首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Eastern mud snails, Ilyanassa obsoleta (Say), in densities of 0, 80, and 160 snails · m?2 were placed in flow-through laboratory microcosms containing 5 cm of frozen and sieved sediments. Other microcosms were raked once daily to a depth of 10 mm. All these containers were incubated for 5 wk and regularly sampled for plant pigments and light and dark transfer of oxygen and carbon dioxide. Feeding at the low density significantly increased chlorophyll standing stock. Respiration and gross photosynthesis increased by an even greater percentage compared to ungrazed controls. Standing stocks of algal pigments, respiration, and photosynthesis were depressed in microcosms which received the 160-snail or raking treatments.The dominant benthic algae in the containers were pennate diatoms. Grazed containers contained a larger percentage of non-motile as compared to motile forms.Sediments fertilized with ammonium at a rate equivalent to excretion of six snails, showed increased chlorophyll content equal to the 80-snail treatment. Daily raking inhibited this effect.We conclude that low densities of Ilyanassa obsoleta stimulate algal growth by accelerating nitrogen cycling and selectively removing specific components of the diatom community. At high snail densities these effects are overwhelmed by overgrazing and sediment stirring.  相似文献   

2.
Microphytobenthos (MPB), typically comprised mainly of diatoms, is a key contributor to nearshore energy flow and nutrient cycles. Deposit-feeding invertebrates are known to alter the structure and activity of MPB. The eastern mud snail Ilyanassa obsoleta can reach extremely high densities in estuaries of the northwestern Atlantic, and their deposit-feeding and locomotion strongly influence other invertebrates and microbes. Our objective was to explore quantitative and qualitative effects of this keystone deposit-feeder on diatoms of intertidal sediments. We gathered snails from mudflat and sandflat habitats and collected their fresh fecal pellets in the laboratory. DNA metabarcoding allowed us to characterize diatom assemblages of ingested sediments and feces. We noted selective feeding such that reduction in MPB biomass with gut passage was difficult to quantify. Diatom α-diversity was reduced with gut passage in snails from both sedimentary regimes. Mudflat and sandflat diatom assemblages were distinct and differed markedly between feces and sediment in mud-feeding snails, whereas the difference in sand-feeding snails was minor. The sandy habitat was dominated by a mix of epipelic and epipsammic diatoms. In contrast, mudflat samples were dominated by epipelic and planktonic diatoms. Compositional differences between sediment and feces reflected preferential removal of planktonic taxa. Our results suggest the importance of phytodetritus to the mud snail diet, particularly in hydrodynamically quiescent environments. Due to the natural spatial patchiness of the snails and the capacity for rapid microbial recolonization, field experiments are recommended to determine whether MPB community changes attributed to gut passage are manifested at the landscape scale.  相似文献   

3.
Bagarinao  T.  Lantin-Olaguer  I. 《Hydrobiologia》2000,437(1-3):1-16
The potamidid snail Cerithidea cingulata is considered a pest in brackishwater milkfish ponds in the Philippines and has been controlled by the triphenyltin (TPT) compounds Aquatin and Brestan. But TPT is also toxic to other invertebrates, fishes, algae, bacteria and people, and high TPT residues occur in sea foods including milkfish. Thus, control of snails in milkfish ponds should be shifted from reliance on TPT to an integrated pest management (IPM) strategy. To formulate a responsible IPM, studies were conducted on C. cingulata in ponds and mangroves and the available data were synthesized with the relevant information from the literature. The deposit-feeding C. cingulata is a native resident of mangrove areas and becomes a problem in mangrove-derived ponds where the lack of competitors and predators results in 'ecological release' and population explosion. Snail densities ranged 1–470 m–2 in the mangroves and 100–5000 m–2 in ponds. In ponds, snails ranged 2–40 mm in shell length; those 25 mm long and 8 mm wide weighed 1 g on average, and had 150 mg flesh. Snails matured at 20 mm long and reproduced the whole year with a peak in Mar–Sep at water temperatures of 24–36 °C. Enriched sediments and stagnant water in ponds allowed fast growth and reproduction, low dispersal and high recruitment of snails. Snails were very tolerant to hypoxia and adverse conditions, but were killed within a week by sun-drying or by salinities of 48–70 and within 3 d by ammonium phosphate at 10 g l–1 or urea at 5 g l–1. IPM of snails requires changes in mind sets and perspectives of milkfish farmers and industry supporters and changes in farm practices and management. Snails must be viewed as a resource from which income can be made and employment can be generated. Harvest of snails for shellcraft and other enterprises also effectively removes the spawning population. Complete draining and sun-drying of ponds after harvest kills the adult snails and the egg strings on the bottom. Snails in puddles in the ponds may be killed by the usual nitrogen fertilizers and lime applied during pond preparation. Water input may be timed with periods of low veliger counts in the supply water. These IPM recommendations have yet to be verified.  相似文献   

4.
Summary In the laboratory and field, we examined how periphyton (food of snails) and predatory crayfish influenced snail distribution in Trout Lake, a permanent, northern Wisconsin lake. Laboratory experiments (with no crayfish) tested the importance of periphyton biomass in determining snail preference among rocks, and among rock, sand, and macrophyte substrates. Among rocks with four different amounts of periphyton, periphyton biomass and the number of Lymnaea emarginata, Physa spp., and Amnicola spp. were positively related. A similar, but non-significant, trend occurred for Helisoma anceps. A field experiment at a site in Trout Lake where predation risk was low confirmed the preference by snails for periphyton covered rocks; more snails colonized rocks with periphyton than rocks without. When given a choice of rock, sand, and macrophytes in the laboratory, L. emarginata preferred high periphyton biomass and rock. Laboratory and field results contrasted with the distribution of snails in Trout Lake; no snails occurred in areas with abundant periphyton-covered rocks, but snails were abundant nearby on scattered rocks with little periphyton. However, where snails were absent, crayfish were abundant (14.5 crayfish-trap–1-day–1), and where snails were abundant, crayfish were rare (3.2 crayfish-trap–1-day–1), suggesting that crayfish predation reduced snails. The hypothesis that the negative association between snail and periphyton biomass resulted from snail grazing was supported by the results of a field snail enclosure-exclosure experiment (1 m2 cages; n=3). All experiments and observations therefore suggest that: 1) crayfish predation is more important than a preference for high periphyton biomass in determining snail distribution in Trout Lake; 2) periphyton biomass is negtively related to snail grazing; and 3) crayfish had a positive indirect effect on periphyton by preying on grazing snails.  相似文献   

5.
Species with restricted gene flow often show trait-shifts from one type of environment to another. In those rock-dwelling marine gastropods that lack larval dispersal, size generally decreases in wave-exposed habitats reducing risk of dislodgement, while increases in less exposed habitats to resist crab-crushing. In Littorina fabalis, however, snails of moderately exposed shores are generally much larger (11–14 mm) than snails of sheltered shores (5–8 mm). Observations from the White Sea (where crabs are not present) indicate that in the absence of crabs snails are small (6–7 mm) in both habitats. We assumed that the optimal size for L. fabalis in the absence of crabs is less than 8 mm, and thus that increased size in moderately exposed habitats in areas with crabs might be a response to crab predation. In a crab-rich area (Sweden) we showed that crab predation is an important mortality factor for this snail species in both sheltered and moderately exposed habitats. In sheltered habitats, snails were relatively more protected from crab-predation when dwelling on their habitual substrate, fucoid algae, than if experimentally tethered to rocks below the algae. This showed that algae function as snail refuges. Snail dislodgement increased, however, with wave exposure but tethering snails in moderately exposed habitats showed that large snails survived equally well on rocks under the algae as in the canopy of the algae. Thus in sheltered habitats a small snail size is favored, probably due to life-history reasons, while increased risk of being dislodged from the algae refuges promotes a large size in moderately exposed habitats. This study shows an example of selection of a trait depends on complex interactions of different factors (life-history optimization, crab predation, wave induced dislodgement and algal refuges).  相似文献   

6.
This study examines seasonal and spatial patterns in the diet composition, stomach fullness and condition of a landlocked population of brown trout (2.5–61.3 cm) in the lake-fed River Laxá in NE-Iceland. The stomach contents consisted predominantly of benthic invertebrates, such as blackfly larvae Simulium vittatum (58%), chironomids (24%) and the freshwater snail Radix peregra (7%). The seasonal and spatial patterns of S. vittatum in the stomach contents were consistent with published studies on the life cycle and production of S. vittatum in the River Laxá. Close to the Lake Myvatn outlet (0–16 km), S. vittatum constituted 63% of the stomach content volume, and exhibited two peaks (i.e., generations) in its seasonal contribution to the stomach contents, whereas further downstream (16–35 km) S. vittatum constituted 45% of the volume and showed only clear evidence of one generation. Seasonal fluctuations in S. vittatum availability appear to affect the stomach fullness and the condition factor of the trout, especially close to the lake outlet where the fluctuations are pronounced.  相似文献   

7.
In situ seasonal variations in stomach contents of Aurelia aurita (L.) in Tokyo Bay, Japan, were analyzed. Copepods, such as Oithona davisae Ferrari & Orsi were the predominant food items of A. aurita from June to November. The mean digestion time measured in incubation experiments was 0.95 h. Daily rations calculated using stomach content data and digestion times were 2.2–21.8 mg C ind–1 corresponding to 0.58–5.56% of body carbon. The ingestion rate increased significantly with an increase in medusa size, although no significant relationship was found between medusa size and carbon specific daily ration. The zooplankton community in Tokyo Bay is characterized by the significant dominance of O. davisae and it is assumed that the prosperity of A. aurita is caused by the high abundance of the O. davisae population. It is suggested that a food chain comprised of microflagellates, cyclopoid copepods O. davisae, and A. aurita is the most significant one in Tokyo Bay and only a small portion of production is transferred to fish.  相似文献   

8.
Y. B. Ho 《Hydrobiologia》1979,63(2):161-166
The chlorophyll, ash, carbon, nitrogen and phosphorus levels in seven species of freshwater macrophytes (Juncus effusus L., Iris pseudacorus L., Carex rostrata Stokes, Glyceria maxima (Hartm.) Holmberg, Nuphar lutea (L) Sm., Polygonum amphibium L. and Schoenoplectus lacustris (L) Pallas) in three Scottish lochs of different trophic levels were studied during 1975. Mean chlorophyll levels varied from a minimum of 1.73 mg g–1 dry weight in Balgavies Loch Juncus to 10.22 mg g–1 dry weight for Forfar Loch Iris. Carbon contents ranged from 450 to 520 mg g–1 ash-free dry weight. For ash, nitrogen and phosphorus, significant differences in mean concentrations were detected among plant species as well as within one plant species growing in different lochs. Positive correlations were apparent between the degree of eutrophication in the study areas and the amount of ash, phosphorus and nitrogen present in the plants growing in them.  相似文献   

9.
The efficiency of S. mansoni miracidia in locating and infecting Biomphalaria pfeifferi in Gezira canals has been studied under field conditions. When S. mansoni eggs were introduced into clean stagnant water in small field channels, the miracidia hatched to infect 100% of 30 snails in cages at the release point. Fifteen metres upstream and downstream 13% of caged snails were infected but no infections were found in snails 20 m away.When eggs were released into the same canal in flowing water (8.3 cm · s–1), no infections were detected in any of the caged snails placed 0–100 m downstream. Releasing hatched miracidia instead of eggs resulted in infections in all cages at 5 m intervals from 0-100 m. The release of eggs into flowing water was likened to the method by which S. haematobium eggs are deposited during urination. The 0% infection suggests that eggs will be swept away from the point of contamination by the flow. Thus only urination into stagnant water will lead to heavy snail infection rates.When eggs were released into a small pond-like minor canal tail end snail infection rates were only 3%. This was probably due to the larger water volume, smaller number of caged snails, and the presence of vegetation and other fauna which may be decoys or predators.The results highlight how very high snail infection rates can be produced under ideal conditions but also show how large snail and miracidia numbers are required in natural situations.  相似文献   

10.
Interest in the systems supplying dissolved forms of iron to the sea from upland forests and wetlands has increased because iron is abundant on land but has low bioavailability in seawater. This can be a limiting factor for the growth of marine phytoplankton. Organic complex iron, a typical form of iron dissolved in seawater, is supplied to the ocean through rivers from forest and wetland soils. As a related study, we focus on mangrove ecosystems located at the boundary between the land and sea and on polyphenols present in leaves as ligands for the formation of iron complexes. When mangrove leaf litterfalls on the wet forest floor, phenolic compounds leach out from the leaves and might solubilize insoluble iron in the sediments (i.e., iron complexation). However, the reaction mechanism is not simple in the field, and it might be made more complex by tidal currents and intervention by crabs and snails, which consume mangrove leaf litter. In the present study, we focused on a detritivorous snail, Terebralia palustris, as a facilitator of iron solubilization associated with phenolic compounds, and examined how the snail contribute to iron solubilization processes. Our results indicated that the amounts of phenolic compounds in mangrove sediments are strongly related to iron solubilization. Furthermore, the average dissolved iron and phenolic contents in sediments from areas inhabited by the snail were significantly higher than those of sediments where the snail was not present. We additionally report that the solubilization of iron was promoted when snail feces were added to mangrove sediments. In conclusion, we propose that iron solubilization in mangrove sediments is promoted by the interaction between i) iron in the sediment, ii) phenolic compounds derived from mangroves, and iii) the consumption of leaves and the deposition of feces by the snail.  相似文献   

11.
The abundance and productivity of benthic microalgae in coral reef sediments are poorly known compared with other, more conspicuous (e.g. coral zooxanthellae, macroalgae) primary producers of coral reef habitats. A survey of the distribution, biomass, and productivity of benthic microalgae on a platform reef flat and in a cross-shelf transect in the southern Great Barrier Reef indicated that benthic microalgae are ubiquitous, abundant (up to 995.0 mg chlorophyll (chl) a m–2), and productive (up to 110 mg O2 m–2 h–1) components of the reef ecosystem. Concentrations of benthic microalgae, expressed as chlorophyll a per surface area, were approximately 100-fold greater than the integrated water column concentrations of microalgae throughout the region. Benthic microalgal biomass was greater on the shallow water platform reef than in the deeper waters of the cross-shelf transect. In both areas the benthic microalgal communities had a similar composition, dominated by pennate diatoms, dinoflagellates, and cyanobacteria. Benthic microalgal populations were potentially nutrient-limited, based on responses to nitrogen and phosphorus enrichments in short-term (7-day) microcosm experiments. Benthic microalgal productivity, measured by O2 evolution, indicated productive communities responsive to light and nutrient availability. The benthic microalgal concentrations observed (92–995 mg chl a m–2) were high relative to other reports, particularly compared with temperate regions. This abundance of productive plants in both reef and shelf sediments in the southern Great Barrier Reef suggests that benthic microalgae are key components of coral reef ecosystems.Communicated by Environmental Editor, B.C. Hatcher  相似文献   

12.
Nitrogen fixation (acetylene reduction) rates were measured over an annual cycle in meadows of the seagrass Z. noltii and uncolonised sediments of the Bassin d'Arcachon, south-west France, using both slurry and whole core techniques. Measured rates using the slurry technique in Z. noltii colonised sediments were consistently higher than those determined in isolated cores. This was probably due to the release of labile organic carbon sources during preparation of the slurries. Thus, in colonised sediments the whole core technique may provide a more accurate estimate of in situ activity. Acetylene reduction rates measured by the whole core technique in colonised sediments were 1.8 to 4-fold greater, dependent upon the season, in the light compared with those measured in the dark, indicating that organic carbon released by the plant roots during photosynthesis was an important factor regulating nitrogen fixation. In contrast acetylene reduction rates in uncolonised sediments were independent of light.Addition of sodium molybdate, a specific inhibitor of sulphate reduction inhibited acetylene reduction activity in Z. noltii colonised sediments by > 80% as measured by both slurry and whole core techniques irrespective of the light regime, throughout the year inferring that sulphate reducing bacteria (SRB) were the dominant component of the nitrogen fixing microflora. A mutualistic relationship between Z. noltii and nitrogen fixing SRB in the rhizosphere, based on the exchange of organic carbon and fixed nitrogen is proposed. In uncolonised sediments sodium molybdate initially severely inhibited acetylene reduction rates, but the level of this inhibition declined over the course of the year. These data indicate that the nitrogen fixing SRB associated with the Zostera roots and rhizomes were progressively replaced by an aerobic population of nitrogen fixers associated with the decomposition of this recalcitrant high C:N ratio organic matter.Acetylene and sulphate reduction rates in the seagrass beds showed distinct summer maxima which correlated with a reduced availability of NH 4 + in the sediment and the growth cycle of Z. noltii in the Bassin. Overall, these data indicate that acetylene reduction (nitrogen fixation) activity in the rhizosphere of Z. noltii was regulated both by release of organic carbon from the plant roots and maintenance of low ammonium concentrations in the root zone due to efficient ammonium assimilation.Nitrogen fixation rates determined from acetylene reduction rates measured by the whole core technique ranged from 0.1 to 7.3 mg N m–2 d–1 in the Z. noltii beds and between 0.02 and 3.7 mg N m–2 d–1 in uncolonised sediments, dependent upon the season. Nitrogen fixation in the rhizosphere of Z. noltii was calculated to contribute between 0.4 and 1.1 g N m–2 y–1 or between 6.3 and 12% of the annual fixed nitrogen requirement of the plants. Heterotrophic nitrogen fixation therefore represents a substantial local input of fixed nitrogen to the sediments of this shallow coastal lagoon and contributes to the overall productivity of Z. noltii in this ecosystem.  相似文献   

13.
The bacterial community composition of marine surface sediments originating from various regions of the Eastern Mediterranean Sea (12 sampling sites) was compared by parallel use of three fingerprinting methods: analysis of 16S rRNA gene fragment heterogeneity by denaturing gradient electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP), and analysis of phospholipid-linked fatty acid composition (PLFA). Sampling sites were located at variable depths (30–2860 m; water column depth above the sediments) and the sediments differed greatly also in their degree of petroleum contamination (0.4–18 μg g−1), organic carbon (0.38–1.5%), and chlorophyll a content (0.01–7.7 μg g−1). Despite a high degree of correlation between the three different community fingerprint methods, some major differences were observed. DGGE banding patterns showed a significant separation of sediment communities from the northern, more productive waters of the Thermaikos Gulf and the oligotrophic waters of the Cretan, S. Ionian, and Levantine Sea. T-RFLP analysis clearly separated the communities of deep sediments (>1494 m depth) from their shallow (<617 m) counterparts. PLFA analysis grouped a shallow station from the productive waters of the north with the deep oligotrophic sediments from the Ionian and Levantine Sea, with low concentrations of PLFAs, and hence low microbial biomass, as the common denominator. The degree of petroleum contamination was not significantly correlated to the apparent composition of the microbial communities for any of the three methods, whereas organic carbon content and sediment chlorophyll a were important in this regard.  相似文献   

14.
Alboglossiphonia polypompholyx spends most of its life cycle endoparasitic in the mantle cavity of the snail Bulinus truncatus — possibly its only host. Adult A. polypompholyx leaves the snail about one month before the commencement of egg-laying. Hatching occurred after about 15 d and after brooding on the venter of the parent for 7–10 d, the young briefly become free-living before entering the mantle cavity of B. truncatus. Within the mantle cavity, A. polypompholyx feeds and grows for 16–20 weeks before leaving the snail as adults. In the field and in laboratory experiments, adult leeches left the snails in August/September and January with cocoons produced in October/November and February/March, respectively. Free-living adult leeches do not feed and die 1–2 months after the cessation of brooding.  相似文献   

15.
Carbon flow in the littoral food web of an oligotrophic lake   总被引:6,自引:3,他引:3  
James  Mark R.  Hawes  Ian  Weatherhead  Mark  Stanger  Carmen  Gibbs  Max 《Hydrobiologia》2000,441(1):93-106
Benthic food web dynamics and carbon flow were examined in the littoral zone of Lake Coleridge, a large deep oligotrophic lake, using radioactive and stable isotope techniques in conjunction with analyses of stomach contents of the fauna. We specifically address two hypotheses: (1) that macrophytes only contribute to the carbon flow to higher trophic levels when they have decayed; and (2) that epiphytic algae is the major source of carbon for macroinvertebrates, and thus fish, with only minor contributions from phytoplankton or terrestrial sources. Epiphytic diatoms were a major component of the stomach contents of the gastropod snail Potamopyrgus antipodarum, and of chironomids. Animal remains were also common in the diet of some chironomids, while amorphous organic matter predominated in the stomachs of oligochaetes. A variety of epiphytic algal taxa was found in trichopteran larvae. Feeding rate of P. antipodarum measured with radioactive tracers increased by 10× on decayed macrophytes (Elodea) compared with live material, while feeding rates on characean algae increased by a factor of 3 when decayed material was presented. However, assimilation rates were less than 20% on decayed material compared with 48–52% on live material. Potential carbon sources were easily distinguished based on their 13C values, although isotopic ratios showed significant variation among sites. Epiphytic algae showed less variation among sites than macrophytes and were depleted by 4–5 compared with macrophytes. Detrital material, organic matter in the sediments and plankton were significantly depleted in 13C relative to macrophytes and slightly depleted relative to epiphytic algae. Most macroinvertebrate taxa showed a similar pattern among sites to macrophytes and epiphytic algae. P. antipodarum and chironomids were slightly enriched compared with epiphytic algae. Ratios for the common bully (Gobiomorphus cotidianus) were generally consistent with a diet dominated by chironomids, while there was some evidence for terrestrial inputs for koaro (Galaxias brevipinnis) and juvenile brown trout. Epiphytic algae appear to underpin much of the production in the littoral zone of this oligotrophic lake, with trichopteran and chironomid larvae mediating carbon flows from algae to fish. Macrophytes do not make a major contribution directly to carbon flow to higher trophic levels even when decayed. The lack of a direct link between macrophytes and higher trophic levels is due to the faunal composition, including a lack of large herbivores.  相似文献   

16.
The internal colony-forming bacterial flora of the schistosome intermediate host snailBiomphalaria glabrata (Say) has been characterized in ca. 500 individual snails from Puerto Rico, Guadeloupe, and St. Lucia, and from laboratory aquaria. Freshly captured wild snails harbor 2–40×106 CFU·g–1, and healthy aquarium snails harbor 4–16×107 CFU·g–1, whereas moribund individuals have 4–10 times as many bacteria as healthy individuals from the same habitats.Pseudomonas spp. are the most common predominant bacteria in normal snails, whereasAcinetobacter, Aeromonas, andMoraxella spp. predominate in moribund snails. External bacterial populations in water appear to have little effect on the composition and size of the flora in any snail. In addition to normal (healthy) and moribund snails, a third group of snails has been distinguished on the basis of internal bacterial density and predominating genera. These high-density snails may have undergone stresses and may harbor opportunistic pathogens. The microfloras of wild and laboratory-reared snails can be altered and stimulated to increase in density by crowding the snails or treating them with antibiotics.  相似文献   

17.
The level of host exploitation is expected, under theory, to be selected to maximise (subject to constraints) the lifetime reproductive success of the parasite. Here we studied the effect of two castrating trematode species on their intermediate snail host, Potamopyrgus antipodarum. One of the trematode species, Microphallus sp., encysts in the snail host and the encysted larvae “hatch” following ingestion of infected snails by birds. The other species, Notocotylus gippyensis, by contrast, releases swimming larvae; ingestion of the snail host is not required for, and does not aid, transmission to the final host. We isolated field-collected snails for 3 months in the laboratory, and followed the survival of infected and uninfected snails under two conditions: not fed and fed ad libitum. Mortality of the infected hosts was higher than mortality of the uninfected ones, but the response to starvation treatment was parasite species specific. N. gippyensis induced significantly higher mortality in starved snails than did Microphallus. Based on these results, we suggest that host exploitation by different species of trematodes may depend on the type of transmission. Encysting in the snail host may select for a reduced rate of host exploitation so as to increase the probability of transmission to the final host. Received: 29 July 1998 / Accepted: 1 February 1999  相似文献   

18.
Suspension feeding by bivalves has been hypothesized to control phytoplankton biomass in shallow aquatic ecosystems. Lake Waccamaw, North Carolina, USA is a shallow lake with a diverse bivalve assemblage and low to moderate phytoplankton biomass levels. Filtration and ingestion rates of two relatively abundant species in the lake, the endemic unionid, Elliptio waccamawensis, and an introduced species, Corbicula fluminea, were measured in experiments using natural phytoplankton for durations of 1 to 6 days. Measured filtration and ingestion rates averaged 1.78 and 1.121 ind.–1 d–1, much too low to control phytoplankton at the observed phytoplankton biomass levels and growth rates. Measured ingestion rates averaged 4.80 and 1.50 µg chlorophyll a ind.–1 d–1, too low to support individuals of either species. The abundance of benthic microalgae in Lake Waccamaw reaches 200 mg chlorophyll a m–2 in the littoral zone and averages almost an order of magnitude higher than depth-integrated phytoplankton chlorophyll a. Total microalgal biomass in the lake is therefore not controlled by suspension feeding by bivalves.  相似文献   

19.
Acartia spp. are the dominant copepod species in the Gironde estuary, seaward of the turbidity maximum area. Acartia bifilosa develop a large population in spring and early summer whereas Acartia tonsa appear in late summer. High values and high variability of chlorophyll a/suspended particulate matter ratio are found seaward of the turbidity maximum area. Feeding rates of A. bifilosa were measured by fluorometry. Phytoplankton ingestion was found to be highly variable, between 8 to 80% of copepod carbon body weight. Except for adult females, copepods were heavier in summer than in winter. PB ratios, estimated by the instantaneous growth rate method, varied from 0.03 d–1 to 0.14 d–1. The gut contents and P/B ratios of Acartia bifilosa were related to chl a/SPM ratio. From those data, and a few obtained for A. tonsa, it is concluded that only in summer months phytoplankton ingestion is enough to maintain secondary production.  相似文献   

20.
Temnocephala iheringi is the most common temnocephalan inhabiting the mantle cavity of the apple snail Pomacea canaliculata, a freshwater neotropical gastropod that has become a serious rice pest in Southeastern Asia. T. iheringi has been recorded from Mato Grosso (Brazil) to water bodies associated with the Río de la Plata river (Argentina). During an extensive survey in the southern limit of the native area of P.␣canaliculata the presence of T. iheringi eggs was recorded in several apple snail populations, extending the known distribution of the commensal more than 400 km southwards. The aim of this study was to understand the factors affecting the distribution and abundance of T. iheringi among populations of P.␣canaliculata. Only 23% of the apple snail populations inhabiting streams harboured temnocephalans while the occurrence among lentic ones was 71%. T. iheringi was found mostly in populations of apple snails living in non-alkaline sites and where snails attaining sizes larger than 4 cm were very common. The prevalence of the temnocephalans in lentic populations was higher than 90%. The number of eggs on the shell (not including the umbilicus) ranged between 0 and 470 and was different among populations of P.␣canaliculata. The prevalence and number of eggs were lower in the lotic populations, except for a stream population immediately downstream of a lake with commensals. There was no difference between males and females of P. canaliculata neither in the prevalence nor in the number of eggs on the shell. The southernmost population of the world of P. canaliculata harbours commensals that tolerate cold winter water temperatures (4–5 °C) as well as its host. On the other hand, T. iheringi was found only in sites with bicarbonate concentrations lower than 6.6 meq l−1, suggesting that the tolerance of the commensal is very much lower than that of the apple snail (up to 9.95 meq l−1). The number of worms inside each snail or the life history variation of P. canaliculata could explain the influence of the size of the snails on the occurrence of T. iheringi. In the big-sized snails, where the number of commensals is higher, the probability of survival of at least one worm is also higher, specially during the hibernation period, when crawling and feeding are null and snails remain buried. On the other hand, P. canaliculata snails from lentic populations are generally bigger and mostly iteroparous, while those inhabiting streams are smaller and semelparous. In these populations the snails have access to mate only with snails of their same cohort, while in iteroparous populations they can copulate with individuals of other cohorts, allowing the inter-generation transmission of worms and the long term persistence of the population of commensals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号