首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conservation of gorillas (Gorilla spp.) and chimpanzees (Pan troglodytes) depends upon knowledge of their densities and distribution throughout their ranges. However, information about ape populations in swamp forests is scarce. Here we build on current knowledge of ape populations by conducting line transect surveys of nests throughout a reserve dominated by swamp forest: the Lac Télé Community Reserve in northern Congo. We estimated gorilla and chimpanzee densities, distributions across habitats, and seasonal changes in abundance. Gorilla density was 2.9 gorillas km–2, but densities varied by habitat (0.3–5.4 gorillas km–2) with highest densities in swamp forest and terra firma mixed forest. Average chimpanzee density is 0.7 chimpanzees km–2 (0.1–1.3 chimpanzees km–2), with highest densities in swamp forest. Habitat was the best predictor of ape nest abundance, as neither the number of human indices nor the distance from the nearest village predicted nest abundance. We recorded significantly greater numbers of apes in terra firma forest during the high-water season than the low-water season, indicating that many gorillas and chimpanzees are at times concentrated in terra firma forest amid a matrix of swamp forest. Seasonally high numbers of apes on terra firma forest islands easily accessible to local people may expose them to substantial hunting pressure. Conversely, the nearly impenetrable nature of swamp forests and their low value for logging makes them promising sites for the conservation of apes.  相似文献   

2.
Ape Abundance and Habitat Use in the Goualougo Triangle, Republic of Congo   总被引:1,自引:0,他引:1  
Chimpanzee (Pan troglodytes troglodytes) and western gorilla (Gorilla gorilla gorilla) populations in central Africa are rapidly declining as a result of disease epidemics, commercial bushmeat hunting, and habitat destruction. Our main objective was to estimate the absolute abundance and habitat utilization of chimpanzees and gorillas in the intact forests of the Goualougo Triangle in the Republic of Congo, and in an adjacent area in which selective logging will take place in the near future. The estimates provide a unique baseline for apes inhabiting an undisturbed environment. A second objective was to compare estimates of abundance and patterns of habitat utilization generated by different techniques: 1) distance sampling of individual ape nests and nest sites along line transects, 2) direct observations of apes during reconnaissance surveys, and 3) observations of ape traces during reconnaissance surveys. We completed a total of 222 km of line transect surveys in 4 sampling areas, resulting in overall density estimates of 1.53 chimpanzees/km2 and 2.34 gorillas/km2 from nest sites. We generated a density estimate of 2.23 chimpanzees/km2 from direct observations during reconnaissance surveys of a semihabituated community in 1 of the 4 sampling areas. Habitat use profiles that nest surveys depicted on transects differed from those of direct observations and traces we encountered on reconnaissance surveys. We found the highest overall abundance of chimpanzee nests in monodominant Gilbertiodendron forest, whereas our direct observations showed that chimpanzees preferred mixed species forest. Transects that traversed the core area of the community range had the highest encounter rates of chimpanzee nests and nest sites. Gorilla nests on transects showed a preference only for mixed species forest with an open canopy, but direct observations and traces on reconnaissance surveys clearly indicated that gorillas use several habitat types. We conclude by evaluating the precision of these nest surveys and our ability to detect future trends in ape densities in the Goualougo Triangle.
Samantha StrindbergEmail:
  相似文献   

3.
Accurate and precise surveys of primate abundance provide the basis for understanding species ecology and essential information for conservation assessments. Owing to the elusive nature of wild apes and the vast region of dense forest they inhabit, population estimates of central chimpanzees (Pan troglodytes troglodytes) and western lowland gorillas (Gorilla gorilla gorilla) have largely relied on surveys of their nests. Specific information about the nesting behavior of apes permits the estimation of the number of nests built (nest creation rate). Similarly, information on nest characteristics and environmental factors can be used to estimate the time it takes nests to decay (nest decay rate). Nest creation and decay rates are then used to convert nest density estimates to absolute ape densities. Population estimates that use site-specific estimates of nest creation and decay rates are more accurate and precise. However, it is common practice to generalize these conversion factors across sites because of the additional cost of studies required to gather the information to estimate them. Over a 9-mo study period, we detected and monitored the time to decay of gorilla nests (N = 514) and chimpanzee nests (N = 521) in northern Republic of Congo. We investigated the influence of nest characteristics and environmental factors on nest survivorship and estimated the mean time to nest decay (or equivalently survival) using MARK. Key factors influencing nest decay rate included ape species, forest type, nest height, mean rainfall, nest structure, nest type, and primary aspects of nest construction. Our findings highlight the synergistic effect of behavior and environment on great ape nest degradation, as well as providing practical insights for improving measures to monitor remaining populations of these endangered species.  相似文献   

4.
Western gorillas Gorilla gorilla have been exceedingly difficult to habituate to the presence of human observers. Nevertheless, researchers have amassed a wealth of information on population densities and group structure for this ape species by locating and counting the sleeping nests of wild individuals. Such nest-count studies have suggested that western gorilla groups often have multiple silverbacks and these multimale groups occasionally divide into smaller subgroups. However, observational data from forest clearing sites and from a few recently habituated western gorilla groups show no evidence of multimale family groups or of subgrouping. This discrepancy underscores a long-standing question in ape research: How accurately do nesting sites reflect true group compositions? We evaluated these indirect measures of group composition by using DNA from faeces and hair to genetically identify individual gorillas at nesting sites. Samples were collected from unhabituated wild western gorillas ranging near Mondika Research Center in the Central African Republic and Republic of Congo. DNA extracted from these samples was genotyped at up to 10 microsatellite loci and one X–Y homologous locus for sex identification. Individuals were then identified at nesting sites by their unique multilocus genotypes, thus providing a 'molecular census' of individual gorillas. Results confirm that western gorillas often build more than one nest at a nesting site and, thus, nest counts can be highly inaccurate indicators of group size and composition. Indeed, we found that nest counts can overestimate group size by as much as 40%, indicating that true gorilla population numbers are probably lower than those reported from census surveys. This study demonstrates how genetic analysis can be a valuable tool for studying and conserving elusive, endangered animals.  相似文献   

5.
6.
Among factors affecting animal health, environmental influences may directly or indirectly impact host nutritional condition, fecundity, and their degree of parasitism. Our closest relatives, the great apes, are all endangered and particularly sensitive to infectious diseases. Both chimpanzees and western gorillas experience large seasonal variations in fruit availability but only western gorillas accordingly show large changes in their degree of frugivory. The aim of this study is to investigate and compare factors affecting health (through records of clinical signs, urine, and faecal samples) of habituated wild ape populations: a community (N = 46 individuals) of chimpanzees (Pan troglodytes) in Kanyawara, Kibale National Park (Uganda), and a western gorilla (G. gorilla) group (N = 13) in Bai Hokou in the Dzanga-Ndoki National Park (Central African Republic). Ape health monitoring was carried out in the wet and dry seasons (chimpanzees: July–December 2006; gorillas: April–July 2008 and December 2008–February 2009). Compared to chimpanzees, western gorillas were shown to have marginally greater parasite diversity, higher prevalence and intensity of both parasite and urine infections, and lower occurrence of diarrhea and wounds. Parasite infections (prevalence and load), but not abnormal urine parameters, were significantly higher during the dry season of the study period for western gorillas, who thus appeared more affected by the large temporal changes in the environment in comparison to chimpanzees. Infant gorillas were the most susceptible among all the age/sex classes (of both apes) having much more intense infections and urine blood concentrations, again during the dry season. Long term studies are needed to confirm the influence of seasonal factors on health and parasitism of these great apes. However, this study suggest climate change and forest fragmentation leading to potentially larger seasonal fluctuations of the environment may affect patterns of ape parasitism and further exacerbate health impacts on great ape populations that live in highly seasonal habitats.  相似文献   

7.
Dietary overlap of sympatric apes is complex and understudied, but its examination is essential to further our understanding of species distribution, abundance, and community ecology. Over 3 yr we studied food availability and dietary composition of central chimpanzees (Pan troglodytes troglodytes) and western gorillas (Gorilla gorilla gorilla) in Loango National Park, Gabon. We predicted that living in a habitat dominated by mature forest with sparse terrestrial herbaceous vegetation would lead to an increase in frugivory by gorillas, resulting in increased dietary overlap between the 2 ape species vs. other sites, but that chimpanzees would remain more frugivorous than gorillas. Through fecal analysis we measured overlap in fruit consumption between the 2 species on a bimonthly basis using the Renkonens method. Mean overlap was 27.5% but varied greatly seasonally, ranging between 0.3% and 69%, indicating that when examined on a finer scale, the degree of overlap appears much lower than at other study sites. In contrast to studies elsewhere, there was not a positive correlation between rainfall and fruit availability in Loango, and the long dry season was a period of high fruit production. As observed elsewhere, we found a positive correlation between fruit consumption and fruit availability for both chimpanzees and gorillas and we found that chimpanzees were more frugivorous than gorillas. A very low availability of herbs did not lead to increased frugivory by gorillas nor increased overlap between the 2 ape species vs. other field sites. We conclude that forest composition, fruit availability, and dietary variability of sympatric species can vary greatly between locations, and that chimpanzees and gorillas can adapt to primary forest with little undergrowth, where they concentrate their diet on fruit and leaves.  相似文献   

8.
A census was made of gorilla and chimpanzee populations throughout Gabon between December 1980 and February 1983. The aim of the census was to estimate the total numbers of both species and describe their distributions. The method was based on nest counts from line transects which allowed the calculation of population densities of all individuals except suckling infants. Fifteen types of habitat were recognized and defined in terms of their structural features. In the initial phase of the study we did transects in each habitat-type and computed mean densities for each species in each habitat-type. In the second phase of the study we estimated the sizes of gorilla and chimpanzee populations throughout the country by extrapolation from these population density values. We did transects in all areas of the country and conducted interviews to check the accuracy of the population totals obtained by extrapolation. Corrections were made to the extrapolated totals to take into account different levels of hunting pressure and other human activities found to modify ape population densities. Total populations of 34,764 gorillas and 64,173 chimpanzees were estimated. An error of ± 20% was associated with the estimated population totals, which allows the conclusion that Gabon contains 35,000 ± 7,000 gorillas and 64,000 ± 13,000 chimpanzees. The figure for gorillas is much larger than previous estimates. This seems to be because (1) gorillas occur in almost all types of forest and are not restricted to man-made secondary forest as had been though; and (2) the geographical distribution of gorillas in Gabon is wider than previously believed. Gabon's large areas of undisturbed primary forest offer exceptional potential for conservation, not only of gorillas and chimpanzees, but also of the intact tropical rain forest ecosystems which they inhabit.  相似文献   

9.
Conservation efforts to protect chimpanzees in their natural habitat are of the highest priority. Unfortunately, chimpanzee density is notoriously difficult to determine, making it difficult to assess potential chimpanzee conservation areas. The objective of this study was to determine whether chimpanzee density could be predicted from the density of trees that produce large, fleshy fruits. Using chimpanzee nest counts from six sites within Kibale National Park, Uganda, collected during a year-long study, a predictive trend was found between chimpanzee nest density and large, fleshy-fruit tree density. This relationship may offer a quick, reasonably reliable method of estimating potential chimpanzee densities in previously unsurveyed habitats and may be used to evaluate the suitability of possible re-introduction sites. Thus, in conjunction with other survey techniques, such as forest reconnaissance, it may provide an effective and efficient means of determining appropriate chimpanzee habitat in which to allocate conservation efforts.  相似文献   

10.
We describe the distribution and estimate densities of Grauer's gorillas (Gorilla gorilla graueri) and eastern chimpanzees (Pan troglodytes schweinfurthi) in a 12,770-km 2 area of lowland forest between the Lowa, Luka, Lugulu, and Oku rivers in eastern Democratic Republic of Congo, the site of the largest continuous population of Grauer's gorillas. The survey included a total of 480 km of transects completed within seven sampling zones in the Kahuzi-Biega National Park lowland sector and adjacent Kasese region and approximately 1100 km of footpath and forest reconnaissance. We estimate total populations of 7670 (4180–10,830) weaned gorillas within the Kahuzi-Biega lowland sector and 3350 (1420–5950) individuals in the Kasese survey areas. Within the same area, we estimate a population of 2600 (1620–4500) chimpanzees. Ape nest site densities are significantly higher within the Kahuzi-Biega lowland sector than in the more remote Kasese survey area in spite of a significantly higher encounter rate of human sign within the lowland sector of the park. Comparison of our data with information obtained by Emlen and Schaller during the first rangewide survey of Grauer's gorillas in 1959 suggests that gorilla populations have remained stable in protected areas but declined in adjacent forest. These findings underscore the key role played by national parks in protecting biological resources in spite of the recent political and economic turmoil in the region. We also show that forest reconnaissance is a reliable and cost-effective method to assess gorilla densities in remote forested areas.  相似文献   

11.
Based on 8 years of observations of a group of western lowland gorillas (Gorilla beringei graueri) and a unit-group of chimpanzees (Pan troglodytes schweinfurthii) living sympatrically in the montane forest at Kahuzi–Biega National Park, we compared their diet and analyzed dietary overlap between them in relation to fruit phenology. Data on fruit consumption were collected mainly from fecal samples, and phenology of preferred ape fruits was estimated by monitoring. Totals of 231 plant foods (116 species) and 137 plant foods (104 species) were recorded for gorillas and chimpanzees, respectively. Among these, 38% of gorilla foods and 64% of chimpanzee foods were eaten by both apes. Fruits accounted for the largest overlap between them (77% for gorillas and 59% for chimpanzees). Gorillas consumed more species of vegetative foods (especially bark) exclusively whereas chimpanzees consumed more species of fruits and animal foods exclusively. Although the number of fruit species available in the montane forest of Kahuzi is much lower than that in lowland forest, the number of fruit species per chimpanzee fecal sample (average 2.7 species) was similar to that for chimpanzees in the lowland habitats. By contrast, the number of fruit species per gorilla fecal sample (average 0.8 species) was much lower than that for gorillas in the lowland habitats. Fruit consumption by both apes tended to increase during the dry season when ripe fruits were more abundant in their habitat. However, the number of fruit species consumed by chimpanzees did not change according to ripe fruit abundance. The species differences in fruit consumption may be attributed to the wide ranging of gorillas and repeated usage of a small range by chimpanzees and/or to avoidance of inter-specific contact by chimpanzees. The different staple foods (leaves and bark for gorillas and fig fruits for chimpanzees) characterize the dietary divergence between them in the montane forest of Kahuzi, where fruit is usually scarce. Gorillas rarely fed on insects, but chimpanzees occasionally fed on bees with honey, which possibly compensate for fruit scarcity. A comparison of dietary overlap between gorillas and chimpanzees across habitats suggests that sympatry may not influence dietary overlap in fruit consumed but may stimulate behavioral divergence to reduce feeding competition between them.  相似文献   

12.
I studied insect-foraging strategies of great apes and aimed to define niche differentiation in their insect diet. I investigated seasonality in fruit-, foliage-, insect-, and meat-eating by great apes in southeast Cameroon via indirect methods and measured activity and nest densities of insect prey. I used a multinomial logistic regression to analyze the data. Gorilla and chimpanzee insect-, ant-, and termite-eating does not correlate with rainfall. Ant- and nonwinged termite-eating by chimpanzees increased in periods of succulent fruit scarcity and provided protein and energy, which might have compensated for the protein-low foliage eaten then. The apes ate winged termites when succulent fruit was abundant. Ant and winged termite consumption by gorillas correlates positively with that of chimpanzees. Ant-eating by gorillas increased when fruit was scarce, but was also associated with temporal ant activity and nest density. Both ape species also encountered more ant nests and trails in that period, as they predominantly foraged for herbs in vegetation types with high ant availability. In contrast, fruit-eating correlates positively with nonwinged termite-eating by gorillas, but again temporal prey availability is also associated. Termites might have provided 1) supplemental iron when tannin-rich fruits were eaten or 2) antidiarrheal properties when gorillas ate too much laxative fruit. Termite-eating by both ape species is not associated with spatial termite availability. In conclusion, there is niche differentiation in their insect diet. Based on the trade-off between foraging effort and nutritional gain, chimpanzees use a high-energy and gorillas a low-energy strategy when feeding on termites, but both use a low-energy strategy when feeding on ants. However, more information on the consumption of ant larvae is necessary to define niche differentiation in their ant diet.  相似文献   

13.
Poaching and habitat destruction in the Congo Basin threaten African great apes including the bonobo (Pan paniscus), chimpanzees (Pan troglodytes), and gorillas (Gorilla spp.) with extinction. One way to combat extinction is to reintroduce rescued and rehabilitated apes and repopulate native habitats. Reintroduction programs are only successful if they are supported by local populations. Ekolo ya Bonobo, located in Equateur province of the Democratic Republic of Congo (DRC), is the world's only reintroduction site for rehabilitated bonobos. Here we assess whether children, of the Ilonga‐Pôo, living adjacent to Ekolo ya Bonobo demonstrate more pro‐ape conservation attitudes than children living in, Kinshasa, the capital city. We examined children's attitudes toward great apes because children are typically the focus of conservation education programs. We used the Great Ape Attitude Questionnaire to test the Contact Hypothesis, which posits that proximity to great ape habitat influences pro‐conservation attitudes toward great apes. Ilonga‐Pôo children who live in closer contact with wild bonobos felt greater responsibility to protect great apes compared to those in Kinshasa who live outside the natural habitat of great apes. These results suggest that among participants in the DRC, spatial proximity to a species fosters a greater sense of responsibility to protect and conserve. These results have implications for the successful implementation of great ape reintroduction programs in the Congo Basin. The data analyzed in this study were collected in 2010 and therefore provide a baseline for longitudinal study of this reintroduction site.  相似文献   

14.
Many studies have examined the long-term effects of selective logging on the abundance and diversity of free-ranging primates. Logging is known to reduce the abundance of some primate species through associated hunting and the loss of food trees for frugivores; however, the potential role of pathogens in such primate population declines is largely unexplored. Selective logging results in a suite of alterations in host ecology and forest structure that may alter pathogen dynamics in resident wildlife populations. In addition, environmental pollution with human fecal material may present a risk for wildlife infections with zoonotic protozoa, such as Cryptosporidium and Giardia. To better understand this interplay, we compared patterns of infection with these potentially pathogenic protozoa in sympatric western lowland gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes troglodytes) in the undisturbed Goualougo Triangle of Nouabalé-Ndoki National Park and the adjacent previously logged Kabo Concession in northern Republic of Congo. No Cryptosporidium infections were detected in any of the apes examined and prevalence of infection with Giardia was low (3.73% overall) and did not differ between logged and undisturbed forest for chimpanzees or gorillas. These results provide a baseline for prevalence of these protozoa in forest-dwelling African apes and suggest that low-intensity logging may not result in long-term elevated prevalence of potentially pathogenic protozoa.  相似文献   

15.
The study of forest herb availability improves knowledge of ecology and conservation of gorillas that depend on such herbs. Density patterns of herbs and location of western gorilla nest sites were studied in different habitat types at a site in south‐east Cameroon to assess their relationship. Herb stems of the families Marantaceae and Zingiberaceae were identified and counted in 10,713 1‐m2 plots distributed within six habitat types. Stem density correlated with light availability and ranged from 2.38 stems m?² in near primary forest to 4.66 stems m?² in light gaps. Gorillas showed marked preferences for habitats with high herb densities such as light gaps, swamps and young secondary forest. However, no clear relationship exists between terrestrial herbaceous vegetation and gorilla densities across Central Africa. It is suggested that differences in ecological factors and land use history within and between sites may explain differences in herb density and diversity which partly account for variations in the historical and present population distribution and density of western gorillas. Formerly logged and swamp forests, which are characterized by an abundance of herbs, may prove to be of great value in the conservation of western gorillas given appropriate forest management practices, adequate protection from poaching and limited human encroachment.  相似文献   

16.
Although long‐term monitoring is viewed as an essential part of conserving wildlife populations, it is currently carried out in surprisingly few protected areas in Africa. Here, data from a 16‐year vehicle transect monitoring programme in Katavi National Park, western Tanzania, are presented. These data provide information on large mammal densities, identify declines in populations of several large mammal species as based on encounter rates, support worrying trends observed in aerial census data and shed light on the effectiveness of recent changes in legal protection. Ground and aerial surveys confirmed that waterbuck, topi, warthog, lion and spotted hyaena populations are all in decline and that this should be a cause for concern. Counting animals by driving vehicle transects is relatively easy and inexpensive to carry out, and data here show that such counts have several pay‐offs for conservation managers especially in identifying population declines; counts should be employed more often in East Africa and elsewhere.  相似文献   

17.
Physical maturation and life‐history parameters are seen as evolutionary adaptations to different ecological and social conditions. Comparison of life‐history patterns of closely related species living in diverse environments helps to evaluate the validity of these assumptions but empirical data are lacking. The two gorilla species exhibit substantial differences in their environment, which allows investigation into the role of increased frugivory in shaping western gorilla life histories. We present behavioral and morphological data on western gorilla physical maturation and life‐history parameters from a 12.5‐year study at Mbeli Bai, a forest clearing in the Nouabalé‐Ndoki National Park in northern Congo. We assign photographs of known individuals to different life‐history classes and propose new age boundaries for life‐history classes in western gorillas, which can be used and tested at other western gorilla research sites. Our results show that western gorillas are weaned at a later age compared with mountain gorillas and indicate slower physical maturation of immatures. These findings support the risk‐aversion hypothesis for more frugivorous species. However, our methods need to be applied and tested with other gorilla populations. The slow life histories of western gorillas could have major consequences for social structure, mortality patterns and population growth rates that will affect recovery from population crashes of this critically endangered species. We emphasize that long‐term studies can provide crucial demographic and life‐history data that improve our understanding of life‐history evolution and adaptation and help to refine conservation strategies. Am. J. Primatol. 71:106–119, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
Life-history traits and ecological conditions have an important influence on primate social systems. Most of what we know about the life-history patterns and social structure of gorillas comes from studies of eastern gorillas (Gorilla beringei sp.), which live under dramatically different ecological conditions compared to western gorillas (Gorilla gorilla sp.). In this paper we present new data on western gorilla social structure and life histories from four study sites, and make comparisons with eastern gorilla populations. Data were obtained from two study sites with gorilla groups undergoing the habituation process (Lossi, Democratic Republic of Congo and Bai Hokou, Central African Republic) and two "bai" studies (Maya Nord and Mbeli Bai, Republic of Congo). The size and structure of these groups were similar to those seen in eastern gorillas. However, differences in the occurrence of various group transitions (group formations, changes between one-male and multimale composition, and group disintegrations) exist, and western gorillas notably exhibit much higher rates of male emigration and correspondingly fewer multimale groups compared to mountain gorillas. Certain phenomena have been observed only rarely, including predation by leopards. The preliminary data show no significant differences in birth rates between western gorillas and mountain gorillas. The ecological variability across gorilla habitats likely explains the flexibility in the social system of gorillas, but we need more information on the social relationships and ecology of western gorillas to elucidate the causes for the similarities and differences between western and eastern gorillas on the levels of individuals, social groups, and population dynamics.  相似文献   

19.
Although today gorillas are found in only two widely separate, discontinuous western and eastern African populations, rumors of the existence of an additional gorilla population in central Africa have inspired recent unsuccessful field expeditions in search of the "mystery ape" termed Gorilla gorilla uellensis. Such a gorilla population would have considerable conservation and scientific interest, and would presumably have descended from a population of gorillas that was thought to exist until the end of the 19th century on the Uele River in the current-day Democratic Republic of Congo. However, the sole evidence for the existence of these gorillas is three skulls and one mandible brought to the Royal Museum for Central Africa (Tervuren, Belgium) in 1898. We determined a mitochondrial DNA sequence from one of these specimens and compared it to sequences from other gorillas. Contrary to expectations, the sequence obtained did not exhibit the phylogenetic distinctiveness typical of a representative of a peripheral isolated population. Rather, the results suggest a scenario in which the museum specimens did not originally derive from the northern Congo, but were brought from the area of current distribution of western gorillas to that location; the subsequent discovery and collection of the specimens there gave rise to the false inference of a local gorilla population.  相似文献   

20.
We describe the diet of a semihabituated group of Grauer's gorillas (Gorilla beringei graueri) inhabiting the montane forest of Kahuzi-Biega National Park, Democratic Republic of Congo, based on direct observations, feeding remains in their fresh trails, and fecal samples collected over 9 yr. We examined fruit availability in their habitat; consumption of fruit, vegetative, and animal food; and daily intake of vegetative plant food using a transect, fruit monitoring trails, fecal analysis, and tracing of the animal's daily trails between consecutive nest sites. The fruit food repertoire of Kahuzi gorillas resembles that of western and eastern lowland gorillas inhabiting lowland tropical forests, while their vegetative food repertoire resembles that of mountain gorillas inhabiting montane forests. Among 236 plant foods (116 species), leaves, pith, and barks constitute the major parts (70.2%), with fruit making up the minor part (19.7%). About half (53.2%) of the total fecal samples included fruit remains. The gorillas used leaves, stems and other vegetative plant parts as staples. Their fruit intake was similar to that reported for mountain gorillas in Bwindi. They ate animal foods, including earthworms, on rare occasions. Variation in fruit consumption was positively associated with variation in fruit production. The gorillas ate fig fruits frequently; fig intake is positively correlated with that of other fruits, and figs were not fallback foods. They relied heavily on bamboo shoots on a seasonal basis; however, no bamboo shoots were available for several years after a major flowering event. Our results support the argument that variation in gorilla diets mostly reflects variation in vegetational composition of their habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号