共查询到20条相似文献,搜索用时 0 毫秒
1.
Clayton Cuddington Savannah Moses Donald Belcher Niral Ramesh Andre Palmer 《Biotechnology progress》2020,36(3):e2958
Hepatic hollow fiber (HF) bioreactors can be used to provide temporary support to patients experiencing liver failure. Before being connected to the patient's circulation, cells in the bioreactor must be exposed to a range of physiological O2 concentrations as observed in the liver sinusoid to ensure proper performance. This zonation in cellular oxygenation promotes differences in hepatocyte phenotype and may better approximate the performance of a real liver within the bioreactor. Polymerized human hemoglobin (PolyhHb) locked in the tense quaternary state (T-state) has the potential to both supply and regulate O2 transport to cultured hepatocytes in the bioreactor due to its low O2 affinity. In this study, T-state PolyhHb production and purification processes were optimized to minimize the concentration of low-molecular-weight PolyhHb species in solution. Deconvolution of size-exclusion chromatography spectra was performed to calculate the distribution of polymeric Hb species in the final product. Fluid flow and mass transport within a single fiber of a hepatic HF bioreactor was computationally modeled with finite element methods to simulate the effects of employing T-state PolyhHb to facilitate O2 transport in a hepatic bioreactor system. Optimal bioreactor performance was defined as having a combined hypoxic and hyperoxic volume fraction in the extracapillary space of less than 0.05 where multiple zones were observed. The Damköhler number and Sherwood number had strong inverse relationships at each cell density and fiber thickness combination. These results suggest that targeting a specific Damköhler number may be beneficial for optimal hepatic HF bioreactor operation. 相似文献
2.
A mathematical model describing O2 transport in a hepatic hollow fiber (HF) bioreactor supplemented with perfluorocarbons (PFCs) in the circulating cell culture media was developed to explore the potential of PFCs in properly oxygenating a bioartificial liver assist device (BLAD). The 2‐dimensional model is based on the geometry of a commercial HF bioreactor operated under steady‐state conditions. The O2 transport model considers fluid motion of a homogeneous mixture of cell culture media and PFCs, and mass transport of dissolved O2 in a single HF. Each HF consists of three distinct regions: (1) the lumen (conducts the homogeneous mixture of cell culture media and PFCs), (2) the membrane (physically separates the lumen from the extracapillary space (ECS), and (3) the ECS (hepatic cells reside in this compartment). In a single HF, dissolved O2 is predominantly transported in the lumen via convection in the axial direction and via diffusion in the radial direction through the membrane and ECS. The resulting transport equations are solved using the finite element method. The calculated O2 transfer flux showed that supplementation of the cell culture media with PFCs can significantly enhance O2 transport to the ECS of the HF when compared with a control with no PFC supplementation. Moreover, the O2 distribution and subsequent analysis of ECS zonation demonstrate that limited in vivo‐like O2 gradients can be recapitulated with proper selection of the operational settings of the HF bioreactor. Taken together, this model can also be used to optimize the operating conditions for future BLAD development that aim to fully recapitulate the liver's varied functions. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 相似文献
3.
Hepatic hollow fiber (HF) bioreactors are being developed for use as bioartificial liver assist devices (BLADs). In general, BLADs suffer from O2 limited transport, which reduces their performance. This modeling study seeks to investigate if O2 carrying solutions consisting of mixtures of hemoglobin‐based oxygen carriers (HBOCs) and perfluorocarbons (PFCs) can enhance O2 transport to hepatocytes cultured in the extra capillary space (ECS) of HF bioreactors. We simulated supplementing the circulating cell culture media stream of the HF bioreactor with a mixture containing these two types of oxygen carriers (HBOCs and PFCs). A mathematical model was developed based on the dimensions and physical characteristics of a commercial HF bioreactor. The resulting set of partial differential equations, which describes fluid transport; as well as, mass transport of dissolved O2 in the pseudo‐homogeneous PFC/water phase and oxygenated HBOC, was solved to yield the O2 concentration field in the three HF domains (lumen, membrane and ECS). Our results show that mixtures of HBOC and PFC display a synergistic effect in oxygenating the ECS. Therefore, the presence of both HBOC and PFC in the circulating cell culture media dramatically improves transport of O2 to cultured hepatocytes. Moreover, the in vivo O2 spectrum in a liver sinusoid can be recapitulated by supplementing the HF bioreactor with a mixture of HBOCs and PFCs at an inlet pO2 of 80 mmHg. Therefore, we expect that PFC‐based oxygen carriers will be more efficient at transporting O2 at higher O2 levels (e.g., at an inlet pO2 of 760 mmHg, which corresponds to pure O2 in equilibrium with aqueous cell culture media at 1 atm). Biotechnol. Bioeng. 2010; 105: 534–542. © 2009 Wiley Periodicals, Inc. 相似文献
4.
A mathematical model was developed to study O2 transport in a convection enhanced hepatic hollow fiber (HF) bioreactor, with hemoglobin‐based O2 carriers (HBOCs) present in the flowing cell culture media stream of the HF lumen. In this study, four HBOCs were evaluated: PEG‐conjugated human hemoglobin (MP4), human hemoglobin (hHb), bovine hemoglobin (BvHb) and polymerized bovine hemoglobin (PolyBvHb). In addition, two types of convective flow in the HF extra capillary space (ECS) were considered in this study. Starling flow naturally occurs when both of the ECS ports are closed. If one of the ECS ports is open, forced convective flow through the ECS will occur due to the imposed pressure difference between the lumen and ECS. This type of flow is referred to as cross‐flow in this work, since some of the fluid entering the HF lumen will pass across the HF membrane and exit via the open ECS port. In this work, we can predict the dissolved O2 concentration profile as well as the O2 transport flux in an individual HF of the bioreactor by solving the coupled momentum and mass transport equations. Our results show that supplementation of the cell culture media with HBOCs can dramatically enhance O2 transport to the ECS (containing hepatocytes) and lead to the formation of an in vivo‐like O2 spectrum for the optimal culture of hepatocytes. However, both Starling flow and cross‐flow have a very limited effect on O2 transport in the ECS. Taken together, this work represents a novel predictive tool that can be used to design or analyze HF bioreactors that expose cultured cells to defined overall concentrations and gradients of O2. Biotechnol. Bioeng. 2009;102: 1603–1612. © 2008 Wiley Periodicals, Inc. 相似文献
5.
Planchamp C Ivancevic MK Pastor CM Vallée JP Pochon S Terrier F Mayer JM Reist M 《Biotechnology and bioengineering》2004,85(6):656-665
The aim of our study was to develop a magnetic resonance (MR)-compatible in vitro model containing freshly isolated rat hepatocytes to study the transport of hepatobiliary contrast agents (CA) by MR imaging (MRI). We set up a perfusion system including a perfusion circuit, a heating device, an oxygenator, and a hollow fiber bioreactor (HFB). The role of the porosity and surface of the hollow fiber (HF) as well as the perfusate flow rate applied on the diffusion of CAs and O2 was determined. Hepatocytes were isolated and injected in the extracapillary space of the HFB (4 x 10(7) cells/mL). The hepatocyte HFB was perfused with an extracellular CA, gadopentetate dimeglumine (Gd-DTPA), and gadobenate dimeglumine (Gd-BOPTA), which also enters into hepatocytes. The HFB was imaged in the MR room using a dynamic T1-weighed sequence. No adsorption of CAs was detected in the perfusion system without hepatocytes. The use of a membrane with a high porosity (0.5 microm) and surface (420 cm2), and a high flow rate perfusion (100 mL/min) resulted in a rapid filling of the HFB with CAs. The cellular viability of hepatocytes in the HFB was greater than 85% and the O2 consumption was maintained over the experimental period. The kinetics of MR signal intensity (SI) clearly showed the different behavior of Gd-BOPTA that enters into hepatocytes and Gd-DTPA that remains extracellular. Thus, these results show that our newly developed in vitro model is an interesting tool to investigate the transport kinetics of hepatobiliary CAs by measuring the MR SI over time. 相似文献
6.
Sharon I. Gundersen Guo Chen Heather M. Powell Andre F. Palmer 《Biotechnology and bioengineering》2010,107(3):582-592
Pancreatic islet transplantation continues to benefit patients with type 1 diabetes by normalizing glucose metabolism and improving other complications of diabetes. However, islet transplantation therapy is limited by the inadequate availability of pancreatic islets. In order to address this concern, this work investigated the expansion of rat insulinoma cells (INS‐1) and their ability to generate insulin in a hollow fiber bioreactor (HFB). The long‐term goal of this project is to develop a bioartificial pancreas. HFBs were incubated at two different oxygenation conditions (10% and 19% O2) to determine the best scenario for O2 transport to cultured cells. Also, bovine hemoglobin (BvHb) was supplemented in the cell culture media of the HFBs in order to increase O2 transport under both oxygenation conditions. Our results show that INS‐1 cells expanded under all oxygenation conditions after 2 weeks of culture, with a slightly higher cell expansion under normoxic oxygenation (19% O2) for both control HFBs and BvHb HFBs. In addition, cellular insulin production remained steady throughout the study for normoxic control HFBs and BvHb HFBs, while it increased under hypoxic oxygenation (10% O2) for both types of HFBs but to different extents. Under the two different oxygenation conditions, cellular insulin production was more uniform with time in BvHb HFBs versus control HFBs. These results, along with qRT‐PCR analysis, suggest a possible dysregulation of the insulin‐signaling pathway under hypoxic culture conditions. In conclusion, the HFB culture system is an environment capable of expanding insulinomas while maintaining their viability and insulin production capabilities. Biotechnol. Bioeng. 2010;107: 582–592. © 2010 Wiley Periodicals, Inc. 相似文献
7.
Various types of hemoglobin (Hb)-based oxygen carriers (HBOCs) have been developed as red blood cell substitutes for treating blood loss when blood is not available. Among those HBOCs, glutaraldehyde polymerized Hbs have attracted significant attention due to their facile synthetic route, and ability to expand the blood volume and deliver oxygen. Hemopure®, Oxyglobin®, and PolyHeme® are the most well-known commercially developed glutaraldehyde polymerized Hbs. Unfortunately, only Oxyglobin® was approved by the FDA for veterinary use in the United States, while Hemopure® and PolyHeme® failed phase III clinical trials due to their ability to extravasate from the blood volume into the tissue space which facilitated nitric oxide scavenging and tissue deposition of iron, which elicited vasoconstriction, hypertension and oxidative tissue injury. Fortunately, conjugation of poly (ethylene glycol) (PEG) on the surface of Hb is capable of reducing the vasoactivity of Hb by creating a hydration layer surrounding the Hb molecule, which increases its hydrodynamic diameter and reduces tissue extravasation. Several commercial PEGylated Hbs (MP4®, Sanguinate®, Euro-PEG-Hb) have been developed for clinical use with a longer circulatory half-life and improved safety compared to Hb. However, all of these commercial products exhibited relatively high oxygen affinity compared to Hb, which limited their clinical use. To dually address the limitations of prior generations of polymerized and PEGylated Hbs, this current study describes the PEGylation of polymerized bovine Hb (PEG-PolybHb) in both the tense (T) and relaxed (R) quaternary state via thiol-maleimide chemistry to produce an HBOC with low or high oxygen affinity. The biophysical properties of PEG-PolybHb were measured and compared with those of commercial polymerized and PEGylated HBOCs. T-state PEG-PolybHb possessed higher hydrodynamic volume and P50 than previous generations of commercial PEGylated Hbs. Both T- and R-state PEG-PolybHb exhibited significantly lower haptoglobin binding rates than the precursor PolybHb, indicating potentially reduced clearance by CD163 + monocytes and macrophages. Thus, T-state PEG-PolybHb is expected to function as a promising HBOC due to its low oxygen affinity and enhanced stealth properties afforded by the PEG hydration shell. 相似文献
8.
9.
Comparison of cell growth in T-flasks, in micro hollow fiber bioreactors, and in an industrial scale hollow fiber bioreactor system 总被引:1,自引:0,他引:1
In this article, cell growth in a novel micro hollow fiberbioreactor was compared to that in a T-flask and theAcuSyst-Maximizer®, a large scale industrial hollowfiber bioreactor system. In T-flasks, there was relativelylittle difference in the growth rates of one murine hybridomacultured in three different media and for three other murinehybridomas cultured in one medium. However, substantialdifferences were seen in the growth rates of cells in themicro bioreactor under these same conditions. These differencecorrelated well with the corresponding rates of initial cellexpansion in the Maximizer. Quantitative prediction of thesteady-state antibody production rate in the Maximizer was moreproblematic. However, conditions which lead to faster initialcell growth and higher viable cell densities in the microbioreactor correlated with better performance of a cell line inthe Maximizer. These results demonstrate that the microbioreactor is more useful than a T-flask for determining optimalconditions for cell growth in a large scale hollow fiberbioreactor system. 相似文献
10.
Batch cell cultures of a human-human hybridoma line in a convective flow dominant intercalated-spiral altetnate-dead-ended hollow fiber are compared with those using conventional axial-flow hollow fiber bioreactors and a stirred-tank bioreactor. Relatively short-term fed-batch and perfusion cell cultures were also employed for the intercalated-spiral bioreactor. When operating conditions of a batch intercalated-spiral bioreactor were properly chosen, the cell growth and substrate consumption paralleled that of a batch stirred-tank culture. The results verified the premise of the intercalated-spiral hollow fiber bioreactor that nutrient transport limitations can be eliminated when the convective flux through the extracapillary space is sufficiently high.(c) John Wiley & Sons, Inc. 相似文献
11.
We have developed a perfusion bioreactor system that allows the formation of steady state oxygen gradients in cell culture. In this study, gradients were formed in cultures of rat hepatocytes to study the role of oxygen in modulating cellular functions. A model of oxygen transport in our flat-plate reactor was developed to estimate oxygen distribution at the cell surface. Experimental measurements of outlet oxygen concentration from various flow conditions were used to validate model predictions. We showed that cell viability was maintained over a 24-h period when operating with a physiologic oxygen gradient at the cell surface from 76 to 5 mmHg O(2) at the outlet. Oxygen gradients have been implicated in the maintenance of regional compartmentalized metabolic and detoxification functions in the liver, termed zonation. In this system, physiologic oxygen gradients in reactor cultures contributed to a heterogeneous distribution of phosphoenolpyruvate carboxykinase (predominantly localized upstream) and cytochrome p450 2B (predominantly localized downstream) that correlates with the distribution of these enzymes in vivo. The oxygen gradient chamber provides a means of probing the oxygen effects in vitro over a continuous range of O(2) tensions. In addition, this system serves as an in vitro model of zonation that could be further extended to study the role of gradients in ischemia-reperfusion injury, toxicity, and bioartificial liver design. 相似文献
12.
D. Mazzei M.A. Guzzardi S. Giusti A. Ahluwalia 《Biotechnology and bioengineering》2010,106(1):127-137
A generic “system on a plate” modular multicompartmental bioreactor array which enables microwell protocols to be transferred directly to the bioreactor modules, without redesign of cell culture experiments or protocols is described. The modular bioreactors are simple to assemble and use and can be easily compared with standard controls since cell numbers and medium volumes are quite similar. Starting from fluid dynamic and mass transport considerations, a modular bioreactor chamber was first modeled and then fabricated using “milli‐molding,” a technique adapted from soft lithography. After confirming that the shear stress was extremely low in the system in the range of useful flow rates, the bioreactor chambers were tested using hepatocytes. The results show that the bioreactor chambers can increase or maintain cell viability and function when the flow rates are below 500 µL/min, corresponding to wall shear stresses of 10?5 Pa or less at the cell culture surface. Biotechnol. Bioeng. 2010; 106: 127–137. © 2010 Wiley Periodicals, Inc. 相似文献
13.
Jiuan J. Liu Bor-Shiun Chen Te-Feng Tsai Yun-Ju Wu Victor F. Pang Amy Hsieh Jih-Han Hsieh Tong H. Chang 《Cytotechnology》1991,5(2):129-139
Long-term and large scale cultivation of an anchorage-dependent cell line using an industrial scale hollow fiber perfusion bioreactor is described. Hep G2 cells (a human hepatoma cell line) were cultivated in an Acysyst-P® (Endotronic) with a total fiber surface area of 7.2 m2 (6×1.2 m2) to produce Hep G2 crude conditioned medium (CCM). Pretreatment of the cellulose acetate hollow fibers with collagen enhances the attachment of the anchorage-dependent cells. We have succeeded in growing the Hep G2 cells in an antibiotics-and serum-free IMDM medium, supplemented with 50g/ml of Hep G2 CCM protein at inoculation. The Hep G2 cells replicate and secrete CCM protein in quantities comparable to those produced in DMEM containing 10% fetal calf serum (FCS). The highest CCM protein productivity during the 80-day cultivation was 1.1 g/day with a total of 30 g of protein accumulated. Hep G2 CCM (20–40 g protein/ml) was comparable to or even better than 10% FCS in supporting the growth of Molt-4 (a human T leukemia cell line) and FO (a mouse myeloma cell line) cells in vitro. The availability of this large amount of Hep G2 CCM will aid the further purification and characterization of growth factor(s) which could be used as serum substituents. 相似文献
14.
Vasoconstriction and systemic hypertension are the main side effects associated with transfusion of current commercial polymerized hemoglobins (PolyHbs). It is hypothesized that the presence of free tetrameric hemoglobin (Hb) in the PolyHb solution is the root cause of these side effects. Therefore, increasing the size of PolyHbs and reducing the amount of free Hb in solution should dually reduce the extent of vasoconstriction and systemic hypertension. However, all current commercial PolyHb preparations have a small fraction of free Hb in solution. Hence, there is an urgent need to develop novel chemical strategies to synthesize large PolyHb molecules with a higher degree of polymerization without free Hb in solution. In this study, a Hb‐based oxygen carrier was synthesized by polymerizing human Hb using a dimaleimide poly(ethylene glycol) derivative (1,11‐bis(maleimido)triethylene glycol). The resultant PolyHb has a weight‐averaged molecular weight of 1.49 ± 0.62 MDa, O2 affinity (P50) of 2.75 ± 0.55 mm Hg, and Hill coefficient (n) of 0.97 ± 0.07. Light scattering analysis of the PolyHb dispersion confirmed the absence of free Hb monomers, dimers, and tetramers in solution. This work is significant, as it should enable future engineering of nonvasoactive PolyHbs with potential applications in transfusion medicine. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
15.
Our previous attempt to model the stationary phase of production-scale hollow-fiber bioreactors using a scaled-down micro hollow-fiber bioreactor resulted in a predicted antibody production rate that was three- to fourfold lower than the actual value (Gramer and Poeschl, 2000). Medium limitations were suspected as the reason for the discrepancy. In this study, various increases in medium feed rate were implemented in the micro bioreactor by increasing the diameter of the silicone tubing that houses the hollow fibers. Because larger diameter tubing may induce oxygen limitations, we also explored the effect of medium recirculation to enhance oxygenation. Antibody production in the micro bioreactor increased both as a result of increased medium supply and due to medium recirculation. However, these parameters increased antibody production through two independent mechanisms. The increased medium supply resulted in a higher cell-specific antibody production rate, but not a higher viable cell density. Medium circulation resulted in the support of a higher viable cell density, but had little effect on the cell-specific secretion rate. The two mechanisms of enhanced antibody production were additive, demonstrating that simultaneous parameters can limit antibody production by this cell line in a hollow-fiber system. When the medium feed and circulation rates were increased to a volumetrically proportional scale, scale-up predictions from the micro bioreactor matched the actual data from the production-scale system to within 15%. These data demonstrate the usefulness of the micro bioreactor for characterizing cell growth and limiting mechanisms at high cell densities. 相似文献
16.
CB.Hep-1 hybridoma growth and antibody production using protein-free medium in a hollow fiber bioreactor 总被引:1,自引:0,他引:1
R. Valdés N. Ibarra M. González T. Alvarez J. García R. Llambias C. A. Pérez O. Quintero R. Fischer 《Cytotechnology》2001,35(2):145-154
The protein-free medium TurboDoma HP.1 (THP.1) was used to produce the CB.Hep-1 monoclonal antibody (mAb) in a CP-1000 hollow
fiber bioreactor (HFB). This mAb is used for the immunopurification of recombinant hepatitis B surface antigen (rHBsAg), which
is included in a vaccine preparation against the Hepatitis B Virus. By using the experimental conditions tested in this work
we were able to generate more than 433 mg of IgG in 43 days. The maximum antibody concentration obtained was about 2.4 mg
ml-1and the IgG production per day was approximately 11 mg of monoclonal antibody, which constitutes a good concentration value
in comparison to the results obtained in ascitic fluid, where concentration for this hybridoma was around 3 mg ml-1. We used different analytical methods to control the quality of mAbs, obtained from the in vitro system. They included affinity constant determination, analysis of N-glycan structures, immunoaffinity chromatography and
antigen binding properties. The results obtained suggest that no significant changes occurred in the mean characteristics
of the mAb harvested from the bioreactor during the 43 days of cultivation.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
17.
Marie‐Françoise Clincke Carin Mölleryd Ye Zhang Eva Lindskog Kieron Walsh Véronique Chotteau 《Biotechnology progress》2013,29(3):754-767
High cell density perfusion process of antibody producing CHO cells was developed in disposable WAVE Bioreactor? using external hollow fiber filter as cell separation device. Both “classical” tangential flow filtration (TFF) and alternating tangential flow system (ATF) equipment were used and compared. Consistency of both TFF‐ and ATF‐based cultures was shown at 20–35 × 106 cells/mL density stabilized by cell bleeds. To minimize the nutrients deprivation and by‐product accumulation, a perfusion rate correlated to the cell density was applied. The cells were maintained by cell bleeds at density 0.9–1.3 × 108 cells/mL in growing state and at high viability for more than 2 weeks. Finally, with the present settings, maximal cell densities of 2.14 × 108 cells/mL, achieved for the first time in a wave‐induced bioreactor, and 1.32 × 108 cells/mL were reached using TFF and ATF systems, respectively. Using TFF, the cell density was limited by the membrane capacity for the encountered high viscosity and by the pCO2 level. Using ATF, the cell density was limited by the vacuum capacity failing to pull the highly viscous fluid. Thus, the TFF system allowed reaching higher cell densities. The TFF inlet pressure was highly correlated to the viscosity leading to the development of a model of this pressure, which is a useful tool for hollow fiber design of TFF and ATF. At very high cell density, the viscosity introduced physical limitations. This led us to recommend cell densities under 1.46 × 108 cell/mL based on the analysis of the theoretical distance between the cells for the present cell line. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:754–767, 2013 相似文献
18.
We have developed a hematopoietic co-culture system using the hollow fiber bioreactor (HFBR) as a potential in vitro bone marrow model for evaluating leukemia. Supporting stroma using HS-5 cells was established in HFBR system and the current bioprocess configuration yielded an average glucose consumption of 640 mg/day and an average protein concentration of 6.40 mg/mL in the extracapillary space over 28 days. Co-culture with erythroleukemia K562 cells was used as a model for myelo-leukemic cell proliferation and differentiation. Two distinct localizations of K562 cells (loosely adhered and adherent cells) were identified and characterized after 2 weeks. The HFBR co-culture resulted in greater leukemic cell expansion (3,130 fold vs. 43 fold) compared to a standard tissue culture polystyrene (TCP) culture. Majority of expanded cells (68%) in HFBR culture were the adherent population, highlighting the importance of cell-cell contact for myelo-leukemic proliferation. Differentiation tendencies in TCP favored maturation toward monocyte and erythrocyte lineages but maintained a pool of myeloid progenitors. In contrast, HFBR co-culture exhibited greater lineage diversity, stimulating monocytic and megakaryocytic differentiation while inhibiting erythroid maturation. With the extensive stromal expansion capacity on hollow fiber surfaces, the HFBR system is able to achieve high cell densities and 3D cell-cell contacts mimicking the bone marrow microenvironment. The proposed in vitro system represents a dynamic and highly scalable 3D co-culture platform for the study of cell-stroma dependent hematopoietic/leukemic cell functions and ex vivo expansion. 相似文献
19.
A pulsating flow of medium was used to alleviate diffusion and transport limitations in a hollow fiber bioreactor containing
a human hepatoblastoma cell line. The strategy is easy to implement but effective. The pulsating flow is introduced by a solenoid
pinch valve at the outlet of the bioreactor and regulated by a timing circuit. In a permeability test, the system with pulsating
flow had much less membrane fouling as compared to the control, a conventional hollow fiber unit. In hepatocyte culture test
runs, the pulsating-flow bioreactor demonstrated the ability to maintain a higher cell viability. Histological sections indicated
significantly smaller necrotic regions in the pulsating-flow bioreactor as compared to the conventional unit. 相似文献
20.
Xiangming Gu Crystal Bolden-Rush Clayton T. Cuddington Donald A. Belcher Chintan Savla Ivan S. Pires Andre F. Palmer 《Biotechnology and bioengineering》2020,117(8):2362-2376
Previously, our lab developed high molecular weight (MW) tense (T) quaternary state glutaraldehyde polymerized bovine hemoglobins (PolybHbs) that exhibited reduced vasoactivity in several small animal models. In this study, we prepared PolybHb in the T and relaxed (R) quaternary state with ultrahigh MW (>500 kDa) with varying cross-link densities, and investigated the effect of MW on key biophysical properties (i.e., O2 affinity, cooperativity (Hill) coefficient, hydrodynamic diameter, polydispersity, polymer composition, viscosity, gaseous ligand-binding kinetics, auto-oxidation, and haptoglobin [Hp]-binding kinetics). To further optimize current PolybHb synthesis and purification protocols, we performed a comprehensive meta-data analysis to evaluate correlations between procedural parameters (i.e., cross-linker:bovine hemoglobin (bHb) molar ratio, gas-liquid exchange time, temperature during sodium dithionite addition, and number of diafiltration cycles) and the biophysical properties of both T- and R-state PolybHbs. Our results showed that, the duration of the fast-step auto-oxidation phase of R-state PolybHb increased with decreasing glutaraldehyde:bHb molar ratio. Additionally, T-state PolybHbs exhibited significantly higher bimolecular rate constants for binding to Hp and unimolecular O2 offloading rate constants compared to R-state PolybHbs. The methemoglobin (metHb) level in the final product was insensitive to the molar ratio of glutaraldehyde to bHb for all PolybHbs. During tangential flow filtration processing of the final product, 14 diafiltration cycles was found to yield the lowest metHb level. 相似文献