首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytoplasmic extracts of mouse Taper ascites cells were centrifuged on sucrose gradients to give 0–80 S, monosome, and polysome fractions. CsCl equilibrium density centrifugation of formaldehyde-fixed material from the 0–80 S fraction demonstrated that the messenger RNA in the 0–80 S fraction was in the form of free ribonucleoprotein. The size of the poly(A+)RNA and the size of the poly(A) segments of these molecules were shown to be very similar in both the free mRNP2 and polysome fractions. The labeling kinetics of the free mRNP poly(A+)RNA was similar to that of the polysomal poly(A+)RNA.The free mRNP poly(A+)RNA efficiently stimulated protein synthesis in the wheat germ cell-free system, supporting the view that it was mRNA. Two-dimensional gel electrophoresis was used to analyze the proteins whose synthesis was directed by free mRNP and polysomal poly(A+)RNA. The free mRNP poly(A+)RNA directed the synthesis of a simpler set of abundant protein products than did the polysomal poly(A+)RNA. Most of the free mRNP abundant protein products were also present in the polysomal products, though obvious quantitative differences were evident, indicating that each individual mRNA had its own characteristic distribution between polysomes and the translationally inactive RNP form.  相似文献   

2.
The poly(A+)RNA of the free mRNP of mouse Taper ascites cell contains a very reduced number of different mRNA sequences compared to the polysome poly(A+)RNA. By the technique of mRNA:cDNA hybridization we have determined that the free mRNP contains approximately 400 different mRNA sequences while the polysomes contain about 9000 different mRNAs. The free mRNP poly(A+)RNA sequences are present in two abundance classes, the abundant free mRNP class containing 15 different mRNA sequences and the less abundant free mRNP class containing 400 different mRNAs. The polysome poly(A+)RNA consists of three abundance classes of 25, 500 and 8500 different mRNA sequences.Despite its intracellular location in RNP structures not directly involved in protein synthesis the poly(A+)RNA purified from the free RNP of these cells was a very effective template for protein synthesis in cell-free systems. Cell-free translation products of free mRNP and polysome poly(A+)RNAs were analyzed by two-dimensional gel electrophoresis. This analysis confirmed the hybridization result that the free mRNP poly(A+)RNA contained fewer sequences than polysomal poly(A+)RNA. The abundant free RNP-mRNA directed protein products were a subset of the polysome mRNA-directed protein products. The numbers of more abundant products of cell-free protein synthesis directed by the free RNP-mRNA and polysomal mRNA were in general agreement with the hybridization estimates of the number of sequences in the abundant classes of these two mRNA populations.  相似文献   

3.
Adenylic acid-rich sequences in messenger RNA from yeast polysomes   总被引:10,自引:0,他引:10  
  相似文献   

4.
A cytoplasmic 10S ribonucleoprotein particle (iRNP), which is isolated from chick embryonic muscle, is a potent inhibitor of mRNA translation in vitro and contains a 4S translation inhibitory RNA species (iRNA). The iRNP particle shows similarity in size to the small nuclear ribonucleoprotein (snRNP) particles. Certain autoimmune disease patients contain antibodies directed against snRNP antigenic determinants. The possibility that iRNP may be related to the small nuclear particles was tested by immunoreactivity with monospecific autoimmune antibodies to six antigenic determinants (Sm, RNP, PM-1, SS-A (Ro), SS-B (La), and Scl-70). By Ouchterlony immunodiffusion assays, the cytoplasmic 10S iRNP did not show any immunoreactivity. Also, a more sensitive hemagglutination inhibition assay for detecting Sm and RNP antigens failed to show reactivity with the 10S iRNP. Thus, the 10S iRNP particles are distinct from the similarly sized snRNP. However, free and polysomal messenger ribonucleoprotein (mRNP) particles and polysomes also isolated from chick embryonic muscle and analyzed by Ouchterlony immunodiffusion and hemagglutination inhibition for the presence of the antigenic determinants showed reactivity to Sm and RNP autoantibodies, but were not antigenic for the other four antibodies. Some of the Sm antigenic peptides of mRNP particles and polysomes were identical to those purified from calf thymus nuclear extract, as judged by Western blot analysis. The association of Sm with free and polysomal mRNP and polysomes suggests that Sm may be involved in some cytoplasmic aspects of mRNA metabolism, in addition to a nuclear function in mRNA processing.  相似文献   

5.
6.
The sedimentation properties of pulse-labeled and long-term labeled mRNA from highly purified HeLa cell free-polysomes, selected for poly(A) content by two successive passages through poly(T)-cellulose columns, were analyzed under native and denatured conditions. The sedimentation profile of the mRNA on both sodium dodecyl SO4-sucrose gradients and formaldehyde-sucrose gradients showed a broad distribution of components with estimated molecular weights ranging from 2 × 105 to 5.5 × 106 daltons and a weight-average molecular weight of 8.5 × 105 daltons.  相似文献   

7.
8.
The total RNA from cells infected with Machupo and Lassa viruses as well as poly(A+) and poly(A-) fractions of the RNA were translated in the cell-free protein synthesizing system from rabbit reticulocytes. The translated products were treated with specific antibodies and analyzed in polyacrylamide gel electrophoresis. Only poly(A-) fraction of RNA coded for the synthesis of NP protein in vitro. The mRNAs for NP protein of Machupo and Lassa viruses are supposed to contain no poly(A) sequences at 3'end, or if they really do, the size of the sequences is not adequate for binding with oligo(dT)-cellulose.  相似文献   

9.
10.
The size of the poly(A) segment present at the 3-end of mRNA molecules decreases gradually after entry of the mRNA into the cytoplasm. The size reduction seems to occur equally in free and polysome-bound mRNA. It is not affected by conditions that inhibit protein synthesis, such as treatment with cycloheximide and amino acid deprivation. The latter condition leads to a substantial increase in the size of nuclear poly(A). The rate of poly(A) cleavage could determine the length of time a mRNA molecule remains functional in the cytoplasm.  相似文献   

11.
Poly(A)-containing RNAs from cytoplasm and nuclei of adult Xenopus liver cells are compared. After denaturation of the RNA by dimethysulfoxide the average molecule of nuclear poly(A)-containing RNA has a sedimentation value of 28 S whereas the cytoplasmic poly(A)-containing RNA sediments slightly ahead of 18 S. To compare the complexity of cytoplasmic and nuclear poly(A)-containing RNA, complementary DNA (cDNA) transcribed on either cytoplasmic or nuclear RNA is hybridized to the RNA used as a template. The hybridization kinetics suggest a higher complexity of the nuclear RNA compared to the cytoplasmic fraction. Direct evidence of a higher complexity of nuclear poly(A)-containing RNA is shown by the fact that 30% of the nuclear cDNA fails to hybridize with cytoplasmic poly(A)-containing RNA. An attempt to isolate a specific probe for this nucleus-restricted poly(A)-containing RNA reveals that more than 10(4) different nuclear RNA sequences adjacent to the poly(A) do not get into the cytoplasm. We conclude that a poly(A) on a nuclear RNA does not ensure the transport of the adjacent sequence to the cytoplasm.  相似文献   

12.
Analysis of mRNA populations from rat liver rough microsomes and free polysomes by homologous and heterologous cDNA . mRNA hybridization shows that the two mRNA populations are distinct, demonstrating that specific mRNA classes are efficiently segregated for translation in association with endoplasmic reticulum membranes. We estimate that approximately 90% of the mRNA in membrane-bound polysomes contains a diverse set of messengers with a minimum of 500--2000 different species although approximately 5--8 messengers may constitute 25--30% of the mRNA mass. The complexity of the mRNA population of free polysomes appears to be comparable to that estimated for total liver poly(A) + mRNA by other investigators, and is likely to be substantially greater than that of the bulk of bound mRNA. In addition, mRNA in free polysomes lacks the high abundance class characteristic of mRNA-bound polysomes. The substantial complexity of the bound mRNA population suggests that the segregation of polysomes in rough microsomes is not limited to a small class specialized in manufacturing secretory proteins, but extends to polysomes engaged in the synthesis of proteins for intracellular distribution. The segregation of specific messengers into the free and membrane-bound classes was abolished when polysome disassembly was induced by administration of ethionine. Thus, messenger RNA molecules themselves lacked the capacity for segregation, although they contain information for segregation which is expressed during translation. These findings are consistent with the presence of signal sequences in nascent polypeptides which determine the attachment of ribosomes to endoplasmic reticulum membranes.  相似文献   

13.
A variety of methylated oligonucleotides were derived from mouse L cell messenger RNA and heterogeneous nuclear RNA by digestion with specific ribonucleases, and the cap-containing oligonucleotides separated from those containing internal m6A by chromatography on diborylaminoethyl-cellulose. Cap-containing sequences of the type m7GpppXmpG, m7GpppXmpY(m)pG, m7GpppXmpY(m) pNpG and m7GpppXmpY(m)p(Np)> 1G have distinctive non-random compositions of the 2′-O-methylated constituent Xm; yet sequences of a particular type and composition occur with a remarkably similar frequency in mRNA and hnRNA2. For example, approximately 20% of the cap sequences in both hnRNA and mRNA are m7Gppp(m6)AmG, whereas less than 1% are m7GpppUmpG. The high degree of similarity in cap sequences is consistent with the previously postulated precursor-product relationship between hnRNA caps and mRNA caps.The composition of the Y position in capped hnRNA molecules was determined to be (29% G, 20% A, 51% Py), which differs considerably from the composition of Ym in the cap II forms of mRNA (8% Gm, 11% Am, 81% Py). Given the precursor-product relationship between hnRNA caps and mRNA caps, this result provides strong evidence that only a restricted subclass of mRNA molecules receive the secondary methylation at position Y.In both hnRNA and mRNA the internal m6A occurs in well-defined sequences of the type: -N1-(GA)-m6A-C-N2-, the 5′ nearest-neighbor of m6A being G in about three-quarters of the molecules and A in about one-quarter of the molecules. The nucleotide N1 is a purine about 90% of the time and the nucleotide N2 is rarely a G. These same sequences are present in large (> 50 S), as well as small (14 S to 50 S) hnRNA. These results raise the possibility that the internal m6A, like caps, may be conserved during the processing of large hnRNA into mRNA. Two models based on this idea are discussed.  相似文献   

14.
A 9S RNA fraction from mouse reticulocytes, containing the active - and -globin mRNAs, has been isolated by hybridization of the polyadenylate regions in the mRNAs to oligo(dT)-cellulose. The adenylate-rich sequence isolated by limited RNase digestion of the globin mRNAs migrates between 4S and 5S RNA standards when co-electrophoresed on 12% polyacrylamide gels. Poly(A) standards, 28 and 84 nucleotides in length, showed anomolous migration relative to the 4S and 5S RNAs. The average size of the adenylate-rich sequence, estimated by its migration relative to the poly(A) standards, is about 50 nucleotides. The polyadenylate stretch in mouse globin mRNA is therefore much shorter than those found in other mRNAs.  相似文献   

15.
ADP-ribosyltransferase activity has been characterized in free messenger ribonucleoprotein particles (mRNP) from mouse plasmacytoma cells. This enzymatic activity appears to be associated with the free mRNP and not due to nuclear contamination. The enzyme activity is not stimulated by added DNA or histone H1 and represents 34 per cent of the total cellular ADP-ribosyltransferase activity while the DNA contamination in free mRNP is less than 4 per cent of the total cellular DNA. Moreover, the ADP-ribosyltransferase specific activity per mg of DNA is about 75-fold higher in free mRNP than in the nuclei. During CsCl gradient centrifugation of the cytoplasmic fraction, the ADP-ribosylated material separates out at a buoyant density similar to that of free mRNP.This ADP-ribosyltransferase activity is inhibited by thymidine, nicotinamide and 3-aminobenzamide, while it is highly stimulated by exogenous pancreatic RNase. The in vitro synthesized acid insoluble material is rendered partly soluble by treatment by a proteolytic enzyme or by snake venom phosphodiesterase resulting in phosphoribosyl-AMP formation: the pancreatic RNase does not solubilize this material. Several ADP-ribosylated proteins are detected by lithium dodecylsulfate gel electrophoresis.Such an ADP-ribosyltransferase activity has also been detected in free mRNP from rat liver. It is suggested that this ADP-ribosylation of specific free mRNP proteins may be associated with free mRNP structure and/or with some chemical covalent type of modification rendering mRNA available for translation.  相似文献   

16.
17.
Structures at the 5′ terminus of poly (A)-containing cytoplasmic RNA and heterogeneous nuclear RNA containing and lacking poly(A) have been examined in RNA extracted from both normal and heat-shocked Drosophila cells. 32P-labeled RNA was digested with ribonucleases T2, T1 and A and the products fractionated by a fingerprinting procedure which separates both unblocked 5′ phosphorylated termini and the blocked, methylated, “capped” termini, known to be present in the messenger RNA of most eukaryotes.Approximately 80% of the 5′-terminal structures recovered from digests of poly(A)-containing Drosophila mRNA are cap structures of the general form m7G5′ppp5′X(m)pY(m)pZp. With respect to the extent of ribose methylation and the base distribution, the 5′-terminal sequences of Drosophila capped mRNA appear to be intermediate between those of unicellular eukaryotes and those of mammals. Drosophila is the first organism known in which type 0 (no ribose methylations), type 1 (one ribose methylation), and type 2 (two ribose methylations) caps are all present. In contrast to mammalian cells, the caps of Drosophila never contain the doubly methylated nucleoside N6,2′-O-dimethyladenosine. Both purines and pyrimidines can be found as the penultimate nucleoside of Drosophila caps and there is a wide variety of X-Y base combinations. The relative frequencies of these different base combinations, and the extent of ribose methylation, vary with the duration of labeling. The large majority of poly(A)-containing cytoplasmic RNA molecules from heat-shocked Drosophila cells are also capped, but these caps are unusual in having almost exclusively purines as the penultimate X base.Greater than 75% of the 5′ termini of heterogeneous nuclear RNA (hnRNA) containing poly(A) and greater than 50% of the termini of hnRNA lacking poly (A) are also capped. Triphosphorylated nucleotides, common as the 5′ nucleotides of mammalian hnRNA, are rare in the poly(A)-containing hnRNA of Drosophila. The frequency of the various type 0 and type 1 cap sequences of cytoplasmic and nuclear poly (A)-containing RNA are almost identical. The caps of hnRNA lacking poly(A) are also quite similar to those of poly-adenylated hnRNA, but are somewhat lower in their content of penultimate pyrimidine nucleosides, suggesting that these two populations of molecules are not identical.  相似文献   

18.
RNA excess hybridization experiments were used to measure the complexity of nuclear RNA, poly(A+) mRNA, poly(A-) mRNA, and EDTA-released polysomal RNA sedimenting at less than 80 S in mouse liver and in cultured mouse cells. With both cell types, poly(A-) RNA was found to contain 30-40% of the sequence diversity of total mRNA. In the case of liver this represents 5,700 poly(A-) molecules and 8,600 poly(A+) molecules for a total of approximately 14,300 different mRNAs. Comparison of the complexity of mRNA with that of nuclear RNA revealed that in liver and in cultured cells, mRNA has only 10-20% of the sequence diversity present in nuclear RNA. This latter observation is consistent with existing data on mammalian cells from this and other laboratories.  相似文献   

19.
The cytoplasmic poly(A)+RNAs containing ubiquitous B1 and B2 repeats of the mouse genome in normal tissues and tumors have been studied. Only one strand of the repeats is represented in cytoplasmic RNA in all the cases. Some tumor cells were found to be enriched in 1.4 kb B1+mRNA, 1.6 kb B2+mRNA and small (0.2-04 kb) B1+ and B2+ poly(A)+RNAs. On the other hand, mouse liver and kidney contained high amounts of 2 kb B2+mRNA. Its content increased noticeably in the regenerating liver, but in hepatoma it dropped to a zero level. Thus, the switching on (or off) of B1- and B2-containing mRNAs occurred noncoordinately. At the same time, the activation of the synthesis of small B2+RNA and small B1+RNA was simultaneous.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号