共查询到20条相似文献,搜索用时 15 毫秒
1.
Katharina Kohls Raeid M. M. Abed Lubos Polerecky Miriam Weber Dirk De Beer 《Environmental microbiology》2010,12(3):567-575
An intertidal hypersaline cyanobacterial mat from Abu Dhabi (United Arab Emirates) exhibited a reversible change in its surface colour within several hours upon changes in salinity of the overlying water. The mat surface was orange‐reddish at salinities above 15% and turned dark green at lower salinities. We investigated this phenomenon using a polyphasic approach that included denaturing gradient gel electrophoresis, microscopy, high‐performance liquid chromatography, hyperspectral imaging, absorption spectroscopy, oxygen microsensor measurements and modelling of salinity dynamics. Filaments of Microcoleus chthonoplastes, identified based on 16S rRNA sequencing and morphology, were found to migrate up and down when salinity was decreased below or increased above 15%, respectively, causing the colour change of the mat uppermost layer. Migration occurred in light and in the dark, and could be induced by different salts, not only NaCl. The influence of salinity‐dependent and independent physico‐chemical parameters, such as water activity, oxygen solubility, H2S, gravity and light, was excluded, indicating that the observed migration was due to a direct response to salt stress. We propose to term this salinity‐driven cyanobacterial migration as ‘halotaxis’, a process that might play a vital role in the survival of cyanobacteria in environments exposed to continuous salinity fluctuations such as intertidal flats. 相似文献
2.
Structure and development of a benthic marine microbial mat 总被引:9,自引:0,他引:9
Abstract Vertically stratified microbial communities of phototrophic bacteria in the upper intertidal zones of the North Sea island of Mellum were investigated. Growth and population dynamics of the cyanobacterial mat were followed over three successive years. It was concluded that the initial colonization of the sandy sediments was by the cyanobacterium Oscillatoria . In well-established mats, however, the dominant organism was Microcoleus chthonoplastes . The observed succession of cyanobacteria during mat development is correlated with nitrogen fixation. Nitrogen fixation is necessary in this low-nutrient environment to ensure colonization by mat-constructing cyanobacteria. Under certain conditions, a red layer of purple sulfur bacteria developed underneath the cyanobacterial mat in which Chromatium and Thiocapsa spp. dominated, but Thiopedia and Ectothiorhodospira spp. have also been observed. Measurements of light penetrating the cyanobacterial mat indicated that sufficient light is available for the photosynthetic growth of purple sulfur bacteria. Profiles of oxygen, sulfide and redox potential within the microbial mat were measured using microelectrodes. Maximum oxygen concentrations, measured at a depth of 0.7 mm, reached levels more than twice the normal air saturation. Dissolved sulfide was not detected by the microelectrodes. Determination of acid-distilled sulfide, however, revealed appreciable amounts of bound sulfide in the mat. Redox profiles measured in the mat led to the conclusion that the upper 10 mm of the sedimentary sequence is in a relatively oxidized state. 相似文献
3.
Abstract The colorless sulfur bacterium Thiobacillus thioparus T5, isolated from a marine microbial mat, was grown in continuous culture under conditions ranging from sulfide limitation to oxygen limitation. Under sulfide-limiting conditions, sulfide was virtually completely oxidized to sulfate. Under oxygen-limiting conditions, sulfide was partially oxidized to zerovalent sulfur (75%) and thiosulfate (17%). In addition, low concentrations of tetrathionate and polysulfide were detected. The finding of in vivo thiosulfate formation supports the discredited observations of thiosulfate formation in cell free extracts in the early sixties. In a microbial mat most sulfide oxidation was shown to take place under oxygen-limiting conditions. It is suggested that zerovalent sulfur formation by thiobacilli is a major process resulting in polysulfide accumulation. Implications for the competition between colorless sulfur bacteria and purple sulfur bacteria are discussed. 相似文献
4.
Abstract The sulfur cycle in a microbial mat was studied by determining viable counts of sulfate-reducing bacteria, chemolithoautotrophic sulfur bacteria and anoxygenic phototrophic bacteria. All three functional groups of sulfur bacteria revealed a maximum population density in the uppermost 5 mm of the mat: 1.1 × 108 cells of sulfate reducers cm−3 sediment, 2.0 × 109 cells of chemolithoautotrophs cm−3 sediment, and 4.0 × 107 cells of anoxygenic phototrophs cm−3 sediment. Bacterial dynamics were studied by sulfate reduction rate measurements, both under anoxic conditions (dark incubation) and oxic conditions (incubation in the light), and determination of the vertical distribution of the potential rate of thiosulfate consumption under oxic conditions. Sulfate reduction rates in the top 5 mm of the sediment were 566 nmol cm−3 d−1 in the absence of oxygen, and 123 nmol cm−3 d−1 in the presence of oxygen. In the latter case, the maximum rate was found in the 5–10-mm depth horizon (361 nmol cm−3 d−1 ). Biological consumption of amended thiosulfate was rapid and decreased with depth, while in the presence of molybdate, thiosulfate consumption decreased to 10–30% of the original rate. 相似文献
5.
Examination of variation in ecological communities can lead to an understanding of the forces that structure communities, the consequences of change at the ecosystem level, and the relevant scales involved. This study details spatial and seasonal variability in the composition of nitrogen-fixing and cyanobacterial (i.e., oxygenic photosynthetic) functional groups of a benthic, hypersaline microbial mat from Salt Pond, San Salvador Island, Bahamas. This system shows extreme annual variability in the salinity of the overlying water and the extent of water coverage. Analysis of molecular variance and F(ST) tests of genetic differentiation of nifH and cyanobacterial 16S rRNA gene clone libraries allowed for changes at multiple taxonomic levels (i.e., above, below, and at the species level) to inform the conclusions regarding these functional groups. Composition of the nitrogen-fixing community showed significant seasonal changes related to salinity, while cyanobacterial composition showed no consistent seasonal pattern. Both functional groups exhibited significant spatial variation, changing with depth in the mat and horizontally with distance from the shoreline. The patterns of change suggest that cyanobacterial composition was more insensitive to water stress, and consequently, cyanobacteria dominated the nitrogen-fixing community during dry months but gave way to a more diverse community of diazotrophs in wet months. This seasonal pattern may allow the mat community to respond quickly to water-freshening events after prolonged dry conditions (system recovery) and maintain ecosystem function in the face of disturbance during the wet season (system resilience). 相似文献
6.
Judith M. Klatt Gonzalo V. Gomez-Saez Steffi Meyer Petra Pop Ristova Pelin Yilmaz Michael S. Granitsiotis Jennifer L. Macalady Gaute Lavik Lubos Polerecky Solveig I. Bühring 《The ISME journal》2020,14(12):3024
Cyanobacterial mats were hotspots of biogeochemical cycling during the Precambrian. However, mechanisms that controlled O2 release by these ecosystems are poorly understood. In an analog to Proterozoic coastal ecosystems, the Frasassi sulfidic springs mats, we studied the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis (OP and AP) in versatile cyanobacteria, and interactions with sulfur reducing bacteria (SRB). Using microsensors and stable isotope probing we found that dissolved organic carbon (DOC) released by OP fuels sulfide production, likely by a specialized SRB population. Increased sulfide fluxes were only stimulated after the cyanobacteria switched from AP to OP. O2 production triggered migration of large sulfur-oxidizing bacteria from the surface to underneath the cyanobacterial layer. The resultant sulfide shield tempered AP and allowed OP to occur for a longer duration over a diel cycle. The lack of cyanobacterial DOC supply to SRB during AP therefore maximized O2 export. This mechanism is unique to benthic ecosystems because transitions between metabolisms occur on the same time scale as solute transport to functionally distinct layers, with the rearrangement of the system by migration of microorganisms exaggerating the effect. Overall, cyanobacterial versatility disrupts the synergistic relationship between sulfide production and AP, and thus enhances diel O2 production.Subject terms: Microbial ecology, Biogeochemistry, Water microbiology 相似文献
7.
R Weller M M Bateson B K Heimbuch E D Kopczynski D M Ward 《Applied and environmental microbiology》1992,58(12):3964-3969
Analysis of 16S rRNA sequences retrieved as cDNA (16S rcDNA) from the Octopus Spring cyanobacterial mat has permitted phylogenetic characterization of some uncultivated community members, expanding our knowledge or diversity within this microbial community. Two new cyanobacterial 16S rRNA sequences were discovered, raising to four the number of cyanobacterial sequence types known to occur in the mat. None of the sequences found is that of the cultivated thermophilic cyanobacterium Synechococcus lividus. A new 16S rRNA sequence characteristic of green nonsulfur bacteria and their relatives was discovered, raising to two the number of such sequences known to exist in the mat. Both are unique among the 16S rRNA sequences of cultivated members of this group, including an Octopus Spring isolate of Chloroflexus aurantiacus and Heliothrix oregonensis, whose sequences we report herein. Two spirochete-like 16S rRNA sequences were discovered. One can be placed in the leptospira subdivision of the spirochete group, but the other has such a loose affiliation with the spirochete group that it might actually belong to an as yet unrecognized subdivision or even to a new eubacterial line of descent. 相似文献
8.
Uncultivated cyanobacteria, Chloroflexus-like inhabitants, and spirochete-like inhabitants of a hot spring microbial mat. 总被引:1,自引:9,他引:1 下载免费PDF全文
R Weller M M Bateson B K Heimbuch E D Kopczynski D M Ward 《Applied microbiology》1992,58(12):3964-3969
Analysis of 16S rRNA sequences retrieved as cDNA (16S rcDNA) from the Octopus Spring cyanobacterial mat has permitted phylogenetic characterization of some uncultivated community members, expanding our knowledge or diversity within this microbial community. Two new cyanobacterial 16S rRNA sequences were discovered, raising to four the number of cyanobacterial sequence types known to occur in the mat. None of the sequences found is that of the cultivated thermophilic cyanobacterium Synechococcus lividus. A new 16S rRNA sequence characteristic of green nonsulfur bacteria and their relatives was discovered, raising to two the number of such sequences known to exist in the mat. Both are unique among the 16S rRNA sequences of cultivated members of this group, including an Octopus Spring isolate of Chloroflexus aurantiacus and Heliothrix oregonensis, whose sequences we report herein. Two spirochete-like 16S rRNA sequences were discovered. One can be placed in the leptospira subdivision of the spirochete group, but the other has such a loose affiliation with the spirochete group that it might actually belong to an as yet unrecognized subdivision or even to a new eubacterial line of descent. 相似文献
9.
10.
Multiple sulphur (S) isotope ratios are powerful proxies to understand the complexity of S biogeochemical cycling through Deep Time. The disappearance of a sulphur mass‐independent fractionation (S‐MIF) signal in rocks <~2.4 Ga has been used to date a dramatic rise in atmospheric oxygen levels. However, intricacies of the S‐cycle before the Great Oxidation Event remain poorly understood. For example, the isotope composition of coeval atmospherically derived sulphur species is still debated. Furthermore, variation in Archaean pyrite δ34S values has been widely attributed to microbial sulphate reduction (MSR). While petrographic evidence for Archaean early‐diagenetic pyrite formation is common, textural evidence for the presence and distribution of MSR remains enigmatic. We combined detailed petrographic and in situ, high‐resolution multiple S‐isotope studies (δ34S and Δ33S) using secondary ion mass spectrometry (SIMS) to document the S‐isotope signatures of exceptionally well‐preserved, pyritised microbialites in shales from the ~2.65‐Ga Lokammona Formation, Ghaap Group, South Africa. The presence of MSR in this Neoarchaean microbial mat is supported by typical biogenic textures including wavy crinkled laminae, and early‐diagenetic pyrite containing <26‰ μm‐scale variations in δ34S and Δ33S = ?0.21 ± 0.65‰ (±1σ). These large variations in δ34S values suggest Rayleigh distillation of a limited sulphate pool during high rates of MSR. Furthermore, we identified a second, morphologically distinct pyrite phase that precipitated after lithification, with δ34S = 8.36 ± 1.16‰ and Δ33S = 5.54 ± 1.53‰ (±1σ). We propose that the S‐MIF signature of this secondary pyrite does not reflect contemporaneous atmospheric processes at the time of deposition; instead, it formed by the influx of later‐stage sulphur‐bearing fluids containing an inherited atmospheric S‐MIF signal and/or from magnetic isotope effects during thermochemical sulphate reduction. These insights highlight the complementary nature of petrography and SIMS studies to resolve multigenerational pyrite formation pathways in the geological record. 相似文献
11.
R O Gans R J Heine A J Donker E A van der Veen 《BMJ (Clinical research ed.)》1987,294(6582):1252-1253
The effect of dietary salt on glycaemic responses to different test meals was investigated. Eight healthy male volunteers ate four test meals on consecutive mornings and in random order; the meals were 50 g carbohydrate taken as a 20% glucose solution or as boiled macaroni with and without supplementation with 6 g salt. In contrast with other reports, no significant differences in peak plasma glucose concentrations or areas under the plasma glucose curves could be established. These findings do not support a beneficial effect of salt restriction on glycaemic control in diabetes. 相似文献
12.
Anne Bülow-Olsen 《Ecography》1983,6(2):194-198
Germination of caryopses and seeds of Festuca rubra L. coll. from wet, dry and dune areas in the salt marsh at Skallingen, Jutland, Denmark, was tested in deionized water and diluted sea water. A strong correlation was found between percentage of germination and the topography of the collection sites. Further it was found that salt tolerance for the most salt tolerant populations, growing on low dunes, was provided partly by the husks rather than only being a characteristic of the seed. In less salt tolerant populations from low and dry areas, husks had no influence on germination percentage in 25% sea water. 相似文献
13.
Joan Mir Maira Martínez-Alonso Pierre Caumette Ricardo Guerrero Isabel Esteve 《International microbiology》2002,5(3):133-138
The sulfur cycle of Ebro Delta microbial mats was studied in order to determine sulfide production and sulfide consumption.
Vertical distribution of two major functional groups involved in the sulfur cycle, anoxygenic phototrophic bacteria and dissimilatory
sulfate-reducing bacteria (SRB), was also studied. The former reached up to 2.2×108 cfu cm–3 sediment in the purple layer, and the latter reached about 1.8×105 SRB cm–3 sediment in the black layer. From the changes in sulfide concentrations under light-dark cycles it can be inferred that the
rate of H2S production was 6.2 μmol H2S cm–3 day–1 at 2.6 mm, and 7.6 μmol H2S cm–3 day–1 at 6 mm. Furthermore, sulfide consumption was also assessed, determining rates of 0.04, 0.13 and 0.005 mmol l–1 of sulfide oxidized at depths of 2.6, 3 and 6 mm, respectively.
Electronic Publication 相似文献
14.
15.
Stephan Klähn Claudia Steglich Wolfgang R. Hess Martin Hagemann 《Environmental microbiology》2010,12(1):83-94
The synthesis and accumulation of compatible solutes represent an essential part of the salt acclimation strategy of microorganisms. Glucosylglycerol is considered to be the typical compatible solute among marine cyanobacteria. However, genes that encode enzymes for the synthesis of glucosylglycerol were not detected in the genome sequences of marine picoplanktonic Prochlorococcus strains. Instead, we noticed the presence of genes that putatively encode for glucosylglycerate (GGA) synthesis among Prochlorococcus and most other closely related marine picocyanobacteria. Recombinant proteins from Prochlorococcus marinus SS120 and Synechococcus sp. PCC 7002 exhibited glucosyl-phosphoglycerate synthase (GpgS) activity, and GpgS is a key enzyme of GGA synthesis. GGA accumulation was found to be salt- as well as nitrogen-regulated in the coastal strain Synechococcus sp. PCC 7002. Moreover, GGA was also detected in all picoplanktonic Prochlorococcus and Synechococcus strains harbouring gpgS genes, especially under N-limiting conditions. These results suggest that marine picocyanobacteria acquired the capacity to synthesize the negatively charged compound GGA during their evolution. Our results establish GGA as the fifth most widespread compatible solute among cyanobacteria. Additionally, GGA appears to replace glutamate as an anion to counter monovalent cations in marine picocyanobacteria from N-poor environments. 相似文献
16.
17.
Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress 总被引:4,自引:0,他引:4
NaCl stress causes the accumulation of several mRNAs in tomato seedlings. An upregulated cDNA clone, SAM1, was found to encode a S-adenosyl-L-methionine synthetase enzyme (AdoMet synthetase). Expression of the cDNA SAM1 in a yeast mutant lacking functional SAM genes resulted in high AdoMet synthetase activity and AdoMet accumulation. We show that tomato plants contain at least four SAM isogenes. Clones corresponding to isogenes SAM2 and SAM3 have also been isolated and sequenced. they encode predicted polypeptides 95% and 92% identical, respectively, to the SAM1-encoded AdoMet Synthetase. RNA hybridization analysis showed a differential response of SAM genes to salt and other stress treatments. SAM1 and SAM3 mRNAs accumulated in the root in response to NaCl, mannitol or ABA treatments. SAM1 mRNA accumulated also in leaf tissue. These increases of mRNA level were apparent as soon as 8 h after the initiation of the salt treatment and were maintained for at least 3 days. A possible role for AdoMet synthetases in the adaptation to salt stress is discussed. 相似文献
18.
A new purple sulfur bacterium was isolated in pure culture (strain 8315) from a laminated microbial mat at Great Sippewissett
Salt Marsh, Cape Cod, Mass., USA. Single cells were large rods, 10–20 times longer than wide, and predominantly strainght
with slightly conical ends. Cells were motile by polarly inserted flagellar tufts. Intracellular photosynthetic membranes
were of the vesicular-type. Photosynthetic pigments were bacteriochlorophylla and the carotenoids lycopene, rhodovibrin, anhydrorhodovibrin, and rhodopin. The new bacterium was strictly anaerobic and
obligately phototrophic. Hydrogen, hydrogen sulfide, elemental sulfur, and thiosulfate were used as electron donors for photoautotrophic
growth. In sulfide-reduced, bicarbonate-containing media, acetate, propionate, and pyruvate were photoassimilated. Growth
factors were not required. Optimum growth rates were obtained at pH 7.3, 30°C, a salinity of 1.5–5.0% NaCl, and a light intensity
of about 500 lx (tungsten lamp). The DNA base composition of strain 8315 was 60.4 mol% G+C. Comparison of 16S rDNA oligonucleotide
catalogue data showed that the new bacterium must be considered a new genus of the Chromatiaceae. The nameRhabdochromatium is revived, and the new speciesRhabdochromatium marinum sp. nov. is described. 相似文献
19.
El Alaoui S Diez J Toribio F Gómez-Baena G Dufresne A García-Fernández JM 《Environmental microbiology》2003,5(5):412-423
The regulation of glutamine synthetase (EC 6.3.1.2) from Prochlorococcus was previously shown to exhibit unusual features: it is not upregulated by nitrogen starvation and it is not inactivated by darkness (El Alaoui et al. (2001) Appl Environ Microbiol 67: 2202-2207). These are probably caused by adaptations to oligotrophic environments, as confirmed in this work by the marked decrease in the enzymatic activity when cultures were subjected to iron or phosphorus starvation. In order to further understand the adaptive features of ammonium assimilation in this cyanobacterium, glutamine synthetase was purified from two Prochlorococcus strains: PCC 9511 (high-light adapted) and SS120 (low-light adapted). We obtained approximately 100-fold purified samples of glutamine synthetase electrophoretically homogeneous, with a yield of approximately 30%. The estimated molecular mass of the subunits was roughly the same for both strains: 48.3 kDa. The apparent Km constants for the biosynthetic activity were 0.30 mM for ammonium, 1.29 mM for glutamate and 1.35 mM for ATP; the optimum pH was 8.0. Optimal temperature was surprisingly high (55 degrees C). Phylogenetic analysis of glnA from three Prochlorococcus strains (MED4, MIT9313 and SS120) showed they group closely with marine Synechococcus isolates, in good agreement with other studies based on 16 S RNA sequences. All of our results suggest that the structure and kinetics of glutamine synthetase in Prochlorococcus have not been significantly modified during the evolution within the cyanobacterial radiation, in sharp contrast with its regulatory properties. 相似文献