首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
A mathematical model was developed to study O2 transport in a convection enhanced hepatic hollow fiber (HF) bioreactor, with hemoglobin‐based O2 carriers (HBOCs) present in the flowing cell culture media stream of the HF lumen. In this study, four HBOCs were evaluated: PEG‐conjugated human hemoglobin (MP4), human hemoglobin (hHb), bovine hemoglobin (BvHb) and polymerized bovine hemoglobin (PolyBvHb). In addition, two types of convective flow in the HF extra capillary space (ECS) were considered in this study. Starling flow naturally occurs when both of the ECS ports are closed. If one of the ECS ports is open, forced convective flow through the ECS will occur due to the imposed pressure difference between the lumen and ECS. This type of flow is referred to as cross‐flow in this work, since some of the fluid entering the HF lumen will pass across the HF membrane and exit via the open ECS port. In this work, we can predict the dissolved O2 concentration profile as well as the O2 transport flux in an individual HF of the bioreactor by solving the coupled momentum and mass transport equations. Our results show that supplementation of the cell culture media with HBOCs can dramatically enhance O2 transport to the ECS (containing hepatocytes) and lead to the formation of an in vivo‐like O2 spectrum for the optimal culture of hepatocytes. However, both Starling flow and cross‐flow have a very limited effect on O2 transport in the ECS. Taken together, this work represents a novel predictive tool that can be used to design or analyze HF bioreactors that expose cultured cells to defined overall concentrations and gradients of O2. Biotechnol. Bioeng. 2009;102: 1603–1612. © 2008 Wiley Periodicals, Inc.  相似文献   

2.
A mathematical model describing O2 transport in a hepatic hollow fiber (HF) bioreactor supplemented with perfluorocarbons (PFCs) in the circulating cell culture media was developed to explore the potential of PFCs in properly oxygenating a bioartificial liver assist device (BLAD). The 2‐dimensional model is based on the geometry of a commercial HF bioreactor operated under steady‐state conditions. The O2 transport model considers fluid motion of a homogeneous mixture of cell culture media and PFCs, and mass transport of dissolved O2 in a single HF. Each HF consists of three distinct regions: (1) the lumen (conducts the homogeneous mixture of cell culture media and PFCs), (2) the membrane (physically separates the lumen from the extracapillary space (ECS), and (3) the ECS (hepatic cells reside in this compartment). In a single HF, dissolved O2 is predominantly transported in the lumen via convection in the axial direction and via diffusion in the radial direction through the membrane and ECS. The resulting transport equations are solved using the finite element method. The calculated O2 transfer flux showed that supplementation of the cell culture media with PFCs can significantly enhance O2 transport to the ECS of the HF when compared with a control with no PFC supplementation. Moreover, the O2 distribution and subsequent analysis of ECS zonation demonstrate that limited in vivo‐like O2 gradients can be recapitulated with proper selection of the operational settings of the HF bioreactor. Taken together, this model can also be used to optimize the operating conditions for future BLAD development that aim to fully recapitulate the liver's varied functions. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

3.
Long-term and large scale cultivation of an anchorage-dependent cell line using an industrial scale hollow fiber perfusion bioreactor is described. Hep G2 cells (a human hepatoma cell line) were cultivated in an Acysyst-P® (Endotronic) with a total fiber surface area of 7.2 m2 (6×1.2 m2) to produce Hep G2 crude conditioned medium (CCM). Pretreatment of the cellulose acetate hollow fibers with collagen enhances the attachment of the anchorage-dependent cells. We have succeeded in growing the Hep G2 cells in an antibiotics-and serum-free IMDM medium, supplemented with 50g/ml of Hep G2 CCM protein at inoculation. The Hep G2 cells replicate and secrete CCM protein in quantities comparable to those produced in DMEM containing 10% fetal calf serum (FCS). The highest CCM protein productivity during the 80-day cultivation was 1.1 g/day with a total of 30 g of protein accumulated. Hep G2 CCM (20–40 g protein/ml) was comparable to or even better than 10% FCS in supporting the growth of Molt-4 (a human T leukemia cell line) and FO (a mouse myeloma cell line) cells in vitro. The availability of this large amount of Hep G2 CCM will aid the further purification and characterization of growth factor(s) which could be used as serum substituents.  相似文献   

4.
Pancreatic islet transplantation continues to benefit patients with type 1 diabetes by normalizing glucose metabolism and improving other complications of diabetes. However, islet transplantation therapy is limited by the inadequate availability of pancreatic islets. In order to address this concern, this work investigated the expansion of rat insulinoma cells (INS‐1) and their ability to generate insulin in a hollow fiber bioreactor (HFB). The long‐term goal of this project is to develop a bioartificial pancreas. HFBs were incubated at two different oxygenation conditions (10% and 19% O2) to determine the best scenario for O2 transport to cultured cells. Also, bovine hemoglobin (BvHb) was supplemented in the cell culture media of the HFBs in order to increase O2 transport under both oxygenation conditions. Our results show that INS‐1 cells expanded under all oxygenation conditions after 2 weeks of culture, with a slightly higher cell expansion under normoxic oxygenation (19% O2) for both control HFBs and BvHb HFBs. In addition, cellular insulin production remained steady throughout the study for normoxic control HFBs and BvHb HFBs, while it increased under hypoxic oxygenation (10% O2) for both types of HFBs but to different extents. Under the two different oxygenation conditions, cellular insulin production was more uniform with time in BvHb HFBs versus control HFBs. These results, along with qRT‐PCR analysis, suggest a possible dysregulation of the insulin‐signaling pathway under hypoxic culture conditions. In conclusion, the HFB culture system is an environment capable of expanding insulinomas while maintaining their viability and insulin production capabilities. Biotechnol. Bioeng. 2010;107: 582–592. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
Hepatic hollow fiber (HF) bioreactors are being developed for use as bioartificial liver assist devices (BLADs). In general, BLADs suffer from O2 limited transport, which reduces their performance. This modeling study seeks to investigate if O2 carrying solutions consisting of mixtures of hemoglobin‐based oxygen carriers (HBOCs) and perfluorocarbons (PFCs) can enhance O2 transport to hepatocytes cultured in the extra capillary space (ECS) of HF bioreactors. We simulated supplementing the circulating cell culture media stream of the HF bioreactor with a mixture containing these two types of oxygen carriers (HBOCs and PFCs). A mathematical model was developed based on the dimensions and physical characteristics of a commercial HF bioreactor. The resulting set of partial differential equations, which describes fluid transport; as well as, mass transport of dissolved O2 in the pseudo‐homogeneous PFC/water phase and oxygenated HBOC, was solved to yield the O2 concentration field in the three HF domains (lumen, membrane and ECS). Our results show that mixtures of HBOC and PFC display a synergistic effect in oxygenating the ECS. Therefore, the presence of both HBOC and PFC in the circulating cell culture media dramatically improves transport of O2 to cultured hepatocytes. Moreover, the in vivo O2 spectrum in a liver sinusoid can be recapitulated by supplementing the HF bioreactor with a mixture of HBOCs and PFCs at an inlet pO2 of 80 mmHg. Therefore, we expect that PFC‐based oxygen carriers will be more efficient at transporting O2 at higher O2 levels (e.g., at an inlet pO2 of 760 mmHg, which corresponds to pure O2 in equilibrium with aqueous cell culture media at 1 atm). Biotechnol. Bioeng. 2010; 105: 534–542. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
Hepatic hollow fiber (HF) bioreactors can be used to provide temporary support to patients experiencing liver failure. Before being connected to the patient's circulation, cells in the bioreactor must be exposed to a range of physiological O2 concentrations as observed in the liver sinusoid to ensure proper performance. This zonation in cellular oxygenation promotes differences in hepatocyte phenotype and may better approximate the performance of a real liver within the bioreactor. Polymerized human hemoglobin (PolyhHb) locked in the tense quaternary state (T-state) has the potential to both supply and regulate O2 transport to cultured hepatocytes in the bioreactor due to its low O2 affinity. In this study, T-state PolyhHb production and purification processes were optimized to minimize the concentration of low-molecular-weight PolyhHb species in solution. Deconvolution of size-exclusion chromatography spectra was performed to calculate the distribution of polymeric Hb species in the final product. Fluid flow and mass transport within a single fiber of a hepatic HF bioreactor was computationally modeled with finite element methods to simulate the effects of employing T-state PolyhHb to facilitate O2 transport in a hepatic bioreactor system. Optimal bioreactor performance was defined as having a combined hypoxic and hyperoxic volume fraction in the extracapillary space of less than 0.05 where multiple zones were observed. The Damköhler number and Sherwood number had strong inverse relationships at each cell density and fiber thickness combination. These results suggest that targeting a specific Damköhler number may be beneficial for optimal hepatic HF bioreactor operation.  相似文献   

7.
The aim of our study was to develop a magnetic resonance (MR)-compatible in vitro model containing freshly isolated rat hepatocytes to study the transport of hepatobiliary contrast agents (CA) by MR imaging (MRI). We set up a perfusion system including a perfusion circuit, a heating device, an oxygenator, and a hollow fiber bioreactor (HFB). The role of the porosity and surface of the hollow fiber (HF) as well as the perfusate flow rate applied on the diffusion of CAs and O2 was determined. Hepatocytes were isolated and injected in the extracapillary space of the HFB (4 x 10(7) cells/mL). The hepatocyte HFB was perfused with an extracellular CA, gadopentetate dimeglumine (Gd-DTPA), and gadobenate dimeglumine (Gd-BOPTA), which also enters into hepatocytes. The HFB was imaged in the MR room using a dynamic T1-weighed sequence. No adsorption of CAs was detected in the perfusion system without hepatocytes. The use of a membrane with a high porosity (0.5 microm) and surface (420 cm2), and a high flow rate perfusion (100 mL/min) resulted in a rapid filling of the HFB with CAs. The cellular viability of hepatocytes in the HFB was greater than 85% and the O2 consumption was maintained over the experimental period. The kinetics of MR signal intensity (SI) clearly showed the different behavior of Gd-BOPTA that enters into hepatocytes and Gd-DTPA that remains extracellular. Thus, these results show that our newly developed in vitro model is an interesting tool to investigate the transport kinetics of hepatobiliary CAs by measuring the MR SI over time.  相似文献   

8.
We have developed a hematopoietic co-culture system using the hollow fiber bioreactor (HFBR) as a potential in vitro bone marrow model for evaluating leukemia. Supporting stroma using HS-5 cells was established in HFBR system and the current bioprocess configuration yielded an average glucose consumption of 640 mg/day and an average protein concentration of 6.40 mg/mL in the extracapillary space over 28 days. Co-culture with erythroleukemia K562 cells was used as a model for myelo-leukemic cell proliferation and differentiation. Two distinct localizations of K562 cells (loosely adhered and adherent cells) were identified and characterized after 2 weeks. The HFBR co-culture resulted in greater leukemic cell expansion (3,130 fold vs. 43 fold) compared to a standard tissue culture polystyrene (TCP) culture. Majority of expanded cells (68%) in HFBR culture were the adherent population, highlighting the importance of cell-cell contact for myelo-leukemic proliferation. Differentiation tendencies in TCP favored maturation toward monocyte and erythrocyte lineages but maintained a pool of myeloid progenitors. In contrast, HFBR co-culture exhibited greater lineage diversity, stimulating monocytic and megakaryocytic differentiation while inhibiting erythroid maturation. With the extensive stromal expansion capacity on hollow fiber surfaces, the HFBR system is able to achieve high cell densities and 3D cell-cell contacts mimicking the bone marrow microenvironment. The proposed in vitro system represents a dynamic and highly scalable 3D co-culture platform for the study of cell-stroma dependent hematopoietic/leukemic cell functions and ex vivo expansion.  相似文献   

9.
A mathematical model is used to investigate the transport of dissolved oxygen from the bulk fluid to the surface of aggregates of animal cells cultured in a rotating bioreactor. These aggregates move through different regions of the bioreactor with a local flow field and concentration distribution that vary with time. The time variation of the Sherwood number and the surface concentration for a range of parameters typical of a cell science experiment executed in the Rotating Wall Perfused Vessel (RWPV) bioreactor in space are investigated. The Reynolds numbers experienced by the aggregate are generally low (Re < 1) and the Peclet numbers range from O(1) to O(100). Comparison of the results from the numerical solution of the mathematical model with those from a quasi-steady model, using a steady-state correlation for mass transport on a sphere, indicate that the quasi-steady assumption is not a good model to compute the instantaneous Sherwood number. This indicates a significant history effect in the Sherwood number response to the variations of acceleration of the aggregates in the bioreactor. A high resistance to the mass transport from the bulk fluid to the surface of the aggregate exists for the bioreactor operated in micro gravity. The difference between the surface concentration and the free stream concentration was as high as 30% for aggregates larger than 3 mm. Diffusion reduces the variations of the free stream concentration resulting in a nearly constant value for the concentration at the surface of the aggregates.  相似文献   

10.
A BacMam baculovirus was designed in our laboratory to express the reporter protein secreted alkaline phosphatase (SEAP) driven by the immediate early promoter of human cytomegalovirus promoter (CMV). In vitro tests have been carried out using this recombinant baculovirus to study the secreted protein in two cell lines and under various culture conditions. The transductions were carried out on two commonly used mammalian cell lines namely the human embryonic kidney (HEK 293A) and Chinese hamster ovary (CHO-K1). Initial studies clearly demonstrated that the transient expression of SEAP was at least 10-fold higher in the HEK 293 cells than the CHO cells under equivalent experimental conditions. Factorial design experiments were done to study the effect of different parameters such as cell density, MOI, and the histone deacetylase inhibitor, trichostatin A concentration. The multiplicity of infection (MOI) and the cell density were found to have the most impact on the process. The enhancer trichostatin A also showed some positive effect. The production of secreted protein in a batch reactor was studied using the Wave disposable bioreactor system. A semi-continuous perfusion process was developed to extend the period of gene expression in mammalian cells using a hollow fiber bioreactor system (HFBR). The growth of cells and viability in both systems was monitored by offline analyses of metabolites. The expression of recombinant protein could be maintained over an extended period of time up to 30 days in the HFBR.  相似文献   

11.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号