首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Recombinational analysis has shown that the rat MHC,RT1 is divided into two regions:RT1.A, which codes for class I (transplantation) antigens, andRT1.B, which controls the humoral immune response and proliferative response to allogeneic cells as well as the expression of class II (Ia) antigens. Serological and sequence studies suggest that there might be more than one antigen-coding locus within theRT1.A region. Results obtained by sequential immunoprecipitation reveal that both regions code for at least two gene products. By implication, theRT1 complex must therefore harbor at least four loci;RT1.A andD coding for class I glycoproteins (45,000 daltons); andRT1.B andE coding for class II (Ia) glycoproteins (35,000 and 28,000 daltons).  相似文献   

4.
Roos C  Walter L 《Immunogenetics》2005,56(10):773-777
The major histocompatibility complex (MHC) class I region extending between the Bat1 and Pou5f1 genes shows considerable genomic plasticity in mouse and rhesus macaque but not in human haplotypes. In the rat, this region is known as the RT1-CE region. The recently published rat MHC sequence gave rise to a complete set of class I gene sequences in a single MHC haplotype, namely the RT1n haplotype of the widely used BN inbred strain. To study the degree of genetic diversity, we compared the RT1-CE region-derived class I genes of the RT1n haplotype with class I sequences of other rat haplotypes. By using phylogenetic tree analyses, we obtained evidence for extensive presence and absence polymorphisms of single loci and even small subfamilies of class I genes in the rat. Alleles of RT1-CE region class I genes could also be identified, but the rate of allelic nucleotide substitutions appeared rather low, indicating that the diversity in the RT1-CE region is mainly based on genomic plasticity.  相似文献   

5.
Götze D 《Immunogenetics》1978,7(1):491-506
The antigenic determinants expressed on RBC and lymphocytes and coded for by the MHC, RT1,of the MNR (RT1 ( m )) rat strain were compared to those of the BN.DA(RT1 ( a )), ALB (RT1 ( b )), and AUG (RT1 ( c )) strains by direct cytotoxicity and absorption analysis with RT1 typing sera, sera produced against MNR cells, and sera produced in MNR responders against cells carrying thea, b, andc haplotype determinants. The results indicate that MNR shares major class I (A) antigens with DA, and major class II (B) determinants with AUG, but that MNR differs from DA and AUG with respect to both classes of determinant. It appears, therefore, that the MNR haplotype does not represent a simple composite of the two other haplotypes,RT1 ( a ) andRT1 ( c ), as reported earlier.  相似文献   

6.
7.
8.
9.
10.
The cDNA and a partial genomic sequence of a rat class I major histocompatibility (RT1) gene, 11/3R, is reported here. The sequence contains several unique amino acid residues at certain positions, mutations in exon 7 (which is not expressed), a mutation of the canonical exon 8 stop codon to a sense codon, and includes a long 3 unstranslated region (utr). The structure of exon 7 differs from that found in most rat class I genes and resembles exon 7 of most H-2K,D,L.Q genes. Parts of the 3 noncoding region are homologous to the RT1.A-4 and certain H-2 genes. Expression is detectable by northern blot analysis in mitogen-stimulated lymphocytes only, by polymerase chain reaction (PCR) in each tissue tested. After transfection into L cells 11/3R can be shown to be expressible at the cell surface. Probes derived from the 3 noncoding part crosshybridize with a number of restriction fragments which map to the RT1.C region, thus defining a subfamily of RT1.C region genes. Several members of this subfamily are deleted in the M1 RT1 mutant. The 11/3R gene presents typical features of a class Ib gene. Aspects of evolution and the potential of the gene are discussed.The nucleotide sequence data reported in this paper have been submitted to the GenBank molecule sequence data base and have been assigned the accession numbers X67503 ande X67504.  相似文献   

11.
12.
 Class I genomic clones of the quail (Coturnix japonica) major histocompatibility complex (MhcCoja) were isolated and characterized. Two clusters spanning the 90.8 kilobase (kb) and 78.2 kb class I gene regions were defined by overlapping cosmid clones and found to contain at least twelve class I loci. However, unlike in the chicken Mhc, no evidence for the existence of any Coja class II gene was obtained in these two clusters. Based on comparative analysis of the genomic sequences with those of the cDNA clones, Coja-A, Coja-B, Coja-C, and Coja-D (Shiina et al. 1999), these twelve loci were assigned to represent one Coja-A gene, two Coja-B genes (Coja-B1 and -B2), four Coja-C genes (Coja-C1-C4), four Coja-D genes (Coja-D1-D4), and one new Coja-E gene. A class I gene-rich segment of 24.6 kb in which five of these genes (Coja-B1, -B2, -D1, -D2 and -E) are densely packed were sequenced by the shotgun strategy. All of these five class I genes are very compact in size [2089 base pairs (bp)–2732 bp] and contain no apparent genetic defect for functional expression. A transporter associated with the antigen processing (TAP) gene was identified in this class I gene-rich segment. These results suggest that the quail class I region is physically separated from the class II region and characterized by a large number of the expressible class I loci (at least seven) in contrast to the chicken Mhc, where the class I and class II regions are not clearly differentiated and only at most three expressed class I loci so far have been recognized. Received: 9 March 1998 / Revised: 12 October 1998  相似文献   

13.
A nonpolymorphic class I gene in the murine major histocompatibility complex   总被引:33,自引:0,他引:33  
A L Mellor  E H Weiss  M Kress  G Jay  R A Flavell 《Cell》1984,36(1):139-144
DNA sequence analysis of a class I gene (Q10), which maps to the Qa2,3 locus in the C57BL/10 (H-2b haplotype) mouse, reveals that it is almost identical to a cDNA clone (pH16) isolated from a SWR/J (H-2q haplotype) mouse liver cDNA library. Exon 5, in particular, has an unusual structure such that a polypeptide product is unlikely to be anchored in the cell membrane. Our findings suggest that the two sequences are derived from allelic class I genes, which are nonpolymorphic, in contrast to H-2K allelic sequences from the same mice, and they may encode liver-specific polypeptides of unknown function. Our previous studies indicate that the Q10 gene is a potential donor gene for the generation of mutations at the H-2K locus by inter-gene transfer of genetic information. Thus the lack of polymorphism in class I genes at the Q10 locus implies either that they are not recipients for such exchanges or that selective pressure prevents the accumulation of mutations in genes at this locus.  相似文献   

14.
15.
16.
The rat major histocompatibility complex class Ia allelomorph RT1-A1(c) is a potent ligand for the recently identified inhibitory rLy-49 receptor, STOK-2. With the ultimate objective of studying the interactions of these molecules using structural and functional methods, we undertook a detailed study of its peptide specificity. The study revealed that designing an "ideal peptide" by choosing the most abundant residues in the "binding motif" obtained by pool sequencing does not necessarily yield an optimal binding peptide. For RT1-A1(c), as many as four positions, P2, P4, P5, and P9, were detected as putative anchors. Since this molecule displays a preference for highly hydrophobic peptides, we tested binding of peptides derived from the known leader peptide sequences of other rat histocompatibility complex class I molecules. One such peptide, found to bind well, requiring 1.6 microm peptide to achieve 50% stabilization, was searched for in vivo. Natural RT1-A1(c) binding peptides were purified from rat splenocytes and characterized by mass spectrometry using a combined matrix-assisted laser desorption ionization/time-of-flight and quadrupole time-of-flight approach. Results showed that the signal sequence-derived peptide was not detectable in the purified peptide pool, which was composed of a complex spectrum of peptides. Seven of these self-peptides were successfully sequenced.  相似文献   

17.
Until recently, the analysis of Class II genes linked to the rat major histocompatibility complex, RT1, has been confined to serologic and electrophoretic analysis of their gene products. To obtain a more definitive estimate of the number and relative polymorphism of RT1 Class II sequences, we performed Southern blot analysis of rat genomic DNA employing human cDNA probes specific for Class II heavy and light chain genes. Southern blots of EcoRI and BamHI digests of genomic DNA from ten inbred strains, expressing eight RT1 haplotypes, were hybridized with the human DQ beta or DR beta cDNA that are homologous to Class II light chain sequences. Four to eight bands were observed to hybridize with the light chain cDNA: band sizes ranged from 2.5 to 28 kb. Restriction fragment patterns were polymorphic; the only identical patterns observed were those associated with RT1 haplotypes with identical RT1.B regions. The number and size of bands hybridizing with DQ beta and DR beta suggested a minimum of four light chain sequences in each haplotype. Southern blots of BamHI and EcoRI digests of genomic DNA from the same strains were hybridized with a DR alpha cDNA that is homologous to Class II heavy chain sequences. All RT1 haplotypes expressed either a 10.0-kb or 13.0-kb band when digested with BamHI, and either a 17-kb or 3.7-kb band when digested with EcoRI. Considerably less polymorphism was detected with the DR alpha probe; this observation is consistent with previously reported limited protein polymorphism of the rat equivalent of the I-E alpha subunit. The size and number of bands hybridizing with the DR alpha probe suggests a minimum of two heavy chain sequences. These observations suggest that the RT1 complex includes more Class II sequences than have been observed in serologic and electrophoretic analyses of Class II gene products. Furthermore, the level of polymorphism of RT1 Class II sequences appears to be comparable with mouse and human Class II sequences.  相似文献   

18.
19.
Two types of biochemically defined class I major histocompatibility complex (MHC) antigens are found in the rat, RTLA antigens that are ubiquitously expressed and RTLC antigens which so far are detectable only on certain cell types, notably B and T lymphocytes. It is shown that the cytotoxic T lymphocyte response to minor H antigens of the LEW strain, including the H-Y antigen, and to TNP-modified syngeneic lymphoid cells is restricted by RTLA but not RTLC gene products. This conclusion is based on bulk culture assays including cold target inhibition tests and limiting dilution experiments using recombinants between the RT1 a and RT1 u haplotypes. The possibility that class I MHC antigens exist which have no major restriction function is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号