首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The present study was undertaken to investigate the effects of treatment with the angiotensin-converting enzyme (ACE) inhibitor enalapril in a mouse model of pulmonary hypertension induced by bleomycin. Bleomycin-induced lung injury in mice is mediated by enhanced tumor necrosis factor-alpha (TNF) expression in the lung, which determines the murine strain sensitivity to bleomycin, and murine strains are sensitive (C57BL/6) or resistant (BALB/c). Bleomycin induced significant pulmonary hypertension in C57BL/6, but not in BALB/c, mice; average pulmonary arterial pressure (PAP) was 26.4 +/- 2.5 mmHg (P < 0.05) vs. 15.2 +/- 3 mmHg, respectively. Bleomycin treatment induced activation of nuclear factor (NF)-kappaB and activator protein (AP)-1 and enhanced collagen and TNF mRNA expression in the lung of C57BL/6 but not in BALB/c mice. Double TNF receptor-deficient mice (in a C57BL/6 background) that do not activate NF-kappaB or AP-1 in response to bleomycin did not develop bleomycin-induced pulmonary hypertension (PAP 14 +/- 3 mmHg). Treatment of C57BL/6 mice with enalapril significantly (P < 0.05) inhibited the development of pulmonary hypertension after bleomycin exposure. Enalapril treatment inhibited NF-kappaB and AP-1 activation, the enhanced TNF and collagen mRNA expression, and the deposition of collagen in bleomycin-exposed C57BL/6 mice. These results suggest that ACE inhibitor treatment decreases lung injury and the development of pulmonary hypertension in bleomycin-treated mice.  相似文献   

2.
Interleukin 1 beta (IL1B), a potent pro-inflammatory cytokine, is directly up-regulated by radiation and is known to regulate other inflammation-related molecules, such as the matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs). However, the nature of the interaction of IL1B with MMPs and TIMPs in radiation-induced skin fibrosis is unknown. We examined the response of primary dermal keratinocytes, fibroblasts and endothelial cells to single-fraction radiation (10 Gy) and compared the results to a temporal sequence of histology from irradiated C57BL/6 and IL1R1 knockout mice. These studies showed that keratinocytes are the major IL1-producing cells in vitro and that radiation induces an immediate and chronic elevation in the expression of IL1B mRNA in the skin of C57BL/6 mice. This elevation was principally early and was less pronounced in the IL1R1 knockout strain, which also demonstrated reduced late radiation fibrosis. Radiation also increased expression of MMP mRNA in C57BL/6 mice. Finally, exogenous IL1B protein induced robust endogenous IL1B mRNA expression, along with a brisk increase in MMPs and collagen III, but only in the C57BL/6 mice. In conclusion, these data suggest that IL1B plays a critical role in radiation-induced fibrosis and that the increased MMPs fail to block the IL1-related collagen accumulation.  相似文献   

3.
Matrix metalloproteinases (MMPs) are extracellular proteolytic enzymes involved in acute lung inflammation in response to cigarette smoke exposure (CSE). We present the in vivo detection of MMP activity using a specific MMP-activatable, near-infrared, polymer-based proteolytic probe in strains of mice with different susceptibility to developing smoking-induced emphysema (susceptible mice, C57BL/6j, and resistant mice, 129S2/SvHsd) to characterize the distinctive profile of CSE-induced acute inflammation. In vivo imaging of pulmonary inflammation expressing MMPs revealed a significantly different median ratio twofold higher in smoker than in nonsmoker susceptible mice (C57BL/6j) and no significant differences between the smoker and the nonsmoker group in resistant mice (129S2/SvHsd). Ex vivo imaging of the lungs of each group of mice confirmed the same in vivo experiment results obtained for both strains of mice. In the biochemical study of lung tissue, the proteolytic signal colocalized with the endogenously expressed MMP protein levels, with MMP-9 levels that are 2.2 times higher than in the nonsmoke-exposed group in C57BL/6j mice and no significant differences in the 129S2/SvHsd mice. The MMP-activatable probe provides a useful reagent for the in vivo and ex vivo detection of MMP-selective proteolytic activity. We are able to distinguish between susceptible and resistant strains of mice in terms of the profile of MMP activity in the early stages of pulmonary disease.  相似文献   

4.
5.
Chronic LPS inhalation causes submucosal thickening and airway narrowing. To address the hypothesis that environmental airway disease is, in part, a fibroproliferative lung disease, we exposed C57BL/6 mice daily to LPS by inhalation for up to 2 months followed by 1 month of recovery. C57BL/6 mice exposed to daily inhaled LPS had significantly enhanced mRNA expression of TGF-beta1, TIMP-1, fibronectin-1, and pro-collagen types I, III, and IV and show prominent submucosal expression of the myofibroblast markers desmin and alpha-smooth muscle actin. To further characterize global gene expression in airway fibroproliferation, we performed microarray analysis on total lung RNA from mice exposed to LPS both acutely and chronically. This analysis revealed a subset of genes typically associated with lung injury and repair, and ECM homeostasis. To further identify candidate genes specifically involved in generic fibroproliferation, we interrogated this analysis with genes induced in C57BL/6 mouse lung by bleomycin. This analysis yielded a list of 212 genes in common suggesting that there is a common subset of genes that regulate fibroproliferation in the lung independent of etiologic agent and site of injury.  相似文献   

6.
Cigarette smoke exposure causes vascular remodeling and pulmonary hypertension by poorly understood mechanisms. To ascertain whether cigarette smoke exposure affects production of matrix metalloproteinases (MMPs) in the pulmonary vessels, we exposed C57Bl/6 (C57) mice or mice lacking TNF-alpha receptors (TNFRKO) to smoke daily for 2 wk or 6 mo. Using laser capture microdissection and RT-PCR analysis, we examined gene expression of MMP-2, MMP-9, MMP-12, MMP-13, and tissue inhibitor of metalloproteinase (TIMP-1) and examined protein production by immunohistochemistry for MMP-2, MMP-9, and MMP-12 in small intrapulmonary arteries. At 2 wk, mRNA levels of TIMP-1 and all MMPs were increased in the C57, but not TNFRKO, mice, and immunoreactive protein for MMP-2, MMP-9, and MMP-12 was also increased in the C57 mice. Increased gelatinase activity was identified by in situ and bulk tissue zymography. At 6 mo, only MMP-12 mRNA levels remained increased in the C57 mice, but at a much lower level; however, MMP-2 mRNA levels increased in the TNFRKO mice. We conclude that smoke exposure increases MMP production in the small intrapulmonary arteries but that, with the exception of MMP-12, increased MMP production is transient. MMPs probably play a role in smoke-induced vascular remodeling, as they do in other forms of pulmonary hypertension, implying that MMP inhibitors might be beneficial. MMP production is largely TNF-alpha dependent, further supporting the importance of TNF-alpha in the pathogenesis of cigarette smoke-induced lung disease.  相似文献   

7.
Pulmonary fibrosis is a common response to a variety of lung injuries, characterized by fibroblast/myofibroblast expansion and abnormal accumulation of extracellular matrix. An increased expression of matrix metalloprotease 9 (MMP9) in human and experimental lung fibrosis has been documented, but its role in the fibrotic response is unclear. We studied the effect of MMP9 overexpression in bleomycin-driven lung fibrosis using transgenic mice expressing human MMP9 in alveolar macrophages (hMMP9-TG). At 8 weeks post-bleomycin, the extent of fibrotic lesions and OH-proline content were significantly decreased in the TG mice compared to the WT mice. The decreased fibrosis in hMMP9-TG mice was preceded by a significant reduction of neutrophils and lymphocytes in bronchoalveolar lavage (BAL) at 1 and 4 weeks post-bleomycin, respectively, as well as by significantly less TIMP-1 than the WT mice. From a variety of cytokines/chemokines investigated, we found that BAL levels of insulin-like growth factor binding protein-3 (IGFBP3) as well as the immunoreactive protein in the lungs were significantly lower in hMMP9-TG mice compared with WT mice despite similar levels of gene expression. Using IGFBP-3 substrate zymography we found that BAL from TG mice at 1 week after bleomycin cleaved IGFBP-3. Further, we demonstrated that MMP9 degraded IGFBP-3 into lower molecular mass fragments. These findings suggest that increased activity of MMP9 secreted by alveolar macrophages in the lung microenvironment may have an antifibrotic effect and provide a potential mechanism involving IGFBP3 degradation.  相似文献   

8.

Background

Reactive oxygen species and tissue remodeling regulators, such as metalloproteinases (MMPs) and their inhibitors (TIMPs), are thought to be involved in the development of pulmonary fibrosis. We investigated these factors in the fibrotic response to bleomycin of p47phox -/- (KO) mice, deficient for ROS production through the NADPH-oxidase pathway.

Methods

Mice are administered by intranasal instillation of 0.1 mg bleomycin. Either 24 h or 14 days after, mice were anesthetized and underwent either bronchoalveolar lavage (BAL) or lung removal.

Results

BAL cells from bleomycin treated WT mice showed enhanced ROS production after PMA stimulation, whereas no change was observed with BAL cells from p47phox -/- mice. At day 1, the bleomycin-induced acute inflammatory response (increased neutrophil count and MMP-9 activity in the BAL fluid) was strikingly greater in KO than wild-type (WT) mice, while IL-6 levels increased significantly more in the latter. Hydroxyproline assays in the lung tissue 14 days after bleomycin administration revealed the absence of collagen deposition in the lungs of the KO mice, which had significantly lower hydroxyproline levels than the WT mice. The MMP-9/TIMP-1 ratio did not change at day 1 after bleomycin administration in WT mice, but increased significantly in the KO mice. By day 14, the ratio fell significantly from baseline in both strains, but more in the WT than KO strains.

Conclusions

These results suggest that NADPH-oxidase-derived ROS are essential to the development of pulmonary fibrosis. The absence of collagen deposition in KO mice seems to be associated with an elevated MMP-9/TIMP-1 ratio in the lungs. This finding highlights the importance of metalloproteinases and protease/anti-protease imbalances in pulmonary fibrosis.  相似文献   

9.
目的探讨C57BL/6与ICR小鼠在博来霉素(BLM)致肺纤维化过程中的种属差异。方法 8周龄雌性C57BL/6小鼠19只,ICR小鼠16只,分别经尾静脉一次性注射BLM150mg/kg,观察每组小鼠体重、生存率及肺组织病理改变。结果①C57BL/6与ICR小鼠最低体重分别发生在静脉注射处置后的7d和5d,最低体重分别为注射前的65.46%和73.21%,两组间无显著的统计学差异。②C57BL/6与ICR小鼠的生存率分别为36.84%和56.25%,两组间存在显著的统计学差异。③C57BL/6小鼠BLM注射后28d,在胸膜下及血管周围形成广泛、稳定的间质纤维化病理改变,而ICR小鼠肺组织未见明显纤维化形成。C57BL/6小鼠肺纤维化病理评分明显高于ICR小鼠(P0.001)。结论 BLM诱导的肺纤维化作用在C57BL/6与ICR小鼠间存在着明显的种属差异。C57BL/6小鼠较ICR小鼠更适于复制博来霉素诱导的肺纤维化动物模型。  相似文献   

10.
IFN-gamma production is upregulated in lung cells (LC) of bleomycin-treated C57BL/6 mice. The present study characterizes the time course, cellular source, and regulation of IFN-gamma expression in bleomycin-induced lung injury. IFN-gamma mRNA in LC from bleomycin-treated mice peaked 3 days after intratracheal instillation. IFN-gamma protein levels were increased at 6 days, as was the percentage of LC expressing IFN-gamma. CD4+, CD8+, and natural killer cells each contributed significantly to IFN-gamma production. IL-12 mRNA levels were increased at 1 day in LC of bleomycin-treated mice. Anti-IL-12 and anti-IL-18 antibodies decreased IFN-gamma production by these cells. To define the role of endogenous IFN-gamma in the evolution of bleomycin lung injury, we compared the effect of bleomycin in mice with a targeted knockout mutation of the IFN-gamma gene (IFN-gamma knockout) and wild-type mice. At 14 days after intratracheal bleomycin, total bronchoalveolar lavage cell counts and lung hydroxyproline were decreased in IFN-gamma knockouts compared with wild-type animals. There was no difference in morphometric parameters of fibrosis. Our data show that enhanced IFN-gamma production in the lungs of bleomycin-treated mice is at least partly IL-12 and IL-18 dependent. Absence of IFN-gamma in IFN-gamma knockout mice does not increase pulmonary fibrosis. Endogenous IFN-gamma may play a proinflammatory or profibrotic role in bleomycin-induced lung fibrosis.  相似文献   

11.
12.
Pulmonary fibrosis is a disease of significant morbidity, with no effective therapeutics and an as yet incompletely defined genetic basis. The chemotherapeutic agent bleomycin induces pulmonary fibrosis in susceptible C57BL/6J mice but not in mice of the C3H/HeJ strain, and this differential strain response has been used in prior studies to map bleomycin-induced pulmonary fibrosis susceptibility loci named Blmpf1 and Blmpf2. In this study we isolated the quantitative trait gene underlying Blmpf2 initially by histologically phenotyping the bleomycin-induced lung disease of sublines of congenic mice to reduce the linkage region to 13 genes. Of these genes, Trim16 was identified to have strain-dependent expression in the lung, which we determined was due to sequence variation in the promoter. Over-expression of Trim16 by plasmid injection increased pulmonary fibrosis, and bronchoalveolar lavage levels of both interleukin 12/23-p40 and neutrophils, in bleomycin treated B6.C3H-Blmpf2 subcongenic mice compared to subcongenic mice treated with bleomycin only, which follows the C57BL/6J versus C3H/HeJ strain difference in these traits. In summary we demonstrate that genetic variation in Trim16 leads to its strain-dependent expression, which alters susceptibility to bleomycin-induced pulmonary fibrosis in mice.  相似文献   

13.

Background

Catalase is preferentially expressed in bronchiolar and alveolar epithelial cells, and acts as an endogenous antioxidant enzyme in normal lungs. We thus postulated epithelial damage would be associated with a functional deficiency of catalase during the development of lung fibrosis.

Methods

The present study evaluates the expression of catalase mRNA and protein in human interstitial pneumonias and in mouse bleomycin-induced lung injury. We examined the degree of bleomycin-induced inflammation and fibrosis in the mice with lowered catalase activity.

Results

In humans, catalase was decreased at the levels of activity, protein content and mRNA expression in fibrotic lungs (n = 12) compared to control lungs (n = 10). Immunohistochemistry revealed a decrease in catalase in bronchiolar epithelium and abnormal re-epithelialization in fibrotic areas. In C57BL/6J mice, catalase activity was suppressed along with downregulation of catalase mRNA in whole lung homogenates after bleomycin administration. In acatalasemic mice, neutrophilic inflammation was prolonged until 14 days, and there was a higher degree of lung fibrosis in association with a higher level of transforming growth factor-β expression and total collagen content following bleomycin treatment compared to wild-type mice.

Conclusions

Taken together, these findings demonstrate diminished catalase expression and activity in human pulmonary fibrosis and suggest the protective role of catalase against bleomycin-induced inflammation and subsequent fibrosis.  相似文献   

14.
Alternatively activated M2 macrophages are implicated as both regulators and agents of lung disease, but their control is poorly understood. SHIP-1 is a 5' inositol phosphatase that negatively regulates the PI3K signaling pathway implicated in inflammation. SHIP-1-deficient mice have defects in hematopoiesis and B cell development, and die prematurely due to consolidation of lungs with M2-skewed macrophages. SHIP-1 is thought to restrain M2 macrophage polarization, with deregulated M2 skewing coinciding with severe lung disease in SHIP-1-deficient mice. To determine the influence of genetic background on the lung phenotype in SHIP-1(-/-) mice, we backcrossed the SHIP-1 null mutation onto C57BL/6 (Th2-resistant) and BALB/c (Th2-prone) backgrounds. Remarkably, we found that inflammatory lung disease was severe in C57.SHIP-1(-/-) mice, but absent in BALB.SHIP-1(-/-) mice. C57.SHIP-1(-/-), but not BALB.SHIP-1(-/-) mice had greatly increased myeloid progenitors, myeloid hyperplasia, markedly enhanced numbers of activated alveolar macrophages, and elevated amounts of Th2 and proinflammatory cytokines in bronchoalveolar lavage fluid and serum, suggesting that deregulated cytokine production induced disease. C57.SHIP-1(-/-) mice also developed severe B cell-dependent autoimmune disease, which was markedly attenuated on the BALB/c background. These data demonstrate that, contrary to current concepts, loss of SHIP-1 alone is not sufficient to cause lung inflammation, with disease only manifest on a permissive genetic background. This finding questions the nature of the lung disease in SHIP-1(-/-) mice, suggesting that its M2 classification is not strictly correct. Future identification of disease-promoting loci might reveal determinants of comorbid lung disease and autoimmunity and uncover potentially useful therapeutic targets.  相似文献   

15.
We previously observed the lungs of naive BALB/cJ Cftr(tm1UNC) mice to have greater numbers of lymphocytes, by immunohistochemical staining, than did BALB wild type littermates or C57BL/6J Cftr(tm1UNC) mice. In the present study, we initially investigated whether this mutation in Cftr alters the adaptive immunity phenotype by measuring the lymphocyte populations in the lungs and spleens by FACS and by evaluating CD3-stimulated cytokine secretion, proliferation, and apoptosis responses. Next, we assessed a potential influence of this lymphocyte phenotype on lung function through airway resistance measures. Finally, we mapped the phenotype of pulmonary lymphocyte counts in BALB × C57BL/6J F2 Cftr(tm1UNC) mice and reviewed positional candidate genes. By FACS analysis, both the lungs and spleens of BALB Cftr(tm1UNC) mice had more CD3(+) (both CD4(+) and CD8(+)) cells than did littermates or C57BL/6J Cftr(tm1UNC) mice. Cftr(tm1UNC) and littermate mice of either strain did not differ in anti-CD3-stimulated apoptosis or proliferation levels. Lymphocytes from BALB Cftr(tm1UNC) mice produced more IL-4 and IL-5 and reduced levels of IFN-γ than did littermates, whereas lymphocytes from C57BL/6J Cftr(tm1UNC) mice demonstrated increased Il-17 secretion. BALB Cftr(tm1UNC) mice presented an enhanced airway hyperresponsiveness to methacholine challenge compared with littermates and C57BL/6J Cftr(tm1UNC) mice. A chromosome 7 locus was identified to be linked to lymphocyte numbers, and genetic evaluation of the interval suggests Itgal and Il4ra as candidate genes for this trait. We conclude that the pulmonary phenotype of BALB Cftr(tm1UNC) mice includes airway hyperresponsiveness and increased lymphocyte numbers, with the latter trait being influenced by a chromosome 7 locus.  相似文献   

16.
An imbalance in matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) leads to excessive or insufficient tissue breakdown, which is associated with many disease processes. The TIMP-3 null mouse is a model of MMP/TIMP imbalance, which develops air space enlargement and decreased lung function. These mice responded differently to cecal ligation and perforation (CLP)-induced septic lung injury than wild-type controls. The current study addresses whether the TIMP-3 knockout lung is susceptible to different types of insults or only those involving sepsis, by examining its response to lipopolysaccharide (LPS)-induced sepsis, mechanical ventilation (MV), and hyperoxia. TIMP-3 null noninjured controls of each insult consistently demonstrated significantly higher compliance vs. wild-type mice. Null mice treated with LPS had a further significantly increased compliance compared with untreated controls. Conversely, MV and hyperoxia did not alter compliance in the null lung. MMP abundance and activity increased in response to LPS but were generally unaltered following MV or hyperoxia, correlating with compliance alterations. All three insults produced inflammatory cytokines; however, the response of the null vs. wild-type lung was dependent on the type of insult. Overall, this study demonstrated that 1) LPS-induced sepsis produced a similar response in null mice to CLP-induced sepsis, 2) the null lung responded differently to various insults, and 3) the null susceptibility to compliance changes correlated with increased MMPs. In conclusion, this study provides insight into the role of TIMP-3 in response to various lung insults, specifically its importance in regulating MMPs to maintain compliance during a sepsis.  相似文献   

17.
The mechanisms by which T cells accumulate in the lungs of patients with pulmonary fibrosis are poorly understood. Because the lung is continually exposed to microbial agents from the environment, we repeatedly exposed C57BL/6 mice to the ubiquitous microorganism, Bacillus subtilis, to determine whether chronic exposure to an inhaled microorganism could lead to T cell accumulation in the lungs and subsequent pulmonary fibrosis. C57BL/6 mice repeatedly treated with B. subtilis for 4 consecutive weeks developed a 33-fold increase in the number of CD4+ T cells and a 354-fold increase in gammadelta T cells in the lung. The gammadelta T cells consisted almost entirely of Vgamma6/Vdelta1+ cells, a murine subset bearing an invariant TCR the function of which is still unknown. Treatment of C57BL/6 mice with heat-killed vs live B. subtilis resulted in a 2-fold increase in the number of CD4+ T cells in the lung but no expansion of gammadelta T cells indicating that gammadelta cells accumulate in response to live microorganisms. In addition, mice treated with heat-killed B. subtilis developed significantly increased pulmonary fibrosis compared with mice treated with the live microorganism. Mice deficient in Vgamma6/Vdelta1+ T cells when treated with B. subtilis had a 231-fold increase in lung CD4+ T cells and significantly increased collagen deposition compared with wild-type C57BL/6 mice, consistent with an immunoregulatory role for the Vgamma6/Vdelta1 T cell subset. These findings indicate that chronic inhalation of B. subtilis can result in T cell accumulation in the lung and fibrosis, constituting a new model of immune-mediated pulmonary fibrosis.  相似文献   

18.
Decorin, a small leucin-rich proteoglycan, is a negative regulator of transforming growth factor-beta, but the antifibrotic effect of decorin gene transfer has not been examined in a mouse model of usual interstitial pneumonia (UIP). We constructed a replication-defective recombinant adenovirus harboring human decorin gene (AdCMV.DC) and administered 1 x l0(9) plaque-forming units of AdCMV.DC intratracheally or intravenously to C57BL/6 mice with intraperitoneal injection of bleomycin, which induces a subpleural fibroproliferation, mimicking UIP, by day 28. Only intratracheal administration of AdCMV.DC increased decorin mRNA expression in the lung and decreased the hydroxyproline content augmented in bleomycin-induced pulmonary fibrosis (1.13 +/- 0.02 to 0.96 +/- 0.02, P = 0.006). In contrast, intravenous administration of AdCMV.DC increased the decorin expression only in the liver, but not in the lung, and without reducing lung fibrosis. These results indicate that adenoviral decorin gene transfer is effective only by direct administration to fibrosing lungs.  相似文献   

19.
A number of investigators have reported augmented expression of PDGF in lungs with idiopathic pulmonary fibrosis (IPF) or with other types of pulmonary fibrosis. To accomplish such a regulation of PDGF activity, we constructed an expression plasmid of the extracellular domain of PDGF receptor beta chain (XR), which lacks intracellular tyrosine kinase domain and transmembrane portions, and estimated the therapeutic effects of XR gene transfer through the trachea on bleomycin-induced lung fibrosis of C57BL/6 mice using the hemagglutinating virus of Japan(HVJ)-liposome method. The XR gene transfer ameliorated the increases in the wet weight and hydroxyproline content and the histopathologic changes of the lung induced by bleomycin. These findings suggest that PDGF plays a crucial role in the pathogenesis of pulmonary fibrosis, and that XR gene transfer using the HVJ-liposome method may limit the progression of pulmonary fibrosis.  相似文献   

20.
Reactive astrocytes occurring in response to neurodegeneration are thought to play an important role in neuronal regeneration by upregulating the expression of extracellular matrix (ECM) components as well as the ECM degrading metalloproteinases (MMPs). We examined the mRNA levels and cellular distribution of membrane type matrix metalloproteinase 1 (MT1-MMP) and tissue inhibitors 1-4 of MMPs (TIMPs) in brain stem and spinal cord of wobbler (WR) mutant mice affected by progressive neurodegeneration and astrogliosis. MT1-MMP, TIMP-1 and TIMP-3 mRNA levels were elevated, whereas TIMP-2 and TIMP-4 expression was not affected. MT1-MMP was expressed in reactive astrocytes of WR. In primary astrocyte cultures, MT1-MMP mRNA was upregulated by exogeneous tumor necrosis factor alpha. Increased plasma membrane and secreted MMP activities were found in primary WR astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号