首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Spiders spin a functionally diverse array of silk fibers, each composed of one or more unique proteins. Most of these proteins, in turn, are encoded by members of a single gene family thought to have arisen through duplication and divergence of an ancestral silk gene. Because of its remarkable mechanical properties, orb weaver dragline silk, a composite of 2 proteins (MaSp1 and MaSp2), is the best studied. Here, we demonstrate that multiple loci encode MaSp1 in widow spiders (Latrodectus). Because these copies may be the result of more recent duplication events than those leading to the currently recognized silk gene paralogs, they offer insight into the early evolutionary fate of silk gene duplicates. In addition to 3 presumed functional MaSp1 loci in Latrodectus hesperus (Western black widow) and Latrodectus geometricus (brown widow) genomes, we find a MaSp1 pseudogene in L. hesperus, demonstrating the potential for unrecognized extinction of silk gene paralogs. We also document recombination events among L. hesperus MaSp1 loci and between Latrodectus MaSp1 loci and MaSp2. This result supports the hypothesis that concerted evolution occurs not only within an individual silk gene but also among silk gene paralogs. One of the L. geometricus MaSp1 copies encodes a protein that has diverged in amino acid composition and potentially converged on the secondary structure of MaSp2. Based on the presence of multiple MaSp1 loci and the phylogenetic distribution of MaSp1 versus MaSp2, we propose that MaSp2 is derived from an ancestral MaSp1 duplicate. Finally, divergence has occurred in the upstream flanking sequences of the L. hesperus MaSp1 loci, the region most likely to contain regulatory motifs, providing ample opportunity for differential expression. However, the benefits associated with increased protein production may be the primary mechanism maintaining multiple functional MaSp1 copies in widow genomes.  相似文献   

3.
The microstructural organization of the silk‐spinning apparatus of the comb‐footed spider, Achaearanea tepidariorum, was observed by using a field emission scanning electron microscope. The silk glands of the spider were classified into six groups: ampullate, tubuliform, flagelliform, aggregate, aciniform and pyriform glands. Among these, three types of silk glands, the ampullate, pyriform and aciniform glands, occur only in female spiders. One (adult) or two (subadult) pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another pair of minor ampullate glands supply the median spinnerets. Three pairs of tubuliform glands in female spiders send secretory ductules to the median (one pair) and posterior (two pairs) spinnerets. Furthermore, one pair of flagelliform glands and two pairs of aggregate glands together supply the posterior spinnerets, and form a characteristic spinning structure known as a “triad” spigot. In male spiders, this combined apparatus of the flagelliform and the aggregate spigots for capture thread production is not apparent, instead only a non‐functional remnant of this triad spigot is present. In addition, the aciniform glands send ductules to the median (two pairs) and the posterior spinnerets (12–16 pairs), and the pyriform glands feed silk into the anterior spinnerets (90–100 pairs in females and 45–50 pairs in males).  相似文献   

4.
Aside from its excellent mechanical properties, spider silk (SS) would offer an active surface for heavy metal interaction due to its rich protein structure. The present study describes the potential use of natural (SS) as a sorbent of heavy metals from aqueous solutions. Single and multi-species biosorption experiments of heavy metals by natural SS were conducted using batch and column experiments. The biosorption kinetics, in general, was found to follow the second-order rate expression, and the experimental equilibrium biosorption data fitted reasonably well to Freundlich isotherm. From the Freundlich isotherm, the biosorption capacities of Cu(II) and Pb(II) ions onto SS were found as 0.20 and 0.007 mmol g?1, respectively. The results showed a decrease in the extent of metal ion uptake with lowering the pH.  相似文献   

5.
The microstructural characteristics of the silk‐spinning apparatus and its ecological significance in the coelotine spider Paracoelotes spinivulva were examined by field emission scanning electron microscopy, with the goal of understanding the properties and the evolutionary origins of these silk constructs. The silk apparatuses of this spider were composed of four basic types of silk‐spinning spigot (ampullate, pyriform, aciniform and tubuliform), which connected with typical silk glands in the abdominal cavity. Of the three pairs of spinnerets, the posterior pairs were highly elongated along the body axis. Anterior spinnerets comprised two pairs of ampullate glands and approximately 70–80 pairs of pyriform glands in both sexes. Middle spinnerets had one to two pairs of ampullate spigots, three pairs of tubuliform spigots in females, and 50–60 (female) or 80–90 (male) pairs of aciniform spigots. An additional two pairs of tubuliform spigots in females and 70–80 (female) or 100–120 (male) pairs of aciniform spigots were counted on the spinning surfaces of the posterior spinnerets in both sexes. Although the coelotine spiders use their silk to catch prey, P. spinivulva characteristically do not have a typical “triad” spigot, including a flagelliform and two aggregate spigots, for capture thread production.  相似文献   

6.
The genus Oxytate L. Koch, 1878 comprises a homogeneous group of nocturnal crab spiders that have silk apparatuses even though they do not spin webs to trap prey. We examined the microstructure of the silk spinning apparatus of the green crab spider Oxytate striatipes, using field emission scanning electron microscopy. The silk glands of the spider were classified into three types: ampullate, pyriform and aciniform. The spigots of these three types of silk gland occur in both sexes. Two pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another two pairs of minor ampullate glands supply the median spinnerets. In addition, the pyriform glands send ductules to the anterior spinnerets (45 pairs in females and 40 pairs in males), and the aciniform glands feed silk into the median (9–12 pairs in females and 7–10 pairs in males) and the posterior (30 pairs in both sexes) spinnerets. The spigot system of O. striatipes is simpler and more primitive than other wandering spiders: even the female spiders possess neither tubuliform glands for cocoon production nor triad spigots for web‐building.  相似文献   

7.
Sticky prey capture threads are produced by many members of the spider infraorder Araneomorphae. Cribellar threads are plesiomorphic for this clade, and viscous threads are apomorphic. The outer surface of cribellar thread is formed of thousands of fine, looped fibrils. Basal araneomorphs produce non-noded cribellar fibrils, whereas more derived members produce noded fibrils. Cribellar fibrils snag and hold rough surfaces, but other forces are required to explain their adherence to smooth surfaces. Threads of Hypochilus pococki (Hypochilidae) formed of non-noded fibrils held to a smooth plastic surface with the same force under low and high humidities. In contrast, threads of Hyptiotes cavatus and Uloborus glomosus (Uloboridae) formed of noded fibrils held with greater force to the same surface at intermediate and high humidities. This supports the hypothesis that van der Waals forces allow non-noded cribellar fibrils to adhere to smooth surfaces, whereas noded fibrils, owing to the hydrophilic properties of their nodes, add hygroscopic forces at intermediate and high humidities. Thus, there appear to have been two major events in the evolution of adhesive mechanisms in spider prey capture thread: the addition of hydrophilic nodes to the fibrils of cribellar threads and the replacement of cribellar fibrils by viscous material and glycoprotein glue.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 1–8.  相似文献   

8.
9.
The fine structure of book lungs is not homogeneous across Arachnids and is considered phylogenetically informative, however few reports on the ultrastructural features of this organ have been published. In this study, we examined the general morphology and ultrastructure of adult spiders of the genus Cteniza. The respiratory system of Cteniza sp. consists of two pairs of well-developed book lungs, which is considered indicative of primitive spiders. The general organization of the book lungs is similar to that described for other arachnids and consists of leaves of alternating air and hemolymph channels. The air channels are lined with cuticle and open to an atrium that leads to a slit-like spiracle. The air channels are held open by cuticular trabeculae. The space holders in the hemolymph channels are pillar trabeculae formed by two cells from the opposed walls. The pillar cells have a complex ultrastructure that includes an interdigitating connection, gap junctions, microtubules and hemidesmosomes. These features apparently help strengthen the pillar cells and their interconnections with each other and the underlying cuticle. The cytoskeleton resembles that of arthropod tendon cells where substantial structural support is needed.  相似文献   

10.
Spiders use a myriad of silk types for daily survival, and each silk type has a unique suite of task-specific mechanical properties. Of all spider silk types, pyriform silk is distinct because it is a combination of a dry protein fiber and wet glue. Pyriform silk fibers are coated with wet cement and extruded into “attachment discs” that adhere silks to each other and to substrates. The mechanical properties of spider silk types are linked to the primary and higher-level structures of spider silk proteins (spidroins). Spidroins are often enormous molecules (>250 kDa) and have a lengthy repetitive region that is flanked by relatively short (∼100 amino acids), non-repetitive amino- and carboxyl-terminal regions. The amino acid sequence motifs in the repetitive region vary greatly between spidroin type, while motif length and number underlie the remarkable mechanical properties of spider silk fibers. Existing knowledge of pyriform spidroins is fragmented, making it difficult to define links between the structure and function of pyriform spidroins. Here, we present the full-length sequence of the gene encoding pyriform spidroin 1 (PySp1) from the silver garden spider Argiope argentata. The predicted protein is similar to previously reported PySp1 sequences but the A. argentata PySp1 has a uniquely long and repetitive “linker”, which bridges the amino-terminal and repetitive regions. Predictions of the hydrophobicity and secondary structure of A. argentata PySp1 identify regions important to protein self-assembly. Analysis of the full complement of A. argentata PySp1 repeats reveals extreme intragenic homogenization, and comparison of A. argentata PySp1 repeats with other PySp1 sequences identifies variability in two sub-repetitive expansion regions. Overall, the full-length A. argentata PySp1 sequence provides new evidence for understanding how pyriform spidroins contribute to the properties of pyriform silk fibers.  相似文献   

11.
Tandemly arrayed genes (TAGs) play an important functional and physiological role in the genome. Most previous studies have focused on individual TAG families in a few species, yet a broad characterization of TAGs is not available. Here we identified all TAGs in the genomes of humans, mouse, and rat and performed a comprehensive analysis of TAG distribution, TAG sizes, TAG orientations and intergenic distances, and TAG functions. TAGs account for about 14-17% of all genes in the genome and nearly one-third of all duplicated genes, highlighting the predominant role that tandem duplication plays in gene duplication. For all species, TAG distribution is highly heterogeneous along chromosomes and some chromosomes are enriched with TAG forests, whereas others are enriched with TAG deserts. The majority of TAGs are of size 2 for all genomes, similar to the previous findings in Caenorhabditis elegans, Arabidopsis thaliana, and Oryza sativa, suggesting that it is a rather general phenomenon in eukaryotes. The comparison with the genome patterns shows that TAG members have a significantly higher proportion of parallel gene orientation in all species, corroborating Graham's claim that parallel orientation is the preferred form of orientation in TAGs. Moreover, TAG members with parallel orientation tend to be closer to each other than all neighboring genes in the genome with parallel orientation. The analyses of Gene Ontology function indicate that genes with receptor or binding activities are significantly overrepresented by TAGs. Computer simulation reveals that random gene rearrangements have little effect on the statistics of TAGs for all genomes. Finally, the average proportion of TAGs shows a trend of increase with the increase of family sizes, although the correlation between TAG proportions in individual families and family sizes is not significant.  相似文献   

12.
Spider systematics has overwhelmingly relied on morphological characters to resolve higher-level phylogenetic questions. Molecular phylogenetic studies of spiders above the genus level have been rare, partly because of a paucity of characterized genes available for amplification and sequencing. Here we show the phylogenetic utility of a new molecular marker, elongation factor-1 gamma (EF-1gamma) for discerning family level relationships in the spider infraorder, Mygalomorphae. We included genomic sequences from 26 mygalomorph genera in 14 families as well as cDNA sequences from 10 families in the infraorder Araneomorphae. We found strong support for the traditional split of mygalomorphs into atypoids (Antrodiaetidae, Atypidae, and Mecicobothriidae) and non-atypoids (all other families). Some families with multiple generic representatives were found to be polyphyletic or paraphyletic, such as the Nemesiidae, Ctenizidae, and Hexathelidae. A small portion of genomic EF-1gamma that could be amplified from araneomorphs contained a short intron, suggesting that longer genomic sequences could not be amplified due to the presence of introns. This intron may be useful for intra-familial araneomorph relationships. A tentative timeline for spider evolution is proposed using the evolutionary rate of EF-1gamma, estimated to be approximately 0.22% pairwise divergence per million years based on a non-parametric smoothing method (NPRS) and fossil constraints.  相似文献   

13.
14.
Various spider species produce dragline silks with different mechanical properties. The primary structure of silk proteins is thought to contribute to the elasticity and strength of the fibres. Previously published work has demonstrated that the dragline silk of Euprosthenops sp. is stiffer then comparable silk of Nephila edulis, Araneus diadematus and Latrodectus mactans. Our studies of Euprosthenops dragline silk at the molecular level have revealed that nursery web spider fibroin has the highest polyalanine content among previously characterised silks and this is likely to contribute to the superior qualities of pisaurid dragline.  相似文献   

15.
Functional biological materials are a growing research area with potential applicability in medicine and biotechnology. Using genetic engineering, the possibility to introduce additional functions into spider silk‐based materials has been realized. Recently, a recombinant spider silk fusion protein, Z‐4RepCT, was produced intracellularly in Escherichia coli and could after purification self‐assemble into silk‐like fibers with ability to bind antibodies via the IgG‐binding Z domain. In this study, the use of the methylotrophic yeast Pichia pastoris for production of Z‐4RepCT has been investigated. Temperature, pH and production time were influencing the amount of soluble Z‐4RepCT retrieved from the extracellular fraction. Purification of secreted Z‐4RepCT resulted in a mixture of full‐length and degraded silk proteins that failed to self‐assemble into fibers. A position in the C‐terminal domain of 4RepCT was identified as being subjected to proteolytic cleavage by proteases in the Pichia culture supernatant. Moreover, the C‐terminal domain was subjected to glycosylation during production in P. pastoris. These observed alterations of the CT domain are suggested to contribute to the failure in fiber assembly. As alternative approach, Z‐4RepCT retrieved from the intracellular fraction, which was less degraded, was used and shown to retain ability to assemble into silk‐like fibers after enzymatic deglycosylation.  相似文献   

16.
Dragline spider silk has been intensively studied for its superior qualities as a biomaterial. In previous studies, we made use of the baculovirus mediated expression system for the production of a recombinant Araneus diadematus spider silk dragline ADF4 protein and its self‐assembly into intricate fibers in host insect cells. In this study, our aim was to explore the function of the major repetitive domain of the dragline spider silk. Thus, we generated an array of synthetic proteins, each containing a different number of identical repeats up to the largest recombinantly expressed spider silk to date. Study of the self‐assembly properties of these proteins showed that depending on the increasing number of repeats they give rise to different assembly phenotypes, from a fully soluble protein to bona fide fibers with superior qualities. The different assembly forms, the corresponding chemical resistance properties obtained as well as ultrastructural studies, revealed novel insights concerning the structure and intermolecular interactions of the repetitive and nonrepetitive domains. Based on these observations and current knowledge in the field, we hereby present a comprehensive hypothetical model for the mechanism of dragline silk self‐assembly and fiber formation. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 458–468, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

17.
Although the basic taxonomic characteristics usually remain unchanged, some spinning apparatuses undergo consistent adaptive variations. As the presence of additional protuberances known as nubbins and tartipores have caused disagreements regarding some Araneidae spiders, more detailed definitions on the cuticular structures have recently been proposed. Reflecting this definition, microstructural organization of silk spinning apparatuses in the orb web spider Argiope bruennichi were reconsidered using field emission scanning electron microscopy. Among the seven kinds of functional spigots in females, it was revealed that two types (major ampullates and pyrifoms) are located on anterior spinnerets and another five types are distributed on median (minor ampullates, tubuliforms and aciniforms) or posterior (tubuliforms, flagelliforms, aggregates and aciniforms) spinnerets, respectively. In addition to functional spigots, cuticular remnants of the nubbins and the tartipores were found on the spinning fields, but the number of tartipores on each spinneret varied among individuals based on maturity. Nevertheless, three kinds of cuticular protuberances of ampullate silk glands were clearly visible at both the anterior and median spinnerets.  相似文献   

18.
Tragopogon mirus Ownbey and T. miscellus Ownbey are allopolyploids that formed repeatedly during the past 80 years following the introduction of three diploids (T. dubius Scop., T. pratensis L. and T. porrifolius L.) from Europe to western North America. These polyploid species of known parentage are useful for studying the consequences of recent and recurrent polyploidization. We summarize recent analyses of the cytogenetic, genomic and genetic consequences of polyploidy in Tragopogon. Analyses of rDNA ITS (internal transcribed spacer) + ETS (external transcribed spacer) sequence data indicate that the parental diploids are phylogenetically well separated within Tragopogon (a genus of perhaps 150 species), in agreement with isozymic and cpDNA data. Using Southern blot and cloning experiments on tissue from early herbarium collections of T. mirus and T. miscellus (from 1949) to represent the rDNA repeat condition closer to the time of polyploidization than samples collected today, we have demonstrated concerted evolution of rDNA. Concerted evolution is ongoing, but has not proceeded to completion in any polyploid population examined; rDNA repeats of the diploid T. dubius are typically lost or converted in both allopolyploids, including populations of independent origin. Molecular cytogenetic studies employing rDNA probes, as well as centromeric and subtelomeric repeats isolated from Tragopogon, distinguished all chromosomes among the diploid progenitors (2n = 12). The diploid chromosome complements are additive in both allopolyploids (2n = 24); there is no evidence of major chromosomal rearrangements in populations of either T. mirus or T. miscellus. cDNA‐AFLP display revealed differences in gene expression between T. miscellus and its diploid parents, as well as between populations of T. miscellus of reciprocal origin. Approximately 5% of the genes examined in the allopolyploid populations have been silenced, and an additional 4% exhibit novel gene expression relative to their diploid parents. Some of the differences in gene expression represent maternal or paternal effects. Multiple origins of a polyploid species not only affect patterns of genetic variation in natural populations, but also contribute to differential patterns of gene expression and may therefore play a major role in the long‐term evolution of polyploids. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82 , 485–501.  相似文献   

19.
Abstract The potential costs and benefits of foraging in aggregations are examined for the orb-spinning spider Gasteracantha minax. Web-site tenacity is low in this species; individuals frequently move among sites, thereby joining aggregations of different sizes. Female spiders in aggregations suffered lower predation rates and attracted more males than their solitary counterparts. However, aggregated eggsacs, probably produced by females in aggregations, experienced higher rates of parasitism than solitary eggsacs. We found no evidence of higher prey capture success rates among spiders in aggregations. However, we demonstrate a novel way in which spiders can increase their foraging efficiency by decreasing silk investment. A spider spinning a web within an existing aggregation can attach the support threads of its web to those of other webs, thereby exploiting the silk produced by other spiders.  相似文献   

20.
Photosynthetic dinoflagellates have evolved unique water-soluble light harvesting complexes known as peridinin-chlorophyll a-binding proteins (PCPs). Most species of dinoflagellates express either 14 to 17 kDa or 32 to 35 kDa mature PCP apoproteins and do so in stable combinations of isoforms that differ in isoelectric point (pI). The source (posttranslational modification, protein degradation, or genetic) and functional significance of PCP isoform variation have remained unclear. PCPs are encoded by multigene families. However, previous reports conflict over the diversity of PCP genes within gene arrays. We present the first genomic characterization of the PCP gene family from a symbiotic dinoflagellate. Symbiodinium from the Pacific bivalve Hippopus hippopus (203) contains genes for 33 kDa PCP apoproteins that are organized in tandem arrays like those of free-living dinoflagellates Amphidinium carterae, Lingulodinium (Gonyaulax) polyedra, and Heterocapsa pygmaea. The Symbiodinium 203 PCP cassette consists of 1,098-bp coding regions separated by approximately 900-bp spacers. The spacers contain a conserved upstream sequence similar to the promoter in L. polyedra. Surprisingly, sequences of cloned coding regions are not identical, and can differ at up to 2.2% of the nucleotide sites. Sequence variation is found at both silent and nonsilent sites, and analysis of cDNA clones indicate that the variation is present in the mRNA pool. We propose that this variation represents nucleotide diversity among PCP gene copies that are evolving under low-level concerted evolution. Interestingly, the predicted proteins have pIs that are within the range of those published for other species of Symbiodinium. Thus, posttranslational modifications are not necessary to explain the multiple PCP isoforms. We have also identified several polymorphic sites that may influence spectral absorption tuning of chromophores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号