首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The protein phosphatase activity in rat liver cytosol or nuclear extracts that dephosphorylates histone H1 which has been phosphorylated by p34cdc2 is inhibited completely by okadaic acid, but unaffected by inhibitor-2 or magnesium ions, demonstrating that the only enzyme in this tissue capable of dephosphorylating this substrate is a type 2A phosphatase. Fractionation of the cytosol by anion-exchange chromatography and gel filtration demonstrated that histone H1 phosphatase activity coeluted with the major species of protein phosphatase 2A, termed PP2A1 and PP2A2. PP2A1 was the most active histone H1 phosphatase, its histone phosphatase phosphorylase phosphatase activity ratio being 6-fold higher than PP2A2 and 30-fold higher than the free catalytic subunit PP2AC. It is concluded that PP2A1 is likely to be the enzyme which dephosphorylates p34cdc2-labelled histone H1 in vivo and that the A and B subunits which interact with PP2AC in this species each play a key role in facilitating dephosphorylation of this substrate. The results demonstrate that PP2A, in addition to being involved in suppressing the activation of p34cdc2 in vivo, can also function to reverse at least one of its actions.  相似文献   

2.
Protein phosphatases assayed with phosphorylase alpha are present in the soluble and particulate fractions of rat thymocytes. Phosphorylase phosphatase activity in the cytosol fraction was resolved by heparin-Sepharose chromatography into type-1 and type-2A enzymes. Similarities between thymocyte and muscle or liver protein phosphatase-1 included preferential dephosphorylation of the beta subunit of phosphorylase kinase, inhibition by inhibitor-2 and retention by heparin-Sepharose. Similarities between thymocyte and muscle or liver protein phosphatase-2A included specificity for the alpha subunit of phosphorylase kinase, insensitivity to the action of inhibitor-2, lack of retention by heparin-Sepharose and stimulation by polycationic macromolecules such as polybrene, protamine and histone H1. Protein phosphatase-1 from the cytosol fraction of thymocytes had an apparent molecular mass of 120 kDa as determined by gel filtration. The phosphatase-2A separated from the cytosol of thymocytes may correspond to phosphatase-2A0, since it was completely inactive (latent) in the absence of polycation and had activity only in the presence of polycations. The apparent molecular mass of phosphatase-2A0 from thymocytes was 240 kDa as determined by gel filtration. The catalytic subunit of thymocyte type-1 protein phosphatase was purified with heparin-Sepharose chromatography followed by gel filtration and fast protein liquid chromatography on Mono Q column. The purified type-1 catalytic subunit exhibited a specific activity of 8.2 U/mg and consisted of a single protein of 35 kDa as judged by SDS-gel electrophoresis. The catalytic subunit of type-2A phosphatase from thymocytes appearing in the heparin-Sepharose flow-through fraction was further purified on protamine-Sepharose, followed by gel filtration. The specific activity of the type-2A catalytic subunit was 2.1 U/mg and consisted of a major protein of 34.5 kDa, as revealed by SDS-gel electrophoresis.  相似文献   

3.
Two heat-stable and trypsin-labile inhibitors of phosphorylase phosphatase, designated inhibitor-1 and inhibitor-2, were partially purified from extracts of rabbit skeletal muscle by heating and coloumn chromatography using DEAE-dellulose and Bio-gel P-60. Inhibitor-1 exists in an active phosphorylated form and an inactive dephosphorylated form. The interconversion of phosphorylated inhibitor-1 and dephosphorylated inhibitor-1 is mediated by protein kinase dependent on adenosine 3':5'-monophosphate (cyclic AMP) and a Mn2+-stimulated phosphoprotein phosphatase. Inhibitory activity of inhibitor-2 is not influenced by treatment with either the kinase or the Mn2+-stimulated phosphatase. The molecular weights of inhibitor-1 and inhibitor-2 estimated by sodium dodecylsulfate-polyacrylamide gel electrophoresis are 26000 and 33000 respectively. Both inhibitor-1 and inhibitor-2 inhibit phosphorylase phosphatase by a mechanism which appears to be non-competitive with respect to the substrate phosphorylase a. Inhibitor fractions at early stages of purification also inhibit cyclic-AMP-dependent histone phosphorylation, but this kinase inhibitory activity resides with a protein moiety which is separable from inhibitor-1 and inhibitor-2.  相似文献   

4.
The catalytic subunits of bovine platelet protein phosphatases were separated into three distinct forms by chromatography on heparin-Sepharose. Each phosphatase was further purified to apparent homogeneity as judged in sodium dodecyl sulfate-polyacrylamide gel yielding single protein bands of 37, 41, and 36 kDa. The 37-kDa phosphatase was excluded from heparin-Sepharose and preferentially dephosphorylated the alpha-subunit of phosphorylase kinase. It was stimulated by polycations (polybrene or histone H1) and was inhibited by okadaic acid (IC50 = 0.3 nM), but its activity was not influenced by inhibitor-2 or heparin. The 41-kDa phosphatase was eluted from heparin-Sepharose by 0.20-0.25 M NaCl and preferentially dephosphorylated the beta-subunit of phosphorylase kinase. It was stimulated by polycations and inhibited by okadaic acid (IC50 = 2 nM), but its activity was not affected by inhibitor-2 or heparin. The 36-kDa phosphatase was eluted from heparin-Sepharose by 0.45-0.50 M NaCl and preferentially dephosphorylated the beta-subunit of phosphorylase kinase. It was inhibited by inhibitor-2, heparin, histone H1, and okadaic acid (IC50 = 70 nM). The 37- and 36-kDa phosphatases can be classified as type-2A and type-1 enzymes, respectively. The 41-kDa phosphatase does not precisely fit the criteria of either type, showing only partial similarities to both type-1 and type-2A enzymes and it may represent a novel type of protein phosphatase in bovine platelets.  相似文献   

5.
The dephosphorylation of phosphorylase a by the catalytic subunit of protein phosphatase-1 obtained from rabbit skeletal muscle is inhibited by heparin in a noncompetitive manner with respect to phosphorylase a (Ki = 8 micrograms/ml). The inhibitory effect of heparin is also observed in the presence of effectors (e.g., glucose and AMP) modifying the dephosphorylation of phosphorylase a. Heat-stable protein inhibitors of protein phosphatase-1 can develop their inhibitory effect of the activity of protein phosphatase-1 even in the presence of heparin. The inhibitory effect of heparin and the heat-stable inhibitor-2 of phosphatase is additive. Polybrene, a heparin antagonist, prevented phosphatase-1 from the inhibition caused by heparin or the inhibitors. Proteins with basic character, histone fractions (H1, H3) and protamine sulfate, can counteract with the inhibitory effect of heparin, but they cannot intercept the actions of inhibitor-1 or -2.  相似文献   

6.
The predominant form of phosphorylase phosphatase activity in porcine renal cortical extracts was a polycation-stimulated protein phosphatase. This activity was present in extracts in a high-molecular-weight form which could be converted to a free catalytic subunit by treatment with ethanol, urea, or freezing and thawing in the presence of beta-mercaptoethanol. The catalytic subunit of the polycation-stimulated phosphatase was purified by chromatography on DEAE-Sephacel, heparin-Sepharose, and Sephadex G-75. The phosphatase appeared to be homogeneous on SDS-polyacrylamide gel electrophoresis. The enzyme had an apparent Mr of 35 000 on gel filtration and SDS-polyacrylamide gel electrophoresis. The purified phosphatase could be stimulated by histone H1, protamine, poly(D-lysine), poly(L-lysine) or polybrene utilizing phosphorylase a as the substrate. It preferentially dephosphorylated the alpha-subunit of phosphorylase kinase. The phosphatase was highly sensitive to inhibition by ATP. These results suggest that the renal polycation-stimulated phosphatase catalytic subunit is very similar to or identical with the skeletal muscle phosphatase form which has been previously designated phosphatase-2Ac.  相似文献   

7.
The dephosphorylation of phosphorylase beta kinase by the activated ATP, Mg-dependent protein phosphatase, which is highly specific for the beta-subunit, is stimulated by the deinhibitor protein which neutralizes the effect of inhibitor-1 and the modulator protein on the phosphatase. The specific dephosphorylation of the alpha-subunit of phosphorylase beta kinase by a "latent" protein phosphatase isolated from vascular smooth muscle is stimulated by histone H1 but not affected by the deinhibitor protein. These observations show that there is no strict correlation between the insensitivity of a protein phosphatase to inhibitor-1 or modulator protein and the dephosphorylation of the alpha-subunit of phosphorylase beta kinase.  相似文献   

8.
Two types of myosin light chain phosphatase from aortic smooth muscle extract were separated by chromatography on heparin-agarose. The phosphatase which appeared in the flow-through fractions had low activity on actomyosin, its apparent molecular mass was 260 kDa and upon ethanol treatment it generated a catalytic subunit with an apparent molecular mass of 36-39 kDa as determined by gel filtration. This phosphatase preferentially dephosphorylated the alpha-subunit of phosphorylase kinase and its phosphorylase phosphatase activity was not inhibited by heparin, inhibitor-1 or inhibitor-2. The phosphatase retained by heparin-agarose had high activity on actomyosin, its apparent molecular mass was 150 kDa and upon ethanol treatment it generated a catalytic subunit with an apparent molecular mass of 39-42 kDa. It preferentially dephosphorylated the beta-subunit of phosphorylase kinase and its phosphorylase phosphatase activity was not inhibited by heparin, inhibitor-1 or inhibitor-2. Myosin light chain was phosphorylated by myosin light chain kinase in peptides AB (Ser-P) and CD (Thr-P), and/or by protein kinase C in peptides E (Ser-P) and F (Thr-P) as determined by one-dimensional phosphopeptide mapping. The catalytic subunit of heparin-agarose flow-through phosphatase preferentially dephosphorylated peptide F over peptides AB, CD and E in both isolated light chain and actomyosin. The catalytic subunit of heparin-agarose bound phosphatase could effectively dephosphorylate all sites in isolated light chain, whereas it was less effective on dephosphorylation of peptide E in actomyosin.  相似文献   

9.
Latent and spontaneously active forms of phosphorylase phosphatase were separated by heparin-Sepharose chromatography of rabbit liver extract. The latent enzyme had an absolute polycation (histone H1, polybrene) requirement for the activity assayed with phosphorylase a and phosphorylase kinase substrates. Ethanol treatment resulted in the activation of both phosphatases by dissociating of 150-180 kDa holoenzymes to 33-38 kDa catalytic subunits as judged by gel filtration. The latent and spontaneously active phosphatases were differentiated according to their abilities to dephosphorylate the alpha and the beta subunits of phosphorylase kinase and sensitivities to inhibition by inhibitor-2 or heparin, and were classified as type-2A and type-1 phosphatases, respectively.  相似文献   

10.
The phosphorylase phosphatase activity of the holoenzyme form of phosphatase 2A isolated from extracts of porcine renal cortex or bovine heart was stimulated 600% and 500%, respectively, by the addition of histone H1. After conversion of the phosphatase to the catalytic subunit form by treatment with ethanol at room temperature, histone H1 stimulated activity by about 150% only. Purification of the catalytic subunit from porcine renal cortex yielded two forms of the enzyme which were separated by heparin-Sepharose chromatography. These forms were designated peak 1 and peak 2 according to their order of elution from the column. Peak 1 catalytic subunit was stimulated by more than 400% by histone H1, whereas peak 2 was stimulated by about 50% only. Based on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, peak 2 had a slightly higher Mr value than peak 1 (35,500 vs. 35,000). Incubation of the peak 2 phosphatase with trypsin converted it to a form that was similar to peak 1 with respect to Mr and stimulation by histone H1. When the catalytic subunit of phosphatase 2A was purified from bovine heart only one form was obtained. Bovine heart enzyme was similar to renal peak 2 in that it had an apparent Mr of 35,500 and was only slightly stimulated by histone H1. Treatment of the bovine heart catalytic subunit with trypsin, chymotrypsin or type 2 Ca2+-dependent proteinase decreased the apparent Mr by about 500 and increased histone H1 stimulation to about 500%. Thus, when a small peptide was removed by proteolysis, histone H1 stimulation of the 'nicked' catalytic subunit was similar to that obtained with the holoenzyme.  相似文献   

11.
1. Phosphoprotein phosphatase IB is a form of rat liver phosphoprotein phosphatase, distinguished from the previously studied phosphoprotein phosphatase II [Tamura et al. (1980) Eur. J. Biochem. 104, 347-355] by earlier elution from DEAE-cellulose, by higher molecular weight on gel filtration (260000) and by lower activity toward phosphorylase alpha. This enzyme was purified to apparent homogeneity by chromatography on DEAE-cellulose, aminohexyl--Sepharose-4B, histone--Sepharose-4B, protamine--Sepharose-4B and Sephadex G-200. 2. The molecular weight of purified phosphatase IB was 260000 by gel filtration and 185000 from S20,W and Stokes' radius. Using histone phosphatase activity as the reference for comparison, the phosphorylase phosphatase activity of purified phosphatase IB was only one-fifth that of phosphatase II. 3. Sodium dodecyl sulfate gel electrophoresis revealed that phosphatase IB contains three types of subunit, namely alpha, beta and gamma, whose molecular weights are 35000, 69000 and 58000, respectively. The alpha subunit is identical to the alpha subunit of phosphatase II. While the beta subunit is also identical or similar to the beta subunit of phoshatase II, the gamma subunit appears to be unique to phosphatase IB. 4. When purified phosphatase IB was treated with 2-mercaptoethanol at -20 degrees C, the enzyme was dissociated to release the catalytically active alpha subunit. Along with this dissociation, there was a 7.4-fold increase in phosphorylase phosphatase activity; but histone phosphatase activity increased only 1.6-fold. The possible functions of the gamma subunit are discussed in relation to this activation of enzyme.  相似文献   

12.
The protein phosphatase activities involved in regulating the major pathways of intermediary metabolism can be explained by only four enzymes which can be conveniently divided into two classes, type-1 and type-2. Type-1 protein phosphatases dephosphorylate the beta-subunit of phosphorylase kinase and are potently inhibited by two thermostable proteins termed inhibitor-1 and inhibitor-2, whereas type-2 protein phosphatases preferentially dephosphorylate the alpha-subunit of phosphorylase kinase and are insensitive to inhibitor-1 and inhibitor-2. The substrate specificities of the four enzymes, namely protein phosphatase-1 (type-1) and protein phosphatases 2A, 2B and 2C (type-2) have been investigated. Eight different protein kinases were used to phosphorylate 13 different substrate proteins on a minimum of 20 different serine and threonine residues. These substrates include proteins involved in the regulation of glycogen metabolism, glycolysis, fatty acid synthesis, cholesterol synthesis, protein synthesis and muscle contraction. The studies demonstrate that protein phosphatase-1 and protein phosphatase 2A have very broad substrate specificities. The major differences, apart from the site specificity for phosphorylase kinase, are the much higher myosin light chain phosphatase and ATP-citrate lyase phosphatase activities of protein phosphatase-2A. Protein phosphatase-2C (an Mg2+-dependent enzyme) also has a broad specificity, but can be distinguished from protein phosphatase-2A by its extremely low phosphorylase phosphatase and histone H1 phosphatase activities, and its slow dephosphorylation of sites (3a + 3b + 3c) on glycogen synthase relative to site-2 of glycogen synthase. It has extremely high hydroxymethylglutaryl-CoA (HMG-CoA) reductase phosphatase and HMG-CoA reductase kinase phosphatase activity. Protein phosphatase-2B (a Ca2+-calmodulin-dependent enzyme) is the most specific phosphatase and only dephosphorylated three of the substrates (the alpha-subunit of phosphorylase kinase, inhibitor-1 and myosin light chains) at a significant rate. It is specifically inhibited by the phenathiazine drug, trifluoperazine. Examination of the amino acid sequences around each phosphorylation site does not support the idea that protein phosphatase specificity is determined by the primary structure in the immediate vicinity of the phosphorylation site.  相似文献   

13.
Four types of polycation-stimulated (PCS) phosphorylase phosphatases have been isolated from rabbit skeletal muscle. They are called PCSH (390 kDa), PCSM (250 kDa), and PCSL (200 kDa) phosphatase according to the apparent molecular weight of the native enzymes in gel filtration. Two forms of PCSH phosphatase could be separated by Mono Q fast protein liquid chromatography: PCSH1 and PCSH2. In the absence of polycations, the specific activities of the PCSH1, PCSH2, PCSM, and PCSL phosphatase were 400, 680, 600, and 3000 units/mg, respectively, using phosphorylase a as a substrate. They all contain a 62-65- and a 35-kDa subunit, the latter being the catalytic subunit. In addition PCSH1 phosphatase contains a 55-kDa subunit and the PCSM phosphatase a 72-75-kDa subunit in a substoichiometric ratio. All the PCS phosphatases are insensitive to Ca2+ calmodulin, inhibitor-1, and modulator protein. They display a high specificity for the alpha-subunit of phosphorylase kinase and a broad substrate specificity. The PCSH1 and PCSH2 phosphatases, but not the catalytic subunit (PCSC phosphatase), show a high degree of specificity for the deinhibitor protein. During the purification the phosphorylase to inhibitor-1 phosphatase activity ratio (10:1) remained constant for the PCSH and PCSL enzymes but decreased for the PCSM phosphatase. The stimulation observed with low concentrations of polycations is enzyme directed. The different enzyme forms show a characteristic concentration optimum and degree of stimulation. At higher concentrations, polycations become inhibitory and a time-dependent deactivation of the phosphatases is observed.  相似文献   

14.
Two type 2A protein phosphatases, phosphatases I (Mr = 180,000) and III (Mr = 177,000), were purified to near homogeneity from human erythrocyte cytosol. Phosphatase I was composed of alpha (34 kDa), beta (63 kDa), and delta (74 kDa) subunits in a ratio of 1:1:1. Phosphatase III comprised alpha, beta, and gamma (53 kDa) subunits in the same ratio. Heparin-Sepharose column chromatography converted most of phosphatase I and 20% of phosphatase III into alpha 1 beta 1 which were indistinguishable from phosphatase IV (Usui, H., Kinohara, N., Yoshikawa, K., Imazu, M., Imaoka, T., and Takeda, M. (1983) J. Biol. Chem. 258, 10455-10463). The catalytic subunit alpha and the beta subunit of phosphatases I, III, and IV displayed identical V8 and papain peptide maps, respectively, while the peptide maps of the alpha, beta, gamma, and delta subunits were clearly distinct. The molar ratio of phosphatases I, III, and IV in erythrocyte cytosol was estimated to be 6:1:14. Comparison of molecular activities of alpha, alpha 1 beta 1, alpha 1 beta 1 delta 1, and alpha 1 beta 1 gamma 1 revealed that beta suppressed phosphorylase and P-H2B histone phosphatase activities of alpha but stimulated the P-H1 histone phosphatase activity, and delta suppressed all the phosphatase activities of alpha 1 beta 1. The gamma subunit stimulated the P-histone phosphatase activity of alpha 1 beta 1 but inhibited the phosphorylase and P-spectrin phosphatase activities. The beta subunit increased the Mg2+ or Mn2+ requirement for P-H2B histone phosphatase activity of alpha, an effect which was counteracted by delta. The effects of heparin, H1 histone, protamine, and polylysine on the phosphorylase phosphatase activity of phosphatases I, III, IV, and alpha were described and discussed in connection with the functions of the subunits.  相似文献   

15.
A phosphoprotein phosphatase active towards casein, phosphorylase a and mRNP proteins has been detected in the cytosol of cryptobiotic gastrulae of Artemia sp. This phosphatase has a relative molecular mass (Mr) of 225,000 as measured by gel filtration on Sephadex G-200 and has been purified to near homogeneity by ion-exchange chromatography on different DEAE-substituted matrices, affinity chromatography on polylysine-agarose, histone-Sepharose 4B and protamine-agarose, hydrophobic chromatography on phenyl-Sepharose 4B and gel filtration on Sephadex G-200. Sodium dodecyl sulphate gel electrophoresis of the final purification step revealed that the enzyme contains two types of subunits, alpha and beta, with Mr of 40,000 and 75,000, respectively. These values, in conjunction with the native Mr and the molar ratios of the subunits estimated by densitometric analysis of the gel, suggested that the subunit composition of the enzyme is alpha 2 beta 2. When treated with 1.7% (v/v) 2-mercaptoethanol at -20 degrees C or with ethanol, the enzyme released the catalytic alpha subunit of Mr 40,000. The protein phosphatase was activated by basic proteins e.g. protamine (A 0.5 = 1 microM), histone H1 (A 0.5 = 1.6 microM) and polylysine (A 0.5 = 0.2 microM) and inhibited by ATP (I 0.5 = 12 microM), NaF (I 0.5 = 3.1 mM) and pyrophosphate (I 0.5 = 0.6 mM). The enzyme is a polycation-stimulated protein phosphatase. Purified mRNP proteins, phosphorylated by the mRNP-associated casein kinase type II, are among the substrates used by the enzyme. The function of reversible phosphorylation-dephosphorylation of mRNP as a regulatory mechanism in mRNP metabolism is discussed.  相似文献   

16.
A glycogen synthase phosphatase was purified from the yeast Saccharomyces cerevisiae. The purified yeast phosphatase displayed one major protein band which coincided with phosphatase activity on nondenaturing polyacrylamide gel electrophoresis. This phosphatase had a molecular mass of about 160,000 Da determined by gel filtration and was comprised of three subunits, termed A, B, and C. The subunit molecular weights estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 60,000 (A), 53,000 (B), and 37,000 (C), indicating that this yeast glycogen synthase phosphatase is a heterotrimer. On ethanol treatment, the enzyme was dissociated to an active species with a molecular weight of 37,000 estimated by gel filtration. The yeast phosphatase dephosphorylated yeast glycogen synthase, rabbit muscle glycogen phosphorylase, casein, and the alpha subunit of rabbit muscle phosphorylase kinase, was not sensitive to heat-stable protein phosphatase inhibitor 2, and was inhibited 90% by 1 nM okadaic acid. Dephosphorylation of glycogen synthase, phosphorylase, and phosphorylase kinase by this yeast enzyme could be stimulated by histone H1 and polylysines. Divalent cations (Mg2+ and Ca2+) and chelators (EDTA and EGTA) had no effect on dephosphorylation of glycogen synthase or phosphorylase while Mn2+ stimulated enzyme activity by approximately 50%. The specific activity and kinetics for phosphorylase resembled those of mammalian phosphatase 2A. An antibody against a synthetic peptide corresponding to the carboxyl terminus of the catalytic subunit of rabbit skeletal muscle protein phosphatase 2A reacted with subunit C of purified yeast phosphatase on immunoblots, whereas the analogous peptide antibody against phosphatase 1 did not. These data show that this yeast glycogen synthase phosphatase has structural and catalytic similarity to protein phosphatase 2A found in mammalian tissues.  相似文献   

17.
Muscle extracts were subjected to fractionation with ethanol, chromatography on DEAE-cellulose, precipitation with (NH4)2SO4 and gel filtration on Sephadex G-200. These fractions were assayed for protein phosphatase activities by using the following seven phosphoprotein substrates: phosphorylase a, glycogen synthase b1, glycogen synthase b2, phosphorylase kinase (phosphorylated in either the alpha-subunit or the beta-subunit), histone H1 and histone H2B. Three protein phosphatases with distinctive specificities were resolved by the final gel-filtration step and were termed I, II and III. Protein phosphatase-I, apparent mol.wt. 300000, was an active histone phosphatase, but it accounted for only 10-15% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities and 2-3% of the phosphorylase kinase phosphatase and phosphorylase phosphatase activity recovered from the Sephadex G-200 column. Protein phosphatase-II, apparent mol.wt. 170000, possessed histone phosphatase activity similar to that of protein phosphatase-I. It possessed more than 95% of the activity towards the alpha-subunit of phosphorylase kinase that was recovered from Sephadex G-200. It accounted for 10-15% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activity, but less than 5% of the activity against the beta-subunit of phosphorylase kinase and 1-2% of the phosphorylase phosphatase activity recovered from Sephadex G-200. Protein phosphatase-III was the most active histone phosphatase. It possessed 95% of the phosphorylase phosphatase and beta-phosphorylase kinase phosphatase activities, and 75% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities recovered from Sephadex G-200. It accounted for less than 5% of the alpha-phosphorylase kinase phosphatase activity. Protein phosphatase-III was sometimes eluted from Sephadex-G-200 as a species of apparent mol.wt. 75000(termed IIIA), sometimes as a species of mol.wt. 46000(termed IIIB) and sometimes as a mixture of both components. The substrate specificities of protein phosphatases-IIA and -IIB were identical. These findings, taken with the observation that phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities co-purified up to the Sephadex G-200 step, suggest that a single protein phosphatase (protein phosphatase-III) catalyses each of the dephosphorylation reactions that inhibit glycogenolysis or stimulate glycogen synthesis. This contention is further supported by results presented in the following paper [Cohen, P., Nimmo, G.A. & Antoniw, J.F. (1977) Biochem. J. 1628 435-444] which describes a heat-stable protein that is a specific inhibitor of protein phosphatase-III.  相似文献   

18.
A major rabbit skeletal muscle phosphorylase phosphatase activity which is markedly stimulated by histone H1 has been resolved from inhibitor-sensitive phosphorylase phosphatase (type-1 phosphatase), glycogen synthase kinase 3-activated phosphatase, phosphatase heat-stable inhibitor proteins, and alkaline phosphatase activity by various purification techniques. Evidence is presented that this phosphatase is a high-molecular weight form of a type-2 phosphatase. Our data suggest that this phosphatase may be regulated by histone H1, protamine or analogous polycationic compounds.  相似文献   

19.
Glycogen synthase (labelled in sites-3) and glycogen phosphorylase from rabbit skeletal muscle were used as substrates to investigate the nature of the protein phosphatases that act on these proteins in the glycogen and microsomal fractions of rat liver. Under the assay conditions employed, glycogen synthase phosphatase and phosphorylase phosphatase activities in both subcellular fractions could be inhibited 80-90% by inhibitor-1 or inhibitor-2, and the concentrations required for half-maximal inhibition were similar. Glycogen synthase phosphatase and phosphorylase phosphatase activities coeluted from Sephadex G-100 as broad peaks, stretching from the void volume to an apparent molecular mass of about 50 kDa. Incubation with trypsin decreased the apparent molecular mass of both activities to about 35 kDa, and decreased their I50 for inhibitors-1 and -2 in an identical manner. After tryptic digestion, the I50 values for inhibitors-1 and -2 were very similar to those of the catalytic subunit of protein phosphatase-1 from rabbit skeletal muscle. The glycogen and microsomal fractions of rat liver dephosphorylated the beta-subunit of phosphorylase kinase much faster than the alpha-subunit and dephosphorylation of the beta-subunit was prevented by the same concentrations of inhibitor-1 and inhibitor-2 that were required to inhibit the dephosphorylation of phosphorylase. The same experiments performed with the glycogen plus microsomal fraction from rabbit skeletal muscle revealed that the properties of glycogen synthase phosphatase and phosphorylase phosphatase were very similar to the corresponding activities in the hepatic glycogen fraction, except that the two activities coeluted as sharp peaks near the void volume of Sephadex G-100 (before tryptic digestion). Tryptic digestion of the hepatic glycogen and microsomal fractions increased phosphorylase phosphatase about threefold, but decreased glycogen synthase phosphatase activity. Similar results were obtained with the glycogen plus microsomal fraction from rabbit skeletal muscle or the glycogen-bound form of protein phosphatase-1 purified to homogeneity from the same tissue. Therefore the divergent effects of trypsin on glycogen synthase phosphatase and phosphorylase phosphatase activities are an intrinsic property of protein phosphatase-1. It is concluded that the major protein phosphatase in both the glycogen and microsomal fractions of rat liver is a form of protein phosphatase-1, and that this enzyme accounts for virtually all the glycogen synthase phosphatase and phosphorylase phosphatase activity associated with these subcellular fractions.  相似文献   

20.
Protein phosphatases present in the particulate and soluble fractions of oocytes of the starfish Asterias rubens and Marthasterias glacialis have been classified according to the criteria used for these enzymes from mammalian cells. The major protein phosphatase activity in the particulate fraction had very similar properties to protein phosphatase-1 from mammalian tissues, including preferential dephosphorylation of the beta subunit of phosphorylase kinase, sensitivity to inhibitor-1 and inhibitor-2, inhibition of phosphorylase phosphatase activity by protamine and heparin, and retention by heparin-Sepharose. The major protein phosphatase in the soluble fraction had very similar properties to mammalian protein phosphatase-2A, including preferential dephosphorylation of the alpha subunit of phosphorylase kinase, insensitivity to inhibitors-1 and 2, activation by protamine and heparin, and exclusion from heparin-Sepharose. An acid-stable and heat-stable protein was detected in the soluble fraction of starfish oocytes, whose properties were indistinguishable from those of inhibitor-2 from mammalian tissues. It inhibited protein phosphatase-1 specifically, and its apparent molecular mass on SDS polyacrylamide gels was 31 kDa. Furthermore, an inactive hybrid formed between the starfish oocyte inhibitor and the catalytic subunit of mammalian protein phosphatase-1 could be reactivated by preincubation with MgATP and mammalian glycogen synthase kinase-3. The remarkable similarities between starfish oocyte protein phosphatases and their mammalian counterparts are indicative of strict phylogenetic conservation of these enzymes. The results will facilitate further analysis of the role of protein phosphorylation in the control of starfish oocyte maturation by the hormone 1-methyladenine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号