共查询到20条相似文献,搜索用时 15 毫秒
1.
Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing 总被引:15,自引:0,他引:15
Neurexins are neuron-specific vertebrate proteins with hundreds of differentially spliced isoforms that may function in synapse organization. We now show that Drosophila melanogaster and Caenorhabditis elegans express a single gene encoding only an alpha-neurexin, whereas humans and mice express three genes, each of which encodes alpha- and beta-neurexins transcribed from separate promoters. The neurexin genes are very large (up to 1.62 Mb), with the neurexin-3 gene occupying almost 2% of human chromosome 14. Although invertebrate and vertebrate neurexins exhibit a high degree of evolutionary conservation, only vertebrate neurexins are subject to extensive alternative splicing that uses mechanisms ranging from strings of mini-exons to multiple alternative splice donor and acceptor sites. Consistent with their proposed role in synapse specification, neurexins thus have evolved from relatively simple genes in invertebrates to diversified genes in vertebrates with multiple promoters and extensive alternative splicing. 相似文献
2.
3.
4.
5.
Regulation of neurexin 1beta tertiary structure and ligand binding through alternative splicing 总被引:1,自引:0,他引:1
Shen KC Kuczynska DA Wu IJ Murray BH Sheckler LR Rudenko G 《Structure (London, England : 1993)》2008,16(3):422-431
Neurexins and neuroligins play an essential role in synapse function, and their alterations are linked to autistic spectrum disorder. Interactions between neurexins and neuroligins regulate inhibitory and excitatory synaptogenesis in vitro through a "splice-insert signaling code." In particular, neurexin 1beta carrying an alternative splice insert at site SS#4 interacts with neuroligin 2 (found predominantly at inhibitory synapses) but much less so with other neuroligins (those carrying an insert at site B and prevalent at excitatory synapses). The structure of neurexin 1beta+SS#4 reveals dramatic rearrangements to the "hypervariable surface," the binding site for neuroligins. The splice insert protrudes as a long helix into space, triggers conversion of loop beta10-beta11 into a helix rearranging the binding site for neuroligins, and rearranges the Ca(2+)-binding site required for ligand binding, increasing its affinity. Our structures reveal the mechanism by which neurexin 1beta isoforms acquire neuroligin splice isoform selectivity. 相似文献
6.
The role of alternative translation start sites in the generation of human protein diversity 总被引:4,自引:0,他引:4
Kochetov AV Sarai A Rogozin IB Shumny VK Kolchanov NA 《Molecular genetics and genomics : MGG》2005,273(6):491-496
According to the scanning model, 40S ribosomal subunits initiate translation at the first (5 proximal) AUG codon they encounter. However, if the first AUG is in a suboptimal context, it may not be recognized, and translation can then initiate at downstream AUG(s). In this way, a single RNA can produce several variant products. Earlier experiments suggested that some of these additional protein variants might be functionally important. We have analysed human mRNAs that have AUG triplets in 5 untranslated regions and mRNAs in which the annotated translational start codon is located in a suboptimal context. It was found that 3% of human mRNAs have the potential to encode N-terminally extended variants of the annotated proteins and 12% could code for N-truncated variants. The predicted subcellular localizations of these protein variants were compared: 31% of the N-extended proteins and 30% of the N-truncated proteins were predicted to localize to subcellular compartments that differed from those targeted by the annotated protein forms. These results suggest that additional AUGs may frequently be exploited for the synthesis of proteins that possess novel functional properties.Electronic Supplementary Material Supplementary material is available for this article at 相似文献
7.
8.
Increase of functional diversity by alternative splicing 总被引:27,自引:0,他引:27
Kriventseva EV Koch I Apweiler R Vingron M Bork P Gelfand MS Sunyaev S 《Trends in genetics : TIG》2003,19(3):124-128
A large-scale analysis of protein isoforms arising from alternative splicing shows that alternative splicing tends to insert or delete complete protein domains more frequently than expected by chance, whereas disruption of domains and other structural modules is less frequent. If domain regions are disrupted, the functional effect, as predicted from 3D structure, is frequently equivalent to removal of the entire domain. Also, short alternative splicing events within domains, which might preserve folded structure, target functional residues more frequently than expected. Thus, it seems that positive selection has had a major role in the evolution of alternative splicing. 相似文献
9.
Background
Thioredoxin reductase (TR) is a redox active protein involved in many cellular processes as part of the thioredoxin system. Presently there are three recognised forms of mammalian thioredoxin reductase designated as TR1, TR3 and TGR, that represent the cytosolic, mitochondrial and novel forms respectively. In this study we elucidated the genomic organisation of the mouse (Txnrd1) and human thioredoxin reductase 1 genes (TXNRD1) through library screening, restriction mapping and database mining. 相似文献10.
McAlinden A Havlioglu N Sandell LJ 《Birth defects research. Part C, Embryo today : reviews》2004,72(1):51-68
Analysis of the human genome has dramatically demonstrated that the majority of protein diversity is generated by alternative splicing of pre-mRNA. This powerful and versatile mechanism controls the synthesis of functionally different protein isoforms that may be required during specific stages of development from a single gene. Consequently, ubiquitous and/or tissue-specific RNA splicing factors that regulate this splicing mechanism provide the basis for defining phenotypic characteristics of cells during differentiation. In this review, we will introduce the basic mechanisms of pre-mRNA alternative splicing, describe how this process is regulated by specific RNA splicing factors, and relate this to various systems of cell differentiation. Chondrogenesis, a well-defined differentiation pathway necessary for skeletogenesis, will be discussed in detail, with focus on some of the alternatively-spliced proteins known to be expressed during cartilage development. We propose a heuristic view that, ultimately, it is the regulation of these RNA splicing factors that determines the differentiation status of a cell. Studying regulation at the level of pre-mRNA alternative splicing will provide invaluable insights into how many developmental mechanisms are controlled, thus enabling us to manipulate a system to select for a specific differentiation pathway. 相似文献
11.
《Seminars in cell biology》1994,5(4):263-272
Recent molecular characterization of new G protein-coupled receptors (GPCR) draw attention to alternative splicing as a source of structural diversity. After a brief overview of characterized GPCR splice variants, we will describe in more detail the functional properties of the PACAP type I receptor splice variants. Some of these variants are positively coupled to both adenylate cyclase (AC) and phospholipase C (PLC) whereas others do not elicit any stimulation of the PLC or display a qualitatively intermediate phenotype. The PACAP type I receptor is therefore one of the few examples in which alternative splicing is clearly linked to functional diversity. 相似文献
12.
13.
Adam Suhy Katherine Hartmann Leslie Newman Audrey Papp Thomas Toneff Vivian Hook Wolfgang Sadee 《Biochemical and biophysical research communications》2014
Cholesteryl ester transfer protein (CETP) plays an important role in reverse cholesterol transport, with decreased CETP activity increasing HDL levels. Formation of an alternative splice form lacking exon 9 (Δ9-CETP) has been associated with two single nucleotide polymorphisms (SNPs) in high linkage disequilibrium with each other, namely rs9930761 T > C located in intron 8 in a putative splicing branch site and rs5883 C > T in a possible exonic splicing enhancer (ESE) site in exon 9. To assess the relative effect of rs9930761 and rs5883 on splicing, mini-gene constructs spanning CETP exons 8 to 10, carrying all four possible allele combinations, were transfected into HEK293 and HepG2 cells. The minor T allele of rs5883 enhanced splicing significantly in both cell lines whereas the minor C allele of rs9930761 did not. In combination, the two alleles did not yield greater splicing than the rs5883 T allele alone in HepG2 cells. These results indicate that the genetic effect on CETP splicing is largely attributable to rs5883. We also confirm that Δ9-CETP protein is expressed in the liver but fails to circulate in the blood. 相似文献
14.
Alternative mRNA splicing is becoming increasingly recognized as an important mechanism for the generation of structural and functional diversity in proteins. Recent estimations predict that approximately 50% of all eukaryotic proteins can be alternatively spliced. Several lines of evidence suggest that alternative mRNA splicing results in small changes in protein structure and is likely to fine-tune the function and specificity of the affected protein. However, knowledge of how alternative splicing regulates cellular processes on the molecular level is still limited. It is only recently that structures of alternatively spliced proteins have been solved. These studies have shown that alternative splicing affects the structure not only in the vicinity of the splice site but also at long distance. 相似文献
15.
Bingham JL Carrigan PE Miller LJ Srinivasan S 《Omics : a journal of integrative biology》2008,12(1):83-92
Alternative splicing generates functional diversity in higher organisms through alternative first and last exons, skipped and included exons, intron retentions and alternative donor, and acceptor sites. In large-scale microarray studies in humans and the mouse, emphasis so far has been placed on exon-skip events, leaving the prevalence and importance of other splice types largely unexplored. Using a new human splice variant database and a genome-wide microarray to probes thousands of splice events of each type, we measured differential expression of splice types across six pair of diverse cell lines and validated the database annotation process. Results suggest that splicing in humans is more complex than simple exon-skip events, which account for a minority of splicing differences. The relative frequency of differential expression of the splice types correlates with what is found by our annotation efforts. In conclusion, alternative splicing in human cells is considerably more complex than the canonical example of the exon skip. The complementary approaches of genome-wide annotation of alternative splicing in human and design of genome-wide splicing microarrays to measure differential splicing in biological samples provide a powerful high-throughput tool to study the role of alternative splicing in human biology. 相似文献
16.
17.
Occhi G Rampazzo A Beffagna G Antonio Danieli G 《Biochemical and biophysical research communications》2002,298(1):151-155
Three neurexin (NRXN) genes are known in humans, each transcribed from two promoters and extensively spliced at five canonical positions, thus generating thousands of isoforms. For NRXN3, only neuronal expression was reported so far. We reported here on the expression of NRXN3 in additional tissues (lung, pancreas, heart, placenta, liver, and kidney) and on the identification and characterization of heart-specific splicing variants of NRXN3. Cardiac isoforms of NRXN3 probably participate in a complex involving dystroglycan and proteins of extracellular matrix, involved in intercellular connections. 相似文献
18.
Molecular diversity of L-type calcium channels. Evidence for alternative splicing of the transcripts of three non-allelic genes 总被引:22,自引:0,他引:22
E Perez-Reyes X Y Wei A Castellano L Birnbaumer 《The Journal of biological chemistry》1990,265(33):20430-20436
The diversity of L-type calcium channels was probed using the polymerase chain reaction and primers based on regions conserved in the L-type skeletal muscle (CaCh 1) and cardiac calcium channels (CaCh 2). Related sequences were amplified from human heart, hamster heart, rabbit heart, mouse ovary, mouse BC3H1 cells, and hamster insulin-secreting (HIT) cells. Sequencing of various clones revealed the presence of alternate splicing in gene products coding for CaCh 1, CaCh 2, and a related calcium channel. This related gene product, which we refer to as neuroendocrine or CaCh 3, is expressed in brain and endocrine cells. The diverse products can be explained by the use of alternate exons of equal size, which account for changes in amino acid composition, in combination with an alternate splice acceptor site or an exon skipping event, which produces channels of variable length. Four variants were defined for the gene 3 product, subtypes 3a, 3b, 3c, and 3d that differed in both the sequence of the third membrane spanning segment of the fourth repeat unit (IVS3) and in the size of the linker between this and the fourth membrane spanning segment (IVS4). Three CaCh 2 variants were cloned, subtypes 2a, 2c, and 2d, that are homologous to the a, c, and d variants of CaCh 3. For the skeletal muscle calcium channel only two variants were isolated. They are homologous to those of the a and c subtypes of CaCh 2 or 3, in that they differ only in the size of the IVS3 to IVS4 linker. These results demonstrate that calcium channel diversity is created by both the expression of distinct genes and the alternate splicing of these genes. 相似文献
19.
《Epigenetics》2013,8(2):69-73
Clinical data provide evidence for the association of missplicing with methyl-binding protein mutations and inhibition of methylation. In this study, we analyzed a 373 human gene database containing a single alternatively spliced exon (cassette) and 1,039 constitutive introns, and showed that CpG frequencies are higher in alternative compared to constitutive introns, particularly in donors preceding cassette exons (p 相似文献