine, and in hepatomas, rate of growth correlates with decreased activity of these other enzymes, which thus channels more ornithine to polyamine biosynthesis. Ornithine is produced from arginase cleavage of arginine, which also serves as the precursor for nitric oxide production. To study whether short-term coordination of ornithine and arginine metabolism exists in rat colon, ODC, ornithine aminotransferase (OAT), arginase, ornithine, arginine, and polyamine levels were measured after two stimuli (refeeding and/or deoxycholate exposure) known to synergistically induce ODC activity. Increased ODC activity was accompanied by increased putrescine levels, whereas OAT and arginase activity were reduced by either treatment, accompanied by an increase in both arginine and ornithine levels. These results indicate a rapid reciprocal change in ODC, OAT, and arginase activity in response to refeeding or deoxycholate. The accompanying increases in ornithine and arginine concentration are likely to contribute to increased flux through the polyamine and nitric oxide biosynthetic pathways in vivo.  相似文献   

20.
1. A study was undertaken of the conditions that might operate in the synthesis and hydrolysis of arginine by axolotl liver homogenate to test a previous postulate that liver arginase of the non-metamorphosed Mexican axolotl is not able to hydrolyse arginine formed from citrulline and aspartic acid, though it can split exogenous arginine, and also that an enhanced capacity to hydrolyse endogenous arginine plays a major role in the advent of ureotelism observed during the metamorphosis of the axolotl. 2. It was found that the arginase from axolotl liver is very unstable under the conditions followed, contrary to what is observed in rat liver. 3. Axolotl arginase is able to hydrolyse endogenous arginine if preserved. 4. Mn(2+) protects the enzyme and renders it able to split endogenous arginine. 5. It is suggested that the metal ion produces a change of conformation of the enzyme that, being stable, is capable of hydrolysing the amino acid, or that the new conformation is appropriate for interaction with the sites of arginine synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号