首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
FLP and Cre recombinase function in Xenopus embryos   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

2.
A transgenic mouse line that expresses Cre recombinase under control of the human thyroid peroxidase (TPO) gene promoter was established. The activity and specificity of the TPO-driven Cre recombinase were examined by using Northern blotting and by crossing with the ROSA26 reporter transgenic mouse line. In the latter mice, Cre-mediated recombination occurred only in the thyrocytes, and recombination commenced around embryonic day 14.5, at the time during thyroid organogenesis when TPO expression begins. This study demonstrates that the TPO-Cre transgenic mouse is a powerful tool to specifically delete loxP-inserted (floxed) genes in thyrocytes and will be of great value in the study of thyrocyte-specific genes during development and/or in adult thyroids.  相似文献   

3.
4.
We have established transgenic mice expressing the Cre recombinase under the control of the anti-Müllerian hormone (AMH) gene promoter. Cre activity and specificity were evaluated by different means. In AMH-Cre mice, expression of the Cre recombinase mRNA was confined to the testis and ovary. AMH-Cre mice were crossed with reporter transgenic lines and the offspring exhibited Cre-mediated recombination only in the testis and the ovary. In male, histochemical analysis indicated that recombination occurred in every Sertoli cells. In female, Cre-mediated recombination was restricted to granulosa cells, but the protein was not evenly active in every cells. From these results, we conclude that potentially, this transgenic line possessing AMH promoter-driven expression of the Cre recombinase is a powerful tool to delete genes in Sertoli cells only, in order to study Sertoli cell gene function during mammalian spermatogenesis.  相似文献   

5.
6.
The ability to restrict gene expression or disruption to specific regions of the brain would enhance understanding of the molecular basis for brain development and function. For this purpose, brain region-restricted promoters are essential. Here we report the isolation of a DNA fragment containing the Emx1 gene promoter, which is responsible for dorsal telencephalon-specific expression. The Cre recombinase gene was inserted into a mouse PAC (P1-derived artificial chromosome) Emx1-locus clone (PAC-Emx1#1 clone) and utilized to generate three transgenic mouse lines. In all three lines, especially Tg3, Cre-mediated recombination was highly restricted to Emx1-expressing cell lineages, from embryonic stages to adulthood. Immunohistochemical analyses showed that Cre protein is expressed in the dorsal telencephalon in all three lines in adulthood. Thus, the PAC-Emx1#1 clone contains essentially all regulatory elements necessary for Emx1 gene expression. Our results suggest that Emx1-Cre Tg3 mice and the PAC-Emx1#1 clone constitute powerful tools for dorsal telencephalon-specific gene manipulation.  相似文献   

7.
8.
To develop specific conditional gene ablation in the hematopoietic myeloid-osteoclast lineage, transgenic mice expressing Cre recombinase under the control of the CD11b promotor were generated on the C57BL/6 background. The cellular specificity of Cre activity following recombination was quantified in the Z/EG reporter transgenic mice by FACS analysis with lineage-specific markers and EGFP coexpression. A high degree of recombination, as evidenced by EGFP-positive cells, was demonstrated in macrophages and granulocytes of bone marrow and spleen by the presence of double-positive cells CD11b/EGFP and Gr1/EGFP, respectively. Interestingly, the peritoneal macrophage population showed almost complete DNA recombination at large. Most important, mature osteoclast cells derived from the double transgenic bone marrow and spleen progenitors were EGFP-positive. Hence, these CD11b-Cre mice will provide a unique tool to unravel novel gene function and activities involved during osteoclast and macrophage differentiation and maturation processes.  相似文献   

9.
The removal of selected marker genes from transgenic plants is necessary to address biosafety concerns and to carry out further experiments with transgenic organisms. In the present study, the 12-amino-acid membrane translocation sequence (MTS) from the Kaposi fibroblast growth factor (FGF)-4 was used as a carrier to deliver enzymatically active Cre proteins into living plant cells, and to produce a site-specific DNA excision in transgenic rice plants. The process, which made cells permeable to Cre recombinase-mediated DNA recombination, circumvented the need to express Cre under spatiotemporal control and was proved to be a simple and efficient system to achieve marker-free transgenic plants. The ultimate aim of the present study is to develop commercial rice cultivars free from selected marker genes to hasten public acceptance of transgenic crops.  相似文献   

10.
Control of muscle regeneration in the Xenopus tadpole tail by Pax7   总被引:3,自引:0,他引:3  
The tail of the Xenopus tadpole will regenerate completely after transection. Much of the mass of the regenerate is composed of skeletal muscle, but there has been some uncertainty about the source of the new myofibres. Here, we show that the growing tail contains many muscle satellite cells. They are active in DNA replication, whereas the myonuclei are not. As in mammals, the satellite cells express pax7. We show that a domain-swapped construct, pax7EnR, can antagonize pax7 function. Transgenic tadpoles were prepared containing pax7EnR driven by a heat-inducible promoter. When induced, this reduces the proportion of satellite cells formed in the regenerate. A second amputation of the resulting tails yielded second regenerates containing notochord and spinal cord but little or no muscle. This shows that inhibition of pax7 action does not prevent differentiation of satellite cells to myofibres, but it does prevent their maintenance as a stem cell population.  相似文献   

11.
目的探讨他莫昔芬诱导的hGfapCreERT2转基因鼠小脑中表达Cre重组酶的细胞类型。方法 hGfapCre-ERT2/Rosa26R转基因小鼠在胚胎晚期和出生早期用他莫昔芬诱导Cre重组酶表达,对小脑组织切片行X-gal染色,然后用细胞种类特异性抗体进行免疫组织化学染色,并和X-gal染色双重标记。结果在出生后第7天(P7)、第14天(P14)和第60天(P60),X-gal阳性染色和胶质细胞抗体Blbp阳性染色共标记,和神经元抗体Neun、浦肯野细胞抗体Calbindin及少突胶质细胞前体细胞抗体NG2不共标。结论自胚胎晚期第17.5天(E17.5)后用他莫昔芬诱导hGfapCreERT2转基因鼠,发现Cre重组酶特异性在小脑星形胶质细胞中表达,不在神经元、浦肯野细胞、少突胶质细胞前体细胞中表达。  相似文献   

12.

Background

Inadequate placental development is associated with a high incidence of early embryonic lethality and serious pregnancy disorders in both humans and mice. However, the lack of well-defined trophoblast-specific gene regulatory elements has hampered investigations regarding the role of specific genes in placental development and fetal growth.

Principal Findings

By random assembly of placental enhancers from two previously characterized genes, trophoblast specific protein α (Tpbpa) and adenosine deaminase (Ada), we identified a chimeric Tpbpa/Ada enhancer that when combined with the basal Ada promoter provided the highest luciferase activity in cultured human trophoblast cells, in comparison with non-trophoblast cell lines. We used this chimeric enhancer arrangement to drive the expression of a Cre recombinase transgene in the placentas of transgenic mice. Cre transgene expression occurred throughout the placenta but not in maternal organs examined or in the fetus.

Significance

In conclusion, we have provided both in vitro and in vivo evidence for a novel genetic system to achieve placental transgene expression by the use of a chimeric Tpbpa/Ada enhancer driven transgene. The availability of this expression vector provides transgenic opportunities to direct the production of desired proteins to the placenta.  相似文献   

13.
Tissue-specific gene deletion by the Cre-loxp system is a powerful tool to investigate the roles of specific genes. To determine the specificity and efficiency of the Cre-mediated recombination under the control of the human smooth muscle alpha-actin promoter, we mated SMalphaA-Cre mice and R26R reporter mice. Cre-mediated recombination was observed in visceral and vascular smooth muscle cells. Partial recombination was also found in heart and musculoskeletal connective tissues. Highly efficient recombination was found in cranial sutures. Hence, we propose that SMalphaA-Cre mice are good tool for conditionally deleting gene function in the cranial suture in addition to smooth muscle cells.  相似文献   

14.
15.
16.
SMAD4 acts as the converging point for TGFβ and BMP signaling in heart development. Here, we investigated the role of SMAD4 in heart development using a novel α skeletal muscle actin Cre recombinase (MuCre) transgenic mouse strain. Lineage tracing using MuCre/ROSA26LacZ reporter mice indicated strong Cre-recombinase expression in developing and adult heart and skeletal muscles. In heart development, significant MuCre expression was noted at E11.5 in the atrial, ventricular, outflow tract and atrioventricular canal myocardium, but not in the endocardial cushions. MuCre-driven conditional deletion of Smad4 in mice caused double outlet right ventricle (DORV), ventricular septal defect (VSD), impaired trabeculation and thinning of ventricular myocardium, and mid-gestational embryonic lethality. In conclusion, MuCre mice effectively delete genes in both heart and skeletal muscles, thus enabling the discovery that myocardial Smad4 deletion causes misalignment of the outflow tract and DORV.  相似文献   

17.
组织特异性表达Cre重组酶的转基因小鼠是进行组织特异性条件敲除研究的关键。采用PCR扩增大鼠胰岛素基因705bp启动子指导发胰岛细胞中特异表达;同时采用改构的Cre重组酶基因,在其5'端添加有真核核糖体结合序列和核定位序列使Cre重组酶能穿越核膜在细胞核能发挥功能;同时,为了保证原核基因Cre能在真核系统顺利表达,在其3'端添加含内含子的人生长激素基因。构建的表达载体在去除原核序列后用显微注射方法转基因小鼠,在出生的27只仔鼠中,PCR检测共获得7只Cre整合阳性的转基因小鼠,整合率26%。这种Cre转基因小鼠与基因组小携带LoxP位点的条件基因打靶小鼠交配,在胰腺组织中可以检测到Cre介导的重组,表明Cre在转基因小鼠胰腺中有表达。  相似文献   

18.
Qi  Shuqun  Wang  Yating  Wei  Xiaoxi  Xie  Di  Mohsen  Rawan  Hsieh  Yuan-Lynn  Mishina  Yuji  Liu  Fei 《Transgenic research》2022,31(3):399-411

The cranial base synchondroses are growth centers that drive cranial and upper facial growth. The intersphenoid synchondrosis (ISS) and the spheno-occipital synchondrosis (SOS) are two major synchondroses located in the middle of the cranial base and are maintained at early developmental stages to sustain cranial base elongation. In this study, we report unexpected premature ossification of ISS and SOS when Cre recombinase is activated in a chondrocyte-specific manner. We used a Cre transgenic line expressing Aggrecan enhancer-driven, Tetracycline-inducible Cre (ATC), of which expression is controlled by a Col2a1 promoter. Neonatal doxycycline injection or doxycycline diet fed to breeders was used to activate Cre recombinase. The premature ossification of ISS and/or SOS led to a reduction in cranial base length and subsequently a dome-shaped skull. Furthermore, the mice carrying either heterozygous or homozygous conditional deletion of Tsc1 or Fip200 using ATC mice developed similar craniofacial abnormalities, indicating that Cre activity itself but not conditional deletion of Tsc1 or Fip200 gene, is the major contributor of this phenotype. In contrast, the Col2a1-Cre mice carrying Cre expression in both perichondrium and chondrocytes and the mice carrying the conditional deletion of Tsc1 or Fip200 using Col2a1-Cre did not manifest the same skull abnormalities. In addition to the defective craniofacial bone development, our data also showed that the Cre activation in chondrocytes significantly compromised bone acquisition in femur. Our data calls for the consideration of the potential in vivo adverse effects caused by Cre expression in chondrocytes and reinforcement of the importance of including Cre-containing controls to facilitate accurate phenotype interpretation in transgenic research.

  相似文献   

19.
Group B streptococcus (GBS) induced macrophage apoptosis by which it could avoid host defence mechanisms. Macrophages, which constitutively express phosphatidylserine (PtdSer) on the outer leaflet of plasma membrane, increased PtdSer exposure during GBS-induced apoptosis. Induction of apoptosis decreased PtdSer radioactivity of macrophages incubated with [3H]serine. The effect appeared not due to increasing conversion of PtdSer to phosphatidylethanolamine or phosphatidylcholine nor to the release of radioactive membrane vesicles. The radioactivity in lysoPtdSer was also reduced. These results confirm that induction of apoptosis involves a modification of PtdSer metabolism and point out the typical features of the GBS-induced apoptosis with respect to other models of apoptosis.  相似文献   

20.
We have generated a transgenic mouse line,Tg(Stra8-cre)1Reb (Stra8-cre), which expresses improved Cre recombinase under the control of a 1.4 Kb promoter region of the germ cell-specific stimulated by retinoic acid gene 8 (Stra8). cre is expressed only in males beginning at postnatal day (P)3 in early-stage spermatogonia and is detected through preleptotene-stage spermatocytes. To further define when cre becomes active, we crossed Stra8-cre males with Tg(ACTB-Bgeo/GFP)21Lbe (Z/EG) reporter females and compared the expression of enhanced green fluorescent protein (EGFP) with the protein encoded by the zinc finger and BTB domain containing 16 (Zbtb16) gene, PLZF-a marker for undifferentiated spermatogonia. Co-expression of EGFP is observed in the majority of PLZF+ cells. We also tested recombination efficiency by mating Stra8-cre;Z/EG males and females with wild-type mice and examining EGFP expression in the offspring. Recombination is detected in >95% of Z/EG+ pups born to Stra8-cre;Z/EG fathers but in none of the offspring born to transgenic mothers, a verification that cre is not functional in females. The postnatal, premeiotic, male germ cell-specific activity of Stra8-cre makes this mouse line a unique resource to study testicular germ cell development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号