首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
One of the most remarkable observations stemming from the sequencing of genomes of diverse species is that the number of protein-coding genes in an organism does not correlate with its overall cellular complexity. Alternative splicing, a key mechanism for generating protein complexity, has been suggested as one of the major explanation for this discrepancy between the number of genes and genome complexity. Determining the extent and importance of alternative splicing required the confluence of critical advances in data acquisition, improved understanding of biological processes and the development of fast and accurate computational analysis tools. Although many model organisms have now been completely sequenced, we are still very far from understanding the exact frequency of alternative splicing from these sequenced genomes.This paper will highlight some recent progress and future challenges for functional genomics and bioinformatics in this rapidly developing area.  相似文献   

7.
Regulation of apoptosis by alternative pre-mRNA splicing   总被引:2,自引:0,他引:2  
Apoptosis, a phenomenon that allows the regulated destruction and disposal of damaged or unwanted cells, is common to many cellular processes in multicellular organisms. In humans more than 200 proteins are involved in apoptosis, many of which are dysregulated or defective in human diseases including cancer. A large number of apoptotic factors are regulated via alternative splicing, a process that allows for the production of discrete protein isoforms with often distinct functions from a common mRNA precursor. The abundance of apoptosis genes that are alternatively spliced and the often antagonistic roles of the generated protein isoforms strongly imply that alternative splicing is a crucial mechanism for regulating life and death decisions. Importantly, modulation of isoform production of cell death proteins via pharmaceutical manipulation of alternative splicing may open up new therapeutic avenues for the treatment of disease.  相似文献   

8.
mRNA的可变剪接是指一个单一的mRNA前体(pre-mRNA)经过不同的剪接加工方式生成多种mRNA变异体(variants)的过程,这些变异体最终可以编码合成具有不同结构和功能的蛋白质。在过去的10多年中,大量数据表明,可变剪接是增加转录组和蛋白质组多样性的重要资源,也是调控哺乳动物细胞基因表达的重要步骤。可变剪接具有高度的组织与发育阶段特异性,并受到外界信号的控制。剪接调控的紊乱与疾病的发生发展密切相关。该文将对哺乳动物细胞mRNA剪接调控的分子机制进行阐述。  相似文献   

9.
Alternative splicing allows for the production of many gene products from a single coding sequence. I introduce the concept of alternative splicing via some examples. I then discuss some current hypotheses about the explanatory role of alternative splicing, including the claim that splicing is a significant contributor to the difference in complexity between the human genome and proteosome. Hypotheses such as these bring into question our working concepts of the gene. I examine several gene concepts introduced to cope with processes such as alternative splicing. Next I introduce some hypotheses about the evolution of mechanisms alternative splicing in higher organisms. I conclude that attention to alternative splicing reveals that we adopt an attitude that developmental theorizing must inform evolutionary theorizing and vice versa.  相似文献   

10.
mRNA选择性剪接的分子机制   总被引:5,自引:0,他引:5  
章国卫  宋怀东  陈竺 《遗传学报》2004,31(1):102-107
真核细胞mRNA前体经过剪接成为成熟的mRNA,而mRNA前体的选择性剪接极大地增加了蛋白质的多样性和基因表达的复杂程度,剪接位点的识别可以以跨越内含子的机制(内含子限定)或跨越外显子的机制(外显子限定)进行。选择性剪接有多种剪接形式:选择不同的剪接位点,选择不同的剪接末端,外显子的不同组合及内含子的剪接与否等。选择性剪接过程受到许多顺式元件和反式因子的调控,并与基本剪接过程紧密联系,剪接体中的一些剪接因子也参与了对选择性剪接的调控。选择性剪接也是1个伴随转录发生的过程,不同的启动子可调控产生不同的剪接产物。mRNA的选择性剪接机制多种多样,已发现RNA编辑和反式剪接也可参与选择性剪接过程。  相似文献   

11.
Alternative splicing of pre-mRNAs allows multicellular organisms to create a huge diversity of proteomes from a finite number of genes. But extensive studies in vitro or in cultured cells have not fully explained the regulation mechanisms of tissue-specific or developmentally regulated alternative splicing in living organisms. Here we report a transgenic reporter system that allows visualization of expression profiles of mutually exclusive exons in Caenorhabditis elegans. Reporters for egl-15 exons 5A and 5B showed tissue-specific profiles, and we isolated mutants defective in the tissue specificity. We identified alternative-splicing defective-1 (asd-1), encoding a new RNA-binding protein of the evolutionarily conserved Fox-1 family, as a regulator of the egl-15 reporter. Furthermore, an asd-1;fox-1 double mutant was defective in the expression of endogenous egl-15 (5A) and phenocopied egl-15 (5A) mutant. This transgenic reporter system can be a powerful experimental tool for the comprehensive study of expression profiles and regulation mechanisms of alternative splicing in metazoans.  相似文献   

12.
Different levels of alternative splicing among eukaryotes   总被引:22,自引:0,他引:22  
  相似文献   

13.
14.
Promoter usage and alternative splicing   总被引:1,自引:0,他引:1  
  相似文献   

15.
How did alternative splicing evolve?   总被引:15,自引:0,他引:15  
  相似文献   

16.
17.
18.
《TARGETS》2003,2(3):109-114
The publication of the sequence of the human genome revealed that the gene count in humans is much lower than previously estimated. Although textbooks usually place the number at 100,000, it is currently estimated that the human genome contains no more than 30,000 protein-coding genes. How can the great complexity of human life be explained by this number, which is less than twice the number of genes in the primitive worm C. elegans? The answer probably lies in the recent discovery that about half of all human genes undergo alternative splicing. This paper reviews the broad implications of alternative splicing for the drug-discovery process.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号