首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Throughout history, remote archipelagos have repeatedly been designated natural laboratories to study evolutionary processes. The extensive, geographically structured, morphological variation within Galápagos’ Opuntia cacti has been presumed to be another example of how such processes shape diversity. However, recent genetic studies on speciation and potential effects of plasticity within this system failed to confirm earlier classification and hypothesized radiation on both global and single island levels. Detailed population genetic information, however, is crucial in conserving these semi-arid ecosystem keystone species. In this article, we re-evaluate the genetics of Opuntia echios inhabiting one of the most taxon rich places on the archipelago: Santa Cruz and its surrounding satellite islands, using microsatellite data. Our analysis revealed high genetic variability within all sampled locations, providing little support for the hypothesis of clonal reproduction. Inter-island gene flow patterns appear to be largely influenced by bathymetry and sea levels during last ice ages. Although O. echios from Seymour Norte are morphologically recognized as being a separate taxon, Daphné Major’s cacti are the most differentiated. In addition, we found a potential barrier for gene flow along the ring-like distribution of Opuntias at the western side of Santa Cruz, suggesting potential links with geology.  相似文献   

2.
Opuntia, commonly named “nopal” in Mexico, is an important crop for its agronomical, economical, ecological and cultural value. Furthermore, it is known for its taxonomic complexity. In this paper, we report the genetic variability of 52 Opuntia cultivars with agronomic and economic importance, classified into 12 different species using random amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR) markers. Ten primers, five for each marker type, were selected to assess their ability to detect polymorphisms in this plant accesions/varieties. Both marker systems generated a total of 307 bands, of which 50.8 % were polymorphic with an average of 15.6 polymorphic bands per primer. Thus, we assume that Mexican Opuntia varieties present broad genetic variation. Based on percentage of polymorphic bands; resolving power; polymorphic information content; and Marker Index, the K-12 (RAPD) and IS-06 (ISSR) primers were the most informative ones. Clusters obtained from RAPD, ISSR and a combination of both data sets did not match the actual taxonomic classification. On the other hand, the putative varieties currently classified in the same species were not located in the same cluster. Besides, the varieties included in O. ficus-indica, O. albicarpa and O. megacantha showed broad variation but were not well defined into separate clades; these cultivars possibly have common ancestry. The results presented here support our hypothesis about the existence of a smaller number of Opuntia species in accordance with those currently described, but with high intraspecific genetic variation.  相似文献   

3.
Opuntia spp. belong to the Cactaceae family and are native to Central America. The most economically important species is O. ficus indica, cultivated both for fruits and cladodes. The genus includes other important edible species (from diploid to octoploid) that occur worldwide as either wild or cultivated species in many arid or semiarid areas (e.g., the Mediterranean region). Several accessions are cultivated in different growing regions, but little is known about their ancestries and levels of genetic diversity. The aim of this study was to investigate the level of intraspecific genetic diversity among O. ficus indica cultivated varieties and some related species. Specifically, six highly polymorphic simple sequence repeats (SSR) and two expressed sequence tag (EST)-SSR loci were investigated in 62 wild and cultivated genotypes belonging to 16 Opuntia species. The clusters identified by the distance and model-based analyses clearly separated the wild opuntias from the cultivated ones. However, the O. ficus indica accessions did not cluster separately from other arborescent cactus pear species, such as O. amyclaea, O. megacantha, O. streptacantha, O. fusicaulis, and O. albicarpa, indicating that their current taxonomical classifications do not fit with their genetic variability. In general, the genotypes cultivated in Mexico showed high levels of diversity, whereas most of the spineless accessions collected in other countries had a very narrow genetic base. This study increases our knowledge of the variability among some of the most diffused Opuntia cultivated accessions. This study also points to the inconsistencies of previous taxonomical genotype assignments that were based solely on morphological characteristics.  相似文献   

4.
The Opuntia (prickly pear) genus, an important horticultural crop in Mexico, is essentially a fruit crop with two variants: sweet (“tunas”) or acid (“xoconostles”) fruits; it is also a source of vegetables “nopalitos” or fodder for livestock, among other uses. Its taxonomical classification has been reported as complex, although few studies on the genetic structure of Mexican Opuntia are available, and genetic differences between the two types of fruits are unknown. Opuntia genotype identification and classification are still mainly based on morphological characters. In this study, the genetic diversity of Mexican Opuntia germplasm with agronomic and economic importance was revealed, using 88 accessions and 13 SSR markers, in an attempt to explore the genetic relationships among them. A total of 159 alleles were detected ranging from 7 to 23 per locus with an average of 12.2. The SSR markers generated unique fingerprints for each Opuntia accession confirming their usefulness for genetic analysis. The accessions’ grouping was defined by several complementary clustering methods, and the moderate incongruences between the different methods did not influence the overall clustering. DAPC and STRUCTURE analyses grouped the accessions into five groups, thus confirming the incorrect delimitation of species in this genus. The following species had no clear boundaries: Opuntia ficus-indica, Opuntia albicarpa, Opuntia megacantha, Opuntia streptacantha, Opuntia lasiacantha, and Opuntia hyptiacantha. However, Opuntia robusta was separated from the rest of the species. Opuntia joconostle and Opuntia matudae, which produce acid fruits, tended to differ from the others. Median-joining simulation classified all genotypes into a complex network, and both linear and reticular ties between Mexican Opuntia genotypes were revealed. The genetic distance revealed in the present study shows the importance of Mexican accessions for conservation and use in breeding programs.  相似文献   

5.
《Acta Oecologica》2002,23(4):239-246
In Europe, many agricultural areas are now abandoned and hence can be invaded by exotic species. The abundance and spatial distribution patterns of two Opuntia species were studied in old olive groves in the Parc Natural del Cap de Creus, Catalonia (Spain). Seedling recruitment (97.3% and 51.5% of juveniles for Omaxima and Ostricta, respectively) was higher than recruitment by cladodes. Omaxima had more seedlings recruited beneath olive trees and beneath Opuntia adults than expected. Most Ostricta seedlings were also located beneath Opuntia adult plants. However, although most seedlings were recruited beneath Opuntia, some (10–30%) were found away from putative parental plants. This may be due to seed dispersal by birds and wild boars. Seeds dispersed by wild boars were not significantly more viable than seeds from intact fruits. Seedlings grow very slowly but have a high survival rate. In conclusion, Opuntia seedling recruitment is very successful and ensures the persistence of these species within old olive groves. Consequently, it prevents restoration from an agricultural land-use back to the native community.  相似文献   

6.
  1. The distribution of genetic diversity across a species distribution range is rarely homogeneous, as the genetic structure among populations is related to the degree of isolation among them, such as isolation by distance, isolation by barrier, and isolation by environment.
  2. Jenynsia lineata is a small viviparous fish that inhabits a wide range of habitats in South America. To decipher the isolation processes that drive population structuring in J. lineata, we analyzed 221 sequences of the mitochondrial cytochrome c oxidase I gene (COI), from 19 localities. Then, we examined the influence of the three most common types of isolation in order to explain the genetic variation found in this species.
  3. Our results revealed a marked structuration, with three groups: (a) La Plata/Desaguadero Rivers (sampling sites across Argentina, Uruguay, and Southern Brazil), (b) Central Argentina, and (c) Northern Argentina. A distance‐based redundancy analysis, including the explanatory variables geographical distances, altitude, latitude, and basin, was able to explain up to 65% of the genetic structure. A variance partitioning analysis showed that the two most important variables underlying the structuration in J. lineata were altitude (isolation by environment) and type of basin (isolation by barrier).
  4. Our results show that in this species, the processes of population diversification are complex and are not limited to a single mechanism. The processes that play a prominent role in this study could explain the high rate of diversity that characterizes freshwater fish species. And these processes in turn are the basis for possible speciation events.
  相似文献   

7.
The Opuntia (prickly pear) genus contains over 200 species. Six of them are endemic to the Galapagos archipelago. Although these cacti are ‘keystone’ species of the Galapagos’ semi‐arid ecosystem, they have never been studied in detail. Because of their current threatened status and their important role in the ecosystem, we developed 16 microsatellite markers to study the population genetic structure of some of these species. These markers display a high level of polymorphism with numbers of alleles per locus ranging from six to 53. Results also revealed possible polyploidy in these cacti.  相似文献   

8.
Mutualistic interactions between plants and animals promote integration of invasive species into native communities. In turn, the integrated invaders may alter existing patterns of mutualistic interactions. Here we simultaneously map in detail effects of invaders on parameters describing the topology of both plant-pollinator (bi-modal) and plant-plant (uni-modal) networks. We focus on the invader Opuntia spp., a cosmopolitan alien cactus. We compare two island systems: Tenerife (Canary Islands) and Menorca (Balearic Islands). Opuntia was found to modify the number of links between plants and pollinators, and was integrated into the new communities via the most generalist pollinators, but did not affect the general network pattern. The plant uni-modal networks showed disassortative linkage, i.e. species with many links tended to connect to species with few links. Thus, by linking to generalist natives, Opuntia remained peripheral to network topology, and this is probably why native network properties were not affected at least in one of the islands. We conclude that the network analytical approach is indeed a valuable tool to evaluate the effect of invaders on native communities.  相似文献   

9.
Traditional Knowledge and Genetic Diversity of Opuntia pilifera (Cactaceae) in the Tehuacán-Cuicatlán Valley, Mexico. Economic Botany 59(4)366-376, 2005. Most studies of the genusOpuntia have focused on economically important species, and therefore more knowledge concerning the genetic diversity among wild and locally managedOpuntia species is needed for an expanded use of cacti in the future. The present study is part of ongoing ethnobotanical work in the Tehuacán-Cuicatlán Valley of Mexico and focuses on six traditionally classified forms ofOpuntia pilifera used as food by the indigenous Popoloca people in San Juan Atzingo. Traditional knowledge of how to distinguish these forms based on fruit flavor, color, size, and number of spines on the fruits and cladodes is preserved in the local community. Genetic fingerprinting with 129 AFLPs did not correlate with this traditional morphological classification of 67 cacti. Yet, these AFLPs distinguished the analyzed 67Opuntia pilifera cacti easily from the out-group comprising 17 wildOpuntia velutina.  相似文献   

10.
Genetic diversity is essential for species to sustain their populations and evolutionary potential. In order to develop effective conservation strategies for rare species, it is necessary to understand differences in patterns of genetic diversity between common and rare species. Data about population genetic structure is important to design effective conservation strategies for rare species. In this study, we compared the genetic diversity and population genetic structure of a common species, Rhododendron weyrichii, to those of two rare species, Rhododendron sanctum and Rhododendron amagianum, with different geographic distributions. We analyzed five microsatellite loci in 16 populations of R. weyrichii, 9 populations of R. sanctum, and 6 populations of R. amagianum. As expected, the level of genetic diversity indicated by allelic richness and gene diversity was lower for the rare species R. sanctum than for the common species R. weyrichii. However, there was no statistically significant difference in genetic diversity between R. weyrichii and the other rare species, R. amagianum. Analyses of the isolation-by-distance pattern, neighbor-joining trees, and Bayesian clustering indicated that R. sanctum had a strong population genetic structure whereas R. amagianum exhibited very weak genetic structure among populations and that there was moderate population genetic structure for R. weyrichii. Therefore, the degree and pattern of population genetic structure in each species was unrelated to its rarity and instead merely reflected its geographic distribution.  相似文献   

11.
A survey was made of yeast species associated with the decaying pads of 3 prickly pear cacti (Opuntia phaeacantha, O. ficus-indica, andO. lindheimeri) in Arizona and Texas. Yeast communities from 12 localities were compared among localities, amongOpuntia species, and with previous data on yeast communities associated with columnar cacti. The results indicate thatOpuntia necroses contain relatively more yeast species with broader physiological abilities in their communities than columnar necroses. It is argued that differences in chemistry of the opuntias and columnar forms in concert with the insect vectors specific for these cacti account for the differences in yeast community structure. It is further hypothesized that the differences in yeast community structure have been important in the evolution and maintenance of species diversity forDrosophila species which live in the decaying stems or cladodes of various cacti. Most of the yeast community evolution in the cacti is postulated to have proceeded by evolution in situ and not by additions and replacements from outside of the system.  相似文献   

12.
Studies of genetic variation can elucidate the structure of present and past populations as well as the genetic basis of the phenotypic variability of species. Taxodium distichum is a coniferous tree dominant in lowland river flood plains and swamps of the southeastern USA which exhibits morphological variability and adaption to stressful habitats. This study provides a survey of the Mississippi River Alluvial Valley (MAV) and Florida to elucidate their population structure and the extent of genetic differentiation between the two regions and sympatric varieties, including bald cypress (var. distichum) and pond cypress (var. imbricatum). We determined the genotypes of 12 simple sequence repeat loci totaling 444 adult individuals from 18 natural populations. Bayesian clustering analysis revealed high levels of differentiation between the MAV and the Florida regions. Within the MAV region, there was a significant correlation between genetic and geographical distances. In addition, we found that there was almost no genetic differentiation between the varieties. Most genetic variation was found within individuals (76.73?%), 1.67?% among individuals within population, 15.36?% among populations within the regions, and 9.23?% between regions within the variety. Our results suggest that (1) the populations of the MAV and the Florida regions are divided into two major genetic groups, which might originate from different glacial refugia, and (2) the patterns of genetic differentiation and phenotypic differentiation were not parallel in this species.  相似文献   

13.
Habitat fragmentation can lead to substantial genetic depletion. As a consequence, restoration schemes often involve the introduction of propagules into isolated plant populations to improve genetic diversity. To avoid introducing maladapted seed material, such measures need to account for landscape genetic processes. However, surprisingly little is known as to whether different species within a distinct fragmented ecosystem respond similarly or idiosyncratically to eco-geographical variation.Using AFLP markers, we studied the population genetic structure in three species of the highly fragmented Kulunda steppe (South Siberia): Adonis villosa, Jurinea multiflora and Paeonia hybrida. In each population, we conducted a vegetation survey. We performed Mantel tests and an RDA approach to investigate how genetic structure was affected by three spatio-environmental variables: spatial distance, floristic composition and climate.Despite strong fragmentation, genetic diversity was moderate (A. villosa, J. multiflora) to high (P. hybrida), while differentiation was weak (A. villosa) to moderate (P. hybrida, J. multiflora). Mantel tests showed that spatial distance correlated with genetic distance in A. villosa and P. hybrida. Floristic composition was significantly associated with genetic differentiation in A. villosa. Climate did not have an effect on genetic structure in any species.All three species are long-lived, which may contribute to explaining why genetic effects of recent fragmentation are still limited. We highlight that floristic composition can be a powerful predictor of population differentiation in species that show rather stable conditions in their recent population histories (e.g. A. villosa). This can have important implications for identifying source populations where restoration actions involve the (re)introduction of propagules. In contrast, for P. hybrida and J. multiflora, we could not identify deterministic drivers of differentiation. We advocate that future studies should aim at disentangling the interactive effects of varying life cycles, eco-evolutionary population histories and spatio-environmental heterogeneity in fragmented landscapes.  相似文献   

14.
Self-fertilization is a common mating system in plants and is known to reduce genetic diversity, increase genetic structure and potentially put populations at greater risk of extinction. In this study, we measured the genetic diversity and structure of two cedar glade endemic species, Leavenworthia alabamica and L. crassa. These species have self-incompatible (SI) and self-compatible (SC) populations and are therefore ideal for understanding how the mating system affects genetic diversity and structure. We found that L. alabamica and L. crassa had high species-level genetic diversity (He=0.229 and 0.183, respectively) and high genetic structure among their populations (FST=0.45 and 0.36, respectively), but that mean genetic diversity was significantly lower in SC compared with SI populations (SC vs SI, He for L. alabamica was 0.065 vs 0.206 and for L. crassa was 0.084 vs 0.189). We also found significant genetic structure using maximum-likelihood clustering methods. These data indicate that the loss of SI leads to the loss of genetic diversity within populations. In addition, we examined genetic distance relationships between SI and SC populations to analyze possible population history and origins of self-compatibility. We find there may have been multiple origins of self-compatibility in L. alabamica and L. crassa. However, further work is required to test this hypothesis. Finally, given their high genetic structure and that individual populations harbor unique alleles, conservation strategies seeking to maximize species-level genetic diversity for these or similar species should protect multiple populations.  相似文献   

15.
Host specificity is predicted to shape patterns of parasite gene flow between host species; specialist parasites should have low gene flow between host species, while generalists are predicted to have high gene flow between species. However, even for generalist parasites external forces, including ecological differences between host species may sometimes intervene to limit gene flow and create genetic structure. To investigate the potential for cryptic parasite genetic structure to arise under such circumstances, we examined the population genetic structure and history of the generalist nematode, Trichostrongylus axei, infecting six sympatric wild ungulate species in North America. Using genotypes for 186 T. axei larvae at two mitochondrial genes, cox1 and nad4, we found that T. axei was completely panmictic across host species, with 0% of genetic variation structured between host species and 97% within individual hosts. In addition, T. axei showed no evidence of recent genetic bottlenecks, had high nucleotide diversities (above 2%), and an effective population size estimated to be in the tens of millions. Our result that T. axei maintains high rates of gene flow between multiple sympatric host species adds to a growing body of information on trichostrongylid population genetic structure in different ecological contexts. Furthermore, the high rates of gene flow, coupled with high levels of genetic diversity and large effective population size which we observed in T. axei, point to a potentially broad capacity for rapid evolutionary change in this parasite.  相似文献   

16.
Marine populations are typically characterized by weak genetic differentiation due to the potential for long‐distance dispersal favouring high levels of gene flow. However, strong directional advection of water masses or retentive hydrodynamic forces can influence the degree of genetic exchange among marine populations. To determine the oceanographic drivers of genetic structure in a highly dispersive marine invertebrate, the giant California sea cucumber (Parastichopus californicus), we first tested for the presence of genetic discontinuities along the coast of North America in the northeastern Pacific Ocean. Then, we tested two hypotheses regarding spatial processes influencing population structure: (i) isolation by distance (IBD: genetic structure is explained by geographic distance) and (ii) isolation by resistance (IBR: genetic structure is driven by ocean circulation). Using RADseq, we genotyped 717 individuals from 24 sampling locations across 2,719 neutral SNPs to assess the degree of population differentiation and integrated estimates of genetic variation with inferred connectivity probabilities from a biophysical model of larval dispersal mediated by ocean currents. We identified two clusters separating north and south regions, as well as significant, albeit weak, substructure within regions (FST = 0.002, = .001). After modelling the asymmetric nature of ocean currents, we demonstrated that local oceanography (IBR) was a better predictor of genetic variation (R2 = .49) than geographic distance (IBD) (R2 = .18), and directional processes played an important role in shaping fine‐scale structure. Our study contributes to the growing body of literature identifying significant population structure in marine systems and has important implications for the spatial management of P. californicus and other exploited marine species.  相似文献   

17.
L Thomas  J J Bell 《Heredity》2013,111(4):345-354
Connectivity is widely recognized as an important component in developing effective management and conservation strategies. Although managers are generally most interested in demographic, rather than genetic connectivity, new analytic approaches are able to provide estimates of both demographic and genetic connectivity measures from genetic data. Combining such genetic data with mathematical models represents a powerful approach for accurately determining patterns of population connectivity. Here, we use microsatellite markers to investigate the genetic population structure of the New Zealand Rock Lobster, Jasus edwardsii, which has one of the longest known larval durations of all marine species (>2 years), a very large geographic range (>5500 km), and has been the subject of extensive dispersal modeling. Despite earlier mitochondrial DNA studies finding homogeneous genetic structure, the mathematical model suggests that there are source-sink dynamics for this species. We found evidence of genetic structure in J. edwardsii populations with three distinct genetic groups across New Zealand and a further Australian group; these groups and patterns of gene flow were generally congruent with the earlier mathematical model. Of particular interest was the consistent identification of a self-recruiting population/region from both modeling and genetic approaches. Although there is the potential for selection and harvesting to influence the patterns we observed, we believe oceanographic processes are most likely responsible for the genetic structure observed in J. edwardsii. Our results, using a species at the extreme end of the dispersal spectrum, demonstrate that source-sink population dynamics may still exist for such species.  相似文献   

18.
Under drift-mutation equilibrium, genetic diversity is expected to be correlated with effective population size (N e ). Changes in population size and gene flow are two important processes that can cause populations to deviate from this expected relationship. In this study, we used DNA sequences from six independent loci to examine the influence of these processes on standing genetic diversity in endemic mottled ducks (Anas fulvigula) and geographically widespread mallards (A. platyrhynchos), two species known to hybridize. Mottled ducks have an estimated census size that is about two orders-of-magnitude smaller than that of mallards, yet these two species have similar levels of genetic diversity, especially at nuclear DNA. Coalescent analyses suggest that a population expansion in the mallard at least partly explains this discrepancy, but the mottled duck harbors higher genetic diversity and apparent N e than expected for its census size even after accounting for a population decline. Incorporating gene flow into the model, however, reduced the estimated N e of mottled ducks to 33 % of the equilibrium N e and yielded an estimated N e consistent with census size. We also examined the utility of these loci to distinguish among mallards, mottled ducks, and their hybrids. Most putatively pure individuals were correctly assigned to species, but the power for detecting hybrids was low. Although hybridization with mallards potentially poses a conservation threat to mottled ducks by creating a risk of extinction by hybridization, introgression of mallard alleles has helped maintain high genetic diversity in mottled ducks and might be important for the adaptability and survival of this species.  相似文献   

19.
The Andes of South America hosts perhaps the highest amphibian species diversity in the world, and a sizable component of that diversity is comprised of direct-developing frogs of the genus Pristimantis (Anura: Craugastoridae). In order to better understand the initial stages of species formation in these frogs, this study quantified local-scale spatial genetic structuring in three species of Pristimantis. DNA sequences of two mitochondrial gene fragments (16S and COI) were obtained from P. brevifrons, P. palmeri and P. jubatus at different locations in the Cordillera Occidental. We found high levels of genetic diversity in the three species, with highly structured populations (as measured by F ST) in P. brevifrons and P. palmeri while P. jubatus showed panmixia. Large effective population sizes, inferred from the high levels of genetic diversity, were found in the three species and two highly divergent lineages were detected within P. jubatus and P. palmeri. Estimated divergence times among populations within P. brevifrons and P. palmeri coincide with the Pleistocene, perhaps due to similar responses to climatic cycling or recent geological history. Such insights have important implications for linking alpha and beta diversity, suggesting regional scale patterns may be associated with local scale processes in promoting differentiation among populations in the Andes.  相似文献   

20.
The structural organization of mutualism networks, typified by interspecific positive interactions, is important to maintain community diversity. However, there is little information available about the effect of introduced species on the structure of such networks. We compared uninvaded and invaded ecological communities, to examine how two species of invasive plants with large and showy flowers (Carpobrotus affine acinaciformis and Opuntia stricta) affect the structure of Mediterranean plant–pollinator networks. To attribute differences in pollination to the direct presence of the invasive species, areas were surveyed that contained similar native plant species cover, diversity and floral composition, with or without the invaders. Both invasive plant species received significantly more pollinator visits than any native species and invaders interacted strongly with pollinators. Overall, the pollinator community richness was similar in invaded and uninvaded plots, and only a few generalist pollinators visited invasive species exclusively. Invasive plants acted as pollination super generalists. The two species studied were visited by 43% and 31% of the total insect taxa in the community, respectively, suggesting they play a central role in the plant–pollinator networks. Carpobrotus and Opuntia had contrasting effects on pollinator visitation rates to native plants: Carpobrotus facilitated the visit of pollinators to native species, whereas Opuntia competed for pollinators with native species, increasing the nestedness of the plant–pollinator network. These results indicate that the introduction of a new species to a community can have important consequences for the structure of the plant–pollinator network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号