首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The small GTPase Ran, Ras-related nuclear protein, plays important roles in multiple fundamental cellular functions such as nucleocytoplasmic transport, mitotic spindle assembly, and nuclear envelope formation, by binding to either GTP or GDP as a molecular switch. Although it has been clinically demonstrated that Ran is highly expressed in multiple types of cancer cells and specimens, the physiological significance of Ran expression levels is unknown.

Methods

During the long-term culture of normal mammalian cells, we found that the endogenous Ran level gradually reduced in a passage-dependent manner. To examine the physiological significance of Ran reduction, we first performed small interfering RNA (siRNA)-mediated abrogation of Ran in human diploid fibroblasts.

Results

Ran-depleted cells showed several senescent phenotypes. Furthermore, we found that nuclear accumulation of importin α, which was also observed in cells treated with siRNA against CAS, a specific export factor for importin α, occurred in the Ran-depleted cells before the cells showed senescent phenotypes. Further, the CAS-depleted cells also exhibited cellular senescence. Indeed, importin α showed predominant nuclear localisation in a passage-dependent manner.

Conclusions

Reduction in Ran levels causes cytoplasmic decrease and nuclear accumulation of importin α leading to cellular senescence in normal cells.

General significance

The amount of intracellular Ran may be critically related to cell fate determination, such as malignant transformation and senescence. The cellular ageing process may proceed through gradual regression of Ran-dependent nucleocytoplasmic transport competency.  相似文献   

2.
Among the Ras family, Ran is a unique small G protein. It does not have a lipid modification motif at the C-terminus to bind to the membrane, which is often observed within the Ras family. Ran may therefore interact with a wide range of proteins in various intracellular locations. This means that Ran could play many different roles like nucleocytoplasmic transport, microtubule assembly and so on. All of the Ran functions should be regulated by RanGEF and RanGAP. It is an interesting issue why RCC1, a RanGEF, is localized in the nucleus and RanGAP1/Ran1p in the cytoplasm. It is possible that RCC1 checks the state of chromosomal DNA replication and transfers it to the downstream events through Ran; thereby, RCC1 would be involved in coupling the spatial localization of cellular macromolecules with the cell cycle progression. In this context, Ran will be a very important cell cycle mediator. There is yet another G protein cascade, Gtr1-Gtr2, which interacts with the Ran cycle.  相似文献   

3.
Ran-binding protein (RanBP) 1 is a major regulator of the Ran GTPase and is encoded by a regulatory target gene of E2F factors. The Ran GTPase network controls several cellular processes, including nucleocytoplasmic transport and cell cycle progression, and has recently also been shown to regulate microtubule nucleation and spindle assembly in Xenopus oocyte extracts. Here we report that RanBP1 protein levels are cell cycle regulated in mammalian cells, increase from S phase to M phase, peak in metaphase, and abruptly decline in late telophase. Overexpression of RanBP1 throughout the cell cycle yields abnormal mitoses characterized by severe defects in spindle polarization. In addition, microinjection of anti-RanBP1 antibody in mitotic cells induces mitotic delay and abnormal nuclear division, reflecting an abnormal stabilization of the mitotic spindle. Thus, regulated RanBP1 activity is required for proper execution of mitosis in somatic cells.  相似文献   

4.
A new role of ran GTPase.   总被引:2,自引:0,他引:2  
Ran is a G protein similar to Ras, but it has no membrane binding site. RanGEF, RCC1, is on chromatin and RanGAP, RanGAP1/Rna1p is in cytoplasm. Ran, thus, shuttles between the nucleus and the cytoplasm to complete its GTPase cycle, carrying out nucleocytoplasmic transport of macromolecules. A majority of Ran binding proteins, thus far found, are required for this process. A recently found novel Ran-binding protein, RanBPM, however, is localized in the centrosome. Subsequently, four groups reported that RanGTP, but not RanGDP, can induce microtubule self-organization in Xenopus egg extracts where no nuclear membrane is present. Thus, Ran is suggested to have a new role beyond the nucleocytoplasmic transport of macromolecules. In both microtubule assembly and nucleocytoplasmic transport, chromosomal localization of RCC1 is important to carry out the functions of RanGTPase. In this regard, a future intriguing question is how RCC1 interacts with chromatin DNA.  相似文献   

5.
The small Ran GTPase, a key regulator of nucleocytoplasmic transport, is also involved in microtubule assembly and nuclear membrane formation. Herein, we show by immunofluorescence, immunoelectron microscopy, and biochemical analysis that a fraction of Ran is tightly associated with the centrosome throughout the cell cycle. Ran interaction with the centrosome is mediated by the centrosomal matrix A kinase anchoring protein (AKAP450). Accordingly, when AKAP450 is delocalized from the centrosome, Ran is also delocalized, and as a consequence, microtubule regrowth or anchoring is altered, despite the persisting association of gamma-tubulin with the centrosome. Moreover, Ran is recruited to Xenopus sperm centrosome during its activation for microtubule nucleation. We also demonstrate that centrosomal proteins such as centrin and pericentrin, but not gamma-tubulin, AKAP450, or ninein, undertake a nucleocytoplasmic exchange as they concentrate in the nucleus upon export inhibition by leptomycin B. Together, these results suggest a challenging possibility, namely, that centrosome activity could depend upon nucleocytoplasmic exchange of centrosomal proteins and local Ran-dependent concentration at the centrosome.  相似文献   

6.
Ribosomal protein L5 is a shuttling protein that, in Xenopus oocytes, is involved in the nucleocytoplasmic transport of 5S rRNA. As demonstrated earlier, L5 contains three independent nuclear import signals (NLSs), which function in oocytes as well as in somatic cells. Upon physical separation, these NLSs differ in respect to their capacity to bind to nuclear import factors in vitro and to mediate the nuclear import of a heterologous RNP in vivo. As reported in this communication, analysis of the in vitro nuclear import activity of these three NLSs reveals that they also differ in respect to their requirements for cytosolic import factors and Ran. Nuclear import mediated by the N-terminal and the central NLS depends on cytosolic import factor(s) and Ran, whereas import via the C-terminal NLS occurs independently from these factors. Thus, the presence of multiple NLSs in ribosomal protein L5 appears to allow for efficient nuclear transport via utilisation of multiple, mechanistically different import pathways.  相似文献   

7.
Ran is a Ras-related GTPase that is essential for the transport of protein and RNA between the nucleus and the cytoplasm. Proteins that regulate the GTPase cycle and subcellular distribution of Ran include the cytoplasmic GTPase-activating protein (RanGAP) and its co-factors (RanBP1, RanBP2), the nuclear guanine nucleotide exchange factor (RanGEF), and the Ran import receptor (NTF2). The recent identification of the Saccharomyces cerevisiae protein Mog1p as a suppressor of temperature-sensitive Ran mutations suggests that additional regulatory proteins remain to be characterized. Here, we describe the identification and biochemical characterization of murine Mog1, which, like its yeast orthologue, is a nuclear protein that binds specifically to RanGTP. We show that Mog1 stimulates the release of GTP from Ran, indicating that Mog1 functions as a guanine nucleotide release factor in vitro. Following GTP release, Mog1 remains bound to nucleotide-free Ran in a conformation that prevents rebinding of the guanine nucleotide. These properties distinguish Mog1 from the well characterized RanGEF and suggest an unanticipated mechanism for modulating nuclear levels of RanGTP.  相似文献   

8.
Identification of a Conserved Loop in Mog1 that Releases GTP from Ran   总被引:1,自引:0,他引:1  
Ran regulates nuclear import and export pathways by coordinating the assembly and disassembly of transport complexes. These transport reactions are linked to the GTPase cycle and subcellular distribution of Ran. Mog1 is an evolutionarily conserved nuclear protein that binds RanGTP and stimulates guanine nucleotide release, suggesting Mog1 regulates the nuclear transport functions of Ran. In the present study, we have characterized the nuclear import pathway of Mog1, and we have defined the domain in Mog1 that stimulates GTP release from Ran. In permeabilized cells, nuclear import of Mog1 is independent of exogenously added factors, and is inhibited by wheat germ agglutinin, indicating that translocation of Mog1 involves physical interactions with the nuclear pore complex. In contrast to RanGEF, which is restricted to the nucleus, Mog1 shuttles between the nucleus and the cytoplasm. Single-point mutations in acidic residues of Mog1 (Asp25, Asp34, Glu37) dramatically reduce GTP release and Ran binding activity, whereas mutation of a single basic residue (Arg30) renders Mog1 hyperactive for GTP release. These mutations map within a conserved, solvent-exposed loop in Mog1 that is functionally similar to the β-wedge used by RanGEF to promote nucleotide release from Ran. These data suggest that Mog1 and RanGEF use similar mechanisms to facilitate guanine nucleotide release from Ran.  相似文献   

9.
Ran是细胞内的一种具有GTP酶活性的功能蛋白,可以调节染色体稳定性、细胞核组建以及核质运输等多种细胞进程.Ran结合蛋白1(Ran-binding protein 1, Rbp1p )是Ran的必要调控因子,促进Ran-GTP水解为Ran-GDP.本研究从嗜热四膜虫大核基因组中鉴定出1个保守的Ran结合蛋白基因RBP1(TTHERM_00158040, http://www.ciliate.org).实时荧光定量PCR表明,RBP1在四膜虫营养生长和有性生殖过程中都有表达,且在有性生殖过程中表达水平提高.免疫荧光定位表明,在营养 生长期Rbp1p定位于细胞质中.过表达RBP1或敲减RBP1后,细胞生长速率下降,大核的无丝分裂异常,细胞分裂末期产生了无大核的异常细胞,同时过表达RBP1导致了多小核的产生.结果表明,Rbp1p影响四膜虫细胞核的分裂进程,它的正常表达对细胞增殖过程起到重要的调节作用.  相似文献   

10.
The GTPase Ran regulates multiple cellular functions throughout the cell cycle, including nucleocytoplasmic transport, nuclear membrane assembly, and spindle assembly. Ran mediates spindle assembly by affecting multiple spindle assembly pathways: microtubule dynamics, microtubule motor activity, and spindle pole assembly. Ran is predicted to facilitate spindle assembly by remaining in the GTP-bound state around the chromatin in mitosis. Here, we directly test the central tenet of this hypothesis in vivo by determining the cellular localization of Ran pathway components in Drosophila embryos. We find that, during mitosis, RCC1, the nucleotide exchange factor for Ran, is associated with chromatin, while Ran and RanL43E, an allele locked in the GTP-bound state, localize around the spindle. In contrast, nuclear proteins redistribute throughout the embryo upon nuclear envelope breakdown (NEB). Thus, in vivo RanGTP has the correct spatial localization within the cell to modulate spindle assembly.  相似文献   

11.
Numerous cellular processes rely on the movement of macromolecules into and out of the nucleus. The primary regulator of this movement is the small GTPase Ran. Like other small GTPases, the nucleotide-bound state of Ran is regulated by effectors that enhance the rate of nucleotide exchange or hydrolysis. Current models for vectorial nuclear transport suggest that it is the strict compartmentalization of these Ran effector molecules that generates a gradient of RanGTP between the nucleus and the cytoplasm to impart directionality to the transport process. Here we investigate the mechanism by which the Ran exchange factor is targeted to the nucleus, and test the impact of disrupting this nuclear compartmentalization on nucleocytoplasmic transport in vivo. Our results indicate that in Saccharomycces cerevisiae the nucleotide exchange factor Prp20p can be targeted to the nucleus via a classical nuclear localization sequence. This transport mechanism is dependent both on Ran and the receptor that recognizes the nuclear localization sequence, importin alpha. Mutations in the evolutionarily conserved nuclear localization sequence only partially inhibit nuclear import of Prp20p, suggesting the existence of a secondary mechanism for this critical nuclear targeting. In an in vivo test of the RanGTP gradient model, we demonstrate that overexpression of a functional cytoplasmic exchange factor inhibits cell growth and blocks both protein import and RNA export in wild-type cells that contain the endogenous nuclear Prp20 protein. Taken together, our results provide in vivo evidence for the idea that the compartmentalization of the exchange factor serves as a mechanism for establishing directional nuclear transport.  相似文献   

12.
SC Chafe  JB Pierce  D Mangroo 《PloS one》2012,7(8):e42501
NTF2 is a cytosolic protein responsible for nuclear import of Ran, a small Ras-like GTPase involved in a number of critical cellular processes, including cell cycle regulation, chromatin organization during mitosis, reformation of the nuclear envelope following mitosis, and controlling the directionality of nucleocytoplasmic transport. Herein, we provide evidence for the first time that translocation of the mammalian NTF2 from the nucleus to the cytoplasm to collect Ran in the GDP form is subjected to regulation. Treatment of mammalian cells with polysorbitan monolaurate was found to inhibit nuclear export of tRNA and proteins, which are processes dependent on RanGTP in the nucleus, but not nuclear import of proteins. Inhibition of the export processes by polysorbitan monolaurate is specific and reversible, and is caused by accumulation of Ran in the cytoplasm because of a block in translocation of NTF2 to the cytoplasm. Nuclear import of Ran and the nuclear export processes are restored in polysorbitan monolaurate treated cells overproducing NTF2. Moreover, increased phosphorylation of a phospho-tyrosine protein and several phospho-threonine proteins was observed in polysorbitan monolaurate treated cells. Collectively, these findings suggest that nucleocytoplasmic translocation of NTF2 is regulated in mammalian cells, and may involve a tyrosine and/or threonine kinase-dependent signal transduction mechanism(s).  相似文献   

13.
Maintaining the Ran GTPase at a proper concentration in the nucleus is important for nucleocytoplasmic transport. Previously we found that nuclear levels of Ran are reduced in cells from patients with Hutchinson–Gilford progeria syndrome (HGPS), a disease caused by constitutive attachment of a mutant form of lamin A (termed progerin) to the nuclear membrane. Here we explore the relationship between progerin, the Ran GTPase, and oxidative stress. Stable attachment of progerin to the nuclear membrane disrupts the Ran gradient and results in cytoplasmic localization of Ubc9, a Ran-dependent import cargo. Ran and Ubc9 disruption can be induced reversibly with H2O2. CHO cells preadapted to oxidative stress resist the effects of progerin on Ran and Ubc9. Given that HGPS-patient fibroblasts display elevated ROS, these data suggest that progerin inhibits nuclear transport via oxidative stress. A drug that inhibits pre–lamin A cleavage mimics the effects of progerin by disrupting the Ran gradient, but the effects on Ran are observed before a substantial ROS increase. Moreover, reducing the nuclear concentration of Ran is sufficient to induce ROS irrespective of progerin. We speculate that oxidative stress caused by progerin may occur upstream or downstream of Ran, depending on the cell type and physiological setting.  相似文献   

14.
Mog1 is a nuclear protein that interacts with Ran, the Ras family GTPase that confers directionality to nuclear import and export pathways. Deletion of MOG1 in Saccharomyces cerevisiae (Deltamog1) causes temperature-sensitive growth and defects in nuclear protein import. Mog1 has previously been shown to stimulate GTP release from Ran and we demonstrate here that addition of Mog1 to either Ran-GTP or Ran-GDP results in nucleotide release and formation of a stable complex between Mog1 and nucleotide-free Ran. Moreover, MOG1 shows synthetic lethality with PRP20, the Ran guanine nucleotide exchange factor (RanGEF) that also binds nucleotide-free Ran. To probe the functional role of the Mog1-Ran interaction, we engineered mutants of yeast Mog1 and Ran that specifically disrupt their interaction both in vitro and in vivo. These mutants indicate that the interaction interface involves conserved Mog1p residues Asp(62) and Glu(65), and residue Lys(136) in yeast Ran. Mutations at these residues decrease the ability of Mog1 to bind and release nucleotide from Ran. Furthermore, the E65K-Mog1 and K136E-Ran mutations in yeast cause temperature sensitivity and mislocalization of a nuclear import reporter protein, similar to the phenotype observed for the Deltamog1 strain. Our results indicate that a primary function of Mog1 requires binding to Ran and that the Mog1-Ran interaction is necessary for efficient nuclear protein import in vivo.  相似文献   

15.
16.
Zhao Q  Brkljacic J  Meier I 《The Plant cell》2008,20(6):1639-1651
Ran GTPase plays essential roles in multiple cellular processes, including nucleocytoplasmic transport, spindle formation, and postmitotic nuclear envelope (NE) reassembly. The cytoplasmic Ran GTPase activating protein RanGAP is critical to establish a functional RanGTP/RanGDP gradient across the NE and is associated with the outer surface of the NE in metazoan and higher plant cells. Arabidopsis thaliana RanGAP association with the root tip NE requires a family of likely plant-specific nucleoporins combining coiled-coil and transmembrane domains (CC-TMD) and WPP domain-interacting proteins (WIPs). We have now identified, by tandem affinity purification coupled with mass spectrometry, a second family of CC-TMD proteins, structurally similar, yet clearly distinct from the WIP family, that is required for RanGAP NE association in root tip cells. A combination of loss-of-function mutant analysis and protein interaction data indicates that at least one member of each NE-associated CC-TMD protein family is required for RanGAP targeting in root tip cells, while both families are dispensable in other plant tissues. This suggests an unanticipated complexity of RanGAP NE targeting in higher plant cells, contrasting both the single nucleoporin anchor in metazoans and the lack of targeting in fungi and proposes an early evolutionary divergence of the underlying plant and animal mechanisms.  相似文献   

17.
Ran is an essential GTPase that controls nucleocytoplasmic transport, mitosis, and nuclear envelope formation. These functions are regulated by interaction of Ran with different partners, and by formation of a Ran-GTP gradient emanating from chromatin. Here, we identify a novel level of Ran regulation. We show that Ran is a substrate for p21-activated kinase 4 (PAK4) and that its phosphorylation on serine-135 increases during mitosis. The endogenous phosphorylated Ran and active PAK4 dynamically associate with different components of the microtubule spindle during mitotic progression. A GDP-bound Ran phosphomimetic mutant cannot undergo RCC1-mediated GDP/GTP exchange and cannot induce microtubule asters in mitotic Xenopus egg extracts. Conversely, phosphorylation of GTP-bound Ran facilitates aster nucleation. Finally, phosphorylation of Ran on serine-135 impedes its binding to RCC1 and RanGAP1. Our study suggests that PAK4-mediated phosphorylation of GDP- or GTP-bound Ran regulates the assembly of Ran-dependent complexes on the mitotic spindle.  相似文献   

18.
小分子的单体G蛋白Ran具有鸟苷三磷酸酶活性,其结合形式Ran-GTP作为区分间期细胞的核质和胞质的一个分子标记,并参与调控核质运输、指导纺锤体形成以及引导核膜解体与装配。现就Ran在真核细胞核质运输、有丝分裂纺锤体组装与核膜动力学中的功能作一综述。  相似文献   

19.
The mutant form of lamin A responsible for the premature aging disease Hutchinson-Gilford progeria syndrome (termed progerin) acts as a dominant negative protein that changes the structure of the nuclear lamina. How the perturbation of the nuclear lamina in progeria is transduced into cellular changes is undefined. Using patient fibroblasts and a variety of cell-based assays, we determined that progerin expression in Hutchinson-Gilford progeria syndrome inhibits the nucleocytoplasmic transport of several factors with key roles in nuclear function. We found that progerin reduces the nuclear/cytoplasmic concentration of the Ran GTPase and inhibits the nuclear localization of Ubc9, the sole E2 for SUMOylation, and of TPR, the nucleoporin that forms the basket on the nuclear side of the nuclear pore complex. Forcing the nuclear localization of Ubc9 in progerin-expressing cells rescues the Ran gradient and TPR import, indicating that these pathways are linked. Reducing nuclear SUMOylation decreases the nuclear mobility of the Ran nucleotide exchange factor RCC1 in vivo, and the addition of SUMO E1 and E2 promotes the dissociation of RCC1 and Ran from chromatin in vitro. Our data suggest that the cellular effects of progerin are transduced, at least in part, through reduced function of the Ran GTPase and SUMOylation pathways.  相似文献   

20.
真核生物的小G蛋白Ran在进化过程中比较保守,它可直接参与细胞周期调控过程,它的缺失突变可以影响很多细胞生理进程.我们已经从小麦(Triticum aestivum L.cv.Jingdong No.1)cDNA文库中克隆到一个新的RanGTPase的同源基因TaRAN1.在此基础上利用裂殖酵母模式系统研究了该基因的功能.研究结果表明,TaRAN1基因超表达可产生缺陷的纺锤体微管,这可能是导致我们以前观察到的异常染色体分离现象的原因.反义TaRAN1基因表达的酵母细胞,微管系统受到破坏.我们推测TaRAN1蛋白在细胞有丝分裂的纺锤体组装和维持微管系统的完整与稳定过程中起着重要作用.透射电镜观察实验结果显示,超表达TaRAN1的酵母细胞具有异常的核膜结构,反义表达TaRAN1的酵母细胞有异常的液泡结构和紊乱的膜结构,由此推测,TaRAN1在整个核质运输事件中可能是必须的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号