首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Przuntek  H Russ  K Henning  U Pindur 《Life sciences》1985,37(13):1195-1200
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces a Parkinson syndrome in humans and in monkeys. In the rat, treatment with MPTP for a month resulted in permanently reduced dopamine and serotonin levels in the caudate nucleus. However, if the rats were pretreated with budipine, no MPTP-induced reduction in the dopamine and serotonin levels in the caudate nucleus was observed although one month recovery and observation time had elapsed between the last budipine injection and decapitation. It is surmised that budipine antagonises the neurotoxic effect of MPTP.  相似文献   

2.
The neurotoxin MPTP induces nigral dopaminergic cell death in primates and produces a partial model of Parkinson's disease (PD). Pramipexole is a D2/D3 dopamine receptor agonist used in the symptomatic treatment of PD, and which also protects neuronal cells against dopaminergic toxins in vitro. We now demonstrate that pramipexole partially prevents MPTP toxicity in vivo in a primate species. Common marmosets were repeatedly treated with pramipexole either before, coincidentally with, or after low-dose MPTP treatment designed to induce a partial lesion of the substantia nigra. Animals pretreated with pramipexole had a significantly greater number of surviving tyrosine hydroxylase (TH) positive neurones in the pars compacta of the substantia nigra. Pramipexole pretreatment also prevented degeneration of striatal dopamine terminals. Treatment with pramipexole concurrently with MPTP or following MPTP did not prevent TH-positive cell loss. Pramipexole pretreatment appears to induce adaptive changes that protect against dopaminergic cell loss in primates.  相似文献   

3.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 30 mg/kg i.p. daily for 7 days, was administered to mice. This dosage regimen resulted in an approximately 50% reduction of striatal dopamine (DA) level. Chronic administration of GM1 ganglioside (II3NeuAc-GgOse Cer), beginning between 1 to 4 days after terminating MPTP dosing, resulted in partial restoration of the striatal DA level. From dose- and time-response studies, it appeared that 30 mg/kg i.p. of GM1 administered daily for approximately 23 days resulted in an approximately 80% restoration of the DA level and complete restoration of the 3,4-dihydroxyphenylacetic acid (DOPAC) content. This dosage of GM1 also restored the turnover rate of DA in the striatum to near normal. Discontinuing GM1 treatment resulted in a fall of DA and DOPAC levels to values found in mice treated with MPTP alone. There was no evidence for regeneration of nerve terminal amine reuptake in the GM1-treated mice as evaluated by DA uptake into synaptosomes. Our biochemical findings in animals suggest that early GM1 ganglioside treatment of individuals with degenerative diseases of dopaminergic nigrostriatal neurons might be fruitful.  相似文献   

4.
The 3,4-dihydroxyphenylethylamine (DA, dopamine) uptake inhibitors GBR 13,069, amfonelic acid, WIN-35,065-2, WIN-35,428, nomifensine, mazindol, cocaine, McN-5908, McN-5847, and McN-5292 were effective in preventing [3H]DA and [3H]1-methyl-4-phenylpyridinium (MPP+) uptake in rat and mouse neostriatal tissue slices. These DA uptake inhibitors also were effective in attenuating the MPP+-induced release of [3H]DA in vitro. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration to mice (6 X 25 mg/kg i.p.) resulted in a large (70-80%) decrement in neostriatal DA. WIN-35,428 (5 mg/kg), GBR 13,069 (10 mg/kg), McN-5292 (5 mg/kg), McN-5908 (2 mg/kg), and amfonelic acid (2 mg/kg), when administered intraperitoneally 30 min prior to each MPTP injection, fully protected against MPTP-induced neostriatal damage. Other DA uptake inhibitors showed partial protection in vivo at the doses selected. Desmethylimipramine did not prevent [3H]MPP+ uptake or MPP+-induced release of [3H]DA in vitro, and did not protect against MPTP neurotoxicity in vivo. These results support the hypothesis put forth previously by others that the active uptake of MPP+ by dopaminergic neurons is necessary for toxicity.  相似文献   

5.
1-Methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) is known to cause a destruction of the dopaminergic nigrostriatal pathway in certain animal species including mice. MPTP and some structurally related analogs were tested in vitro for their capacity to inhibit the uptake of [3H]3,4-dihydroxyphenylethylamine-([3H]DA), [3H]5-hydroxytryptamine ([3H]5-HT), and [3H]gamma-aminobutyric acid [( 3H]GABA) in mouse neostriatal synaptosomal preparations. MPTP was a very potent inhibitor of [3H]5-HT uptake (IC50 value 0.14 microM), a moderate inhibitor of [3H]DA uptake (IC50 value 2.6 microM), and a very weak inhibitor of [3H]GABA uptake (no significant inhibition observed at 10 microM MPTP). In other experiments, MPTP caused some release of previously accumulated [3H]DA and [3H]5-HT, but in each case MPTP was considerably better as an uptake inhibitor than as a releasing agent. The 4-electron oxidation product of MPTP, i.e., 1-methyl-4-phenyl-pyridinium iodide (MPP+), was a very potent inhibitor of [3H]DA uptake (IC50 value 0.45 microM) and of [3H]5-HT uptake (IC50 value 0.78 microM) but MPP+ was a very weak inhibitor of [3H]GABA uptake. These data may have relevance to the neurotoxic actions of MPTP.  相似文献   

6.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that induces parkinsonism in human and non-human primates. Its mechanism of action is not fully elucidated.Recently, the participation of trace metals, such as manganese, on its neurotoxic action has been postulatted. In this work, we studied the effect of manganese administration on the neurochemical consequences of MPTP neurotoxic action. Male Swiss albino mice were treated with manganese chloride (MnCl2 ·4H2O; 0.5 mg/ml or 1.0 mg/ml of drinking water) for 7 days, followed by three MPTP administrations (30 mg/Kg, intraperitoneally). Seven days after the last MPTP administration, mice were sacrificed and dopamine and homovanillic acid contents in corpus striatum were analyzed. Striatal concentration of dopamine was found increased by 60% in mice pretreated with 0.5 mg/ml and 52% in the group treated of 1.0 mg/ml as compared versus animals treated with MPTP only. Hornovanillic acid content in both groups treated with manganese was the same as those in control animals. The results indicate that manganese may interact with MPTP, producing an enhancement of striatal dopamine turnover, as the protective effect of manganese was more pronounced in the metabolite than in the neurotransmitter.  相似文献   

7.
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a drug that induces parkinsonism in human and non-human primates. Free radicals are thought to be involved in its mechanism of action. Recently, the participation of metallothionein as scavenger of free radicals has been proposed. In this work, we studied the effect of metallothionein inducers in MPTP neurotoxic action. Male swiss albino mice were pretreated either with cadmium (1 mg/kg) or dexamethasone (5 mg/kg), two well-known inducers of metallothionein synthesis, and 5 hours later with an MPTP administration (30 mg/kg). Treatment schedule was repeated daily for either 3 or 5 consecutive days. All animals were killed 7 days after the last administration, and striatal dopamine and homovanillic acid contents were analyzed as an end-point of MPTP neurotoxicity. Striatal dopamine content of cadmium plus MPTP-treated animals (3-days) increased by 32%, and 48% (5-days) vs MPTP-alone animals. Dexamethasone plus MPTP-treated group also showed increased dopamine levels 28% (3-days) and 43% (5-days). MPTP treatment reduced striatal metallothionein concentration (49% vs control animals). Dexamethasone and cadmium increased metallothionein concentrations in MPTP-treated groups, by 77% and 82% respectively. Results suggest that metallothionein induction provide a significant resistance factor against the deleterious effect of MPTP.  相似文献   

8.
The neurotoxin, MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induces a transient increase of mRNA for the immediate-early gene c-fos in the mouse brain. The c-fos mRNA level is MPTP dose-dependent and is evident in all brain regions tested including striatum, hypothalamus, cortex, hippocampus, cerebellum and midbrain. There are regional differences in the time-course for the rise of c-fos mRNA. Pretreatment with deprenyl, a selective monoamine oxidase B inhibitor, pargyline, a nonselective monoamine oxidase inhibitor, or mazindol, a dopamine uptake transport inhibitor, does not prevent the c-fos mRNA increase, suggesting that the elevation is due to the action of MPTP and not its neurotoxic metabolite MPP+.  相似文献   

9.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is known to cause parkinsonism in man and animals, producing acute behavioral effects within minutes of administration. This syndrome has been attributed to specific effects on dopaminergic systems. MPTP blocked the binding of haloperidol to membranes from rat and human brain (IC50 = 2.5 μM), but it did not block the binding of flupenthixol to these membranes. These results indicate that MPTP is a ligand for D-2 dopamine receptors but not for D-1 dopamine receptors. Synaptosomes from rat, mouse or guinea-pig corpus striatum or from monkey caudate nucleus exhibited little ability to take up MPTP from the incubation medium. The synaptosomes took up at least 20–50 times more dopamine than MPTP. These results indicate that MPTP could cause acute effects by binding to dopamine receptors and that the specific toxicity MPTP exerts for dopaminergic neuron is not primarily based on the specific uptake of MPTP into these neurons.  相似文献   

10.
1-Methyl-4-phenyl-tetrahydropyridine (MPTP) given in single doses to rats depleted norepinephrine concentration in heart and mesenteric artery but had little effect on catecholamine concentration in brain. MPTP did not share with amphetamine the ability to cause persistent depletion of striatal dopamine in iprindole-treated rats. Administration of MPTP via osmotic minipumps implanted s.c. for 24 hrs after a loading dose of MPTP in rats resulted in depletion of striatal dopamine and its metabolites one week later. MPTP in vitro was a reasonably potent, competitive and reversible inhibitor of MAO-A (monoamine oxidase type A). MPTP appeared to inhibit MAO-A in rat brain in vivo as determined by its antagonism of the inactivation of MAO-A by pargyline and by its antagonism of the increase in dopamine metabolites resulting from the administration of Ro 4-1284, a dopamine releaser. The inhibition of MAO-B by MPTP in vitro was noncompetitive, time-dependent, and not fully reversed by dialysis, consistent with the findings of others that MPTP is acted upon by MAO-B. In mice, four successive daily doses of MPTP is acted upon by MAO-B. In mice, four successive daily doses of MPTP given s.c. resulted in marked depletion of dopamine and its metabolites one week later, and the depletion of dopamine was completely prevented by pretreatment with deprenyl, which inhibited MAO-B but not MAO-A. These and other studies in rodents may help in elucidating the mechanisms involved in the destructive effects of MPTP on striatal dopamine neurons that lead to symptoms of Parkinson's disease in humans and in monkeys.  相似文献   

11.
Abstract: Unlike 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which produces consistent decreases in levels of striatal dopamine (DA) with considerably smaller and more variable effects on mouse brain levels of serotonin (5-HT) and norepinephrine (NE), a novel amine-substituted MPTP analogue, 1-methyl-4-(2'-aminophenyl)-1,2,3,6-tetrahydropyridine (2'-NH2-MPTP), administered in a standard mouse dosing paradigm for MPTP (20 mg/kg X 4) did not affect striatal DA but led to marked reductions (60–70%) in levels of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), and NE measured in frontal cortex and hippocampus 1 week after treatment. Another 2'-substituted MPTP analogue, 1-methyl-4-(2'-methylphenyl)-1,2,3,6-tetrahydropyridine, affected cortical and hippocampal 5-HT, 5-HIAA, and NE only minimally, while markedly reducing the DA content in striatum (90%), thus indicating that the substituent (-NH2 versus -CH3) at the 2'position is important for the differential effects of these MPTP analogues. In a replication study with a 3-week end point, hippocampal and cortical 5-HT, 5-HIAA, and NE levels remained depressed with no indication of recovery. These results suggest that 2'-NH2-MPTP may be a novel, regionally selective neurotoxin for serotonergic and norad-renergic nerve terminals.  相似文献   

12.
The relationship between oxidative polymorphisms and the cause of Parkinson's disease is controversial. The drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which induces parkinsonism in humans and in some animal models, is metabolized by cytochrome P450 db1 isozyme (the same enzymatic system implicated in 4-hydroxylation of debrisoquine). In this study, we treated females of three rat species, which differ in their ability to hydroxylate debrisoquine, with MPTP (three doses of 30 mg/kg s.c. at 12-h intervals), and we measured their motor activity and brain monoamine levels. Female dark-adapted rats (poor metabolizers of debrisoquine) showed a more pronounced and more maintained reduction of their motor activity after treatment with MPTP. MPTP-treated, dark-adapted rats also had a depletion of noradrenaline in the diencephalon and a depletion of dopamine and serotonine and their respective metabolites in the limbic system when compared with the other two species. These results suggest that oxidative polymorphism of debrisoquine plays a role in the acute effects of MPTP.  相似文献   

13.
Wu WR  Zhu ZT  Zhu XZ 《Life sciences》2000,67(3):241-250
The present studies investigated the effects of L-deprenyl, 1-methyl-4-phenylpyridinium ion (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the efflux of dopamine and its metabolites in microdialysates of striatum and nucleus accumbens in rats. L-Deprenyl or L-amphetamine perfusion into striatum had no effects on basal dopamine efflux, though L-deprenyl reduced the basal efflux of dihydroxyphenylacetic acid and homovanillic acid. MPP+ or MPTP perfusion into striatum significantly increased the dopamine efflux, and the action of MPTP was more potent than that of MPP+. Pretreatment with L-deprenyl antagonized the actions of MPP+ and MPTP. The striatal dopamine efflux of rats was gradually restored by itself after the overflow caused by 2-h perfusion of the dopaminergic neurotoxins, while L-deprenyl could not accelerate the recovery. Perfusion with L-deprenyl or L-amphetamine, but not pargyline, into nucleus accumbens increased the dopamine efflux in a dose-dependent fashion, which could be antagonized by haloperidol pretreatment. MPP+ or MPTP perfusion into nucleus accumbens also increased the dopamine efflux, and the action of MPTP was also more potent than that of MPP+. Pretreatment with L-deprenyl could not antagonize the actions of MPP+ and MPTP. These findings suggest that L-deprenyl, MPP+ and MPTP induce differential effects on nigrostriatal and mesolimbic dopaminergic pathways in vivo. L-Deprenyl has neuroprotective rather than neurorestorative action against MPP+- and MPTP-induced dopamine overflow from striatum. Further, L-deprenyl-induced dopamine overflow from nucleus accumbens may explain the amphetamine-like reinforcing property of L-deprenyl.  相似文献   

14.
Diethyldithiocarbamic acid (DDC) potentiates in vivo neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and in vitro neurotoxicity of 1-methyl-4-phenylpyridinium (MPP+). Male C57B1/6 mice were given two or five injections of MPTP (30 mg/kg i.p.) preceded 0.5 h by DDC (400 mg/kg i.p.). The mice were tested for catalepsy, akinesia, or motor activity during and after the period of dosing. Striatal and hippocampal tissues were obtained at 2 and 7 days following the last injection and evaluated for dopamine and norepinephrine levels, respectively. These same tissues were also analyzed for the levels of glial fibrillary acidic protein (GFAP), an astrocyte-localized protein known to increase in response to neural injury. Pretreatment with DDC potentiated the effect of MPTP in striatum and resulted in substantially greater dopamine depletion, as well as a more pronounced elevation in GFAP. In hippocampus, the levels of norepinephrine and GFAP were not different from controls in mice receiving only MPTP, but pretreatment with DDC resulted in a sustained depletion of norepinephrine and an elevation of GFAP, suggesting that damage was extended to this brain area by the combined treatment. Mice receiving MPTP preceded by DDC also demonstrated a more profound, but reversible, catalepsy and akinesia compared to those receiving MPTP alone. Systemically administered MPP+ decreased heart norepinephrine, but did not alter the striatal levels of dopamine or GFAP, and pretreatment with DDC did not alter these effects, but did increase lethality. DDC is known to increase brain levels of MPP+ after MPTP, but our data indicate that this is not due to a movement of peripherally generated MPP+ into CNS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The neurotoxic metabolite of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl-4-phenylpyridinium, selectively accumulates in dopaminergic neurons via the dopamine reuptake system. Consequently, nontoxic radiolabeled MPTP analogs may be potentially useful for visualizing catecholaminergic neurons in vivo. N-Methyl-4-(4-hydroxy-3-[125I]iodobenzyl)-1,2,3,6-tetrahydropyridine [( 125I]MHTP), an analog of the nontoxic N-methyl-4-benzyl-1,2,3,6-tetrahydropyridine, has been studied in rats and mice. After intravenous administration of [125I]MHTP to rodents, the initial accumulation of radioactivity within the brain was found to be comparable to that of radiolabeled MPTP. Following intravenous administration of [125I]MHTP, in vivo autoradiographic visualization of the rodent brain revealed selective accumulation of [125I]MHTP-derived radioactivity within the locus ceruleus; there was no accumulation of the radiotracer within dopaminergic fibers and cell bodies. The accumulation of radioactivity within the locus ceruleus was blocked by pretreatment with pargyline, a result suggesting that an MHTP metabolite formed by monoamine oxidase was responsible for the localization of the radiotracer within this structure. The anatomical distribution of the radiolabel demonstrates selective accumulation of this metabolite within noradrenergic cell bodies and those fibers making up the locus ceruleus. These findings further suggest that nontoxic metabolites of MPTP may become useful for in vivo labeling of selected populations of catecholaminergic neurons.  相似文献   

16.
《Life sciences》1987,40(8):697-704
We are currently developing amino-substituted MPTP analogues as useful probes for understanding the mechanism of MPTP toxicity and Parkinson's disease. One analogue, 4′-amino MPTP, induces a loss of striatal dopamine and is thus a suitable substitute for MPTP. This probe will be used as a histologically fixable MPTP which can be used to answer detailed anatomical questions concerning the sites of MPTP, MPP+ uptake and storage. In addition, antibodies have been raised against MPTP and MPP+ in rabbits using diazo-linked bovine serum albumin conjugates. The antibodies have been characterized with regard to their recognition of relevant structural analogues using an enzymelinked immunoassay (ELISA) procedure. Antibodies to MPTP detected MPTP in mouse brain extracts derived from as little as 5 μg of tissue. The antibodies will be used for immunohistochemical localization of 4′-NH2-MPTP and 4′-NH2-MPP+ in brain, as well as probes for the screening of parkinsonian brain tissue for any MPTP- or MPP+-like materials which might exist.  相似文献   

17.
The noradrenergic neurons of the locus coeruleus (LC) are damaged in Parkinson's disease (PD). Neurotoxin ablation of the LC noradrenergic neurons has been shown to exacerbate the dopaminergic toxicity of MPTP, suggesting that the noradrenergic system protects dopamine neurons. We utilized mice that exhibit elevated synaptic noradrenaline (NA) by genetically deleting the noradrenaline transporter (NET), a key regulator of the noradrenergic system (NET KO mice). NET KO and wild-type littermates were administered MPTP and striatal dopamine terminal integrity was assessed by HPLC of monoamines, immmunoblotting for dopaminergic markers and tyrosine hydroxylase (TH) immunohistochemistry. MPTP significantly reduced striatal dopamine in wild-type mice, but not in the NET KO mice. To confirm that the protection observed in the NET KO mice was due to the lack of NET, we treated wild-type mice with the specific NET inhibitor, nisoxetine, and then challenged them with MPTP. Nisoxetine conferred protection to the dopaminergic system. These data indicate that NA can modulate MPTP toxicity and suggest that manipulation of the noradrenergic system may have therapeutic value in PD.  相似文献   

18.
Parkinson's disease (PD)-like symptoms and cognitive deficits are inducible by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Since cognitive abilities, including memory formations rely also on hippocampus, we set out to clarify the effects of MPTP on hippocampal physiology. We show that bath-application of MPTP (25?μM) to acute hippocampal slices enhanced AMPA receptor-mediated field excitatory postsynaptic potentials (AMPAr-fEPSPs) transiently, whereas N-methyl-D-aspartate (NMDA) receptor-mediated fEPSPs (NMDAr-fEPSPs) were facilitated persistently. The MPTP-mediated transient AMPAr-fEPSP facilitation was antagonized by the dopamine D2-like receptor antagonists, eticlopride (1?μM) and sulpiride (1 and 40?μM). In contrast, the persistent enhancement of NMDAr-fEPSPs was prevented by the dopamine D1-like receptor antagonist SCH23390 (10?μM). In addition, we show that MPTP decreased paired-pulse facilitation of fEPSPs and mEPSCs frequency. Regarding activity-dependent synaptic plasticity, 25?μM MPTP transformed short-term potentiation (STP) into a long-term potentiation (LTP) and caused a slow onset potentiation of a non-tetanized synaptic input after induction of LTP in a second synaptic input. This heterosynaptic slow onset potentiation required activation of dopamine D1-like and NMDA-receptors. We conclude that acute MPTP application affects basal synaptic transmission by modulation of presynaptic vesicle release and facilitates NMDAr-fEPSPs as well as activity-dependent homo- and heterosynaptic plasticity under participation of dopamine receptors.  相似文献   

19.
Kim SN  Doo AR  Park JY  Bae H  Chae Y  Shim I  Lee H  Moon W  Lee H  Park HJ 《PloS one》2011,6(11):e27566
Parkinson's disease (PD) is caused by the selective loss of dopaminergic neurons in the substantia nigra (SN) and the depletion of striatal dopamine (DA). Acupuncture, as an alternative therapy for PD, has beneficial effects in both PD patients and PD animal models, although the underlying mechanisms therein remain uncertain. The present study investigated whether acupuncture treatment affected dopamine neurotransmission in a PD mouse model using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We found that acupuncture treatment at acupoint GB34 improved motor function with accompanying dopaminergic neuron protection against MPTP but did not restore striatal dopamine depletion. Instead, acupuncture treatment increased dopamine release that in turn, may lead to the enhancement of dopamine availability in the synaptic cleft. Moreover, acupuncture treatment mitigated MPTP-induced abnormal postsynaptic changes, suggesting that acupuncture treatment may increase postsynaptic dopamine neurotransmission and facilitate the normalization of basal ganglia activity. These results suggest that the acupuncture-induced enhancement of synaptic dopamine availability may play a critical role in motor function improvement against MPTP.  相似文献   

20.
In cynomologus monkeys, systemic administration of MK-801, a noncompetitive antagonist for the N-methyl-D-aspartate receptor, prevented the development of the parkinsonian syndrome induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MK-801 also attenuated dopamine depletion in the caudate and putamen and protected dopaminergic neurons in the substantia nigra from the degeneration induced by the neurotoxin. Nevertheless, 7 days after MPTP administration in the caudate and putamen of monkeys also receiving MK-801, the levels of toxic 1-methyl-4-phenylpyridinium were even higher than those measured in monkeys receiving MPTP alone. This indicates that the protective action of MK-801 is not related to MPTP metabolism and strongly suggests that, in primates, the excitatory amino acids could play a crucial role in the mechanism of the selective neuronal death induced by MPTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号