首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Callose or beta-1,3-glucan performs multiple functions during male and female gametophyte development. Callose is synthesized by 12 members of the glucan synthase-like (GSL) gene family in Arabidopsis thaliana. To elucidate the biological roles of Arabidopsis GSL family members during sexual development, we initiated a reverse genetic approach with T-DNA insertional mutagenesis lines. We screened T-DNA insertion lines for all members of the GSL gene family and detected homozygous mutant seedlings for all members except GSL10. Three independent alleles in GSL10, gsl10-1, gsl10-3 and gsl10-4 showed distorted segregation (1:1:0) of T-DNA inserts rather than Mendelian segregation (1:2:1). By genetic analysis through reciprocal cross, we determined that gsl10 pollen could not be transmitted to descendent. The mutant pollen of GSL10/gsl10 plants at tetrad and microspore stages were not different from that of wild type, suggesting that GSL10 is not essential for normal microspore growth. Analysis of GSL10/gsl10 hemizygous pollen during development revealed abnormal function in asymmetric microspore division. gsl10 mutant microspores failed to enter into mitosis. Unlike the previously described functions of GSL1, GSL2 and GSL5, GSL10 involves an independent process of pollen development at the mitotic division stage.  相似文献   

2.
绒毡层在拟南芥花药花粉发育过程中具有重要作用,包括分泌降解胼胝质的胼胝质酶、为花粉壁的形成提供原料以及为小孢子发育提供营养物质.本文通过对拟南芥雄性不育突变体st273的分析,研究了ST273基因在花药花粉发育过程中的功能.st273是通过T-DNA插入诱变野生型拟南芥得到的一株突变体,遗传分析表明st273是单隐性核基因控制的.利用图位克隆的方法对不育基因ST273进行了定位,结果表明ST273基因与拟南芥第三条染色体上分子标记CIW11连锁.生物信息学分析发现该分子标记附近有一个调控花粉发育的基因TDF1.测序分析结果表明在st273突变体中,TDF1基因第三个外显子上459位的碱基发生了由G459变成了A459的单碱基变化,导致ST273基因该位点提前终止突变.等位分析结果表明st273与tdf1是等位突变体.st273突变体营养生长期发育正常,但生殖生长发育出现异常.亚历山大染色结果显示st273突变体花药中没有花粉.组织切片观察结果表明,突变体花药绒毡层异常肥大且空泡化,四分体不能正常释放小孢子,最终无法形成花粉.这些结果揭示了ST273蛋白质参与调控了绒毡层和小孢子发育过程.  相似文献   

3.
Mutations in the QUARTET loci in Arabidopsis result in failure of microspore separation during pollen development due to a defect in degradation of the pollen mother cell wall during late stages of pollen development. Mutations in a new locus required for microspore separation, QRT3, were isolated, and the corresponding gene was cloned by T-DNA tagging. QRT3 encodes a protein that is approximately 30% similar to an endopolygalacturonase from peach (Prunus persica). The QRT3 protein was expressed in yeast (Saccharomyces cerevisiae) and found to exhibit polygalacturonase activity. In situ hybridization experiments showed that QRT3 is specifically and transiently expressed in the tapetum during the phase when microspores separate from their meiotic siblings. Immunohistochemical localization of QRT3 indicated that the protein is secreted from tapetal cells during the early microspore stage. Thus, QRT3 plays a direct role in degrading the pollen mother cell wall during microspore development.  相似文献   

4.
A male-sterile mutant of Arabidopsis thaliana was isolated by T-DNA tagging screening. Using transmission electron microscopy analysis, we revealed that the microspores of this mutant did not have normal thick primexine on the microspore at the tetrad stage. Instead, a moderately electron-dense layer formed around the microspores. Although microspores without normal primexine failed to form a proper reticulate exine pattern at later stages, sporopollenin was deposited and an exine-like hackly structure was observed on the microspores during the microspore stage. Thus, this mutant was named hackly microspore (hkm). It is speculated that the moderately electron-dense layer was primexine, which partially played its role in sporopollenin deposition onto the microspore. Cytological analysis revealed that the tapetum of the hkm mutant was significantly vacuolated, and that vacuolated tapetal cells crushed the microspores, resulting in the absence of pollen grains within the anther at anthesis. Single nucleotide polymorphism analysis demonstrated that the hkm mutation exists within the MS1 gene, which has been reportedly expressed within the tapetum. Our results suggest that the critical process of primexine formation is under sporophytic control .  相似文献   

5.
In plants, pollen is the male gametophyte that is generated from microspores, which are haploid cells produced after meiosis of diploid pollen mother cells in floral anthers. In normal maturation, microspores interact with the tapetum, which consists of one layer of metabolically active cells enclosing the locule in anthers. The tapetum plays several important roles in the maturation of microspores. ATP-binding cassette (ABC) transporters are a highly conserved protein super-family that uses the energy released in ATP hydrolysis to transport substrates. The ABC transporter gene family is more diverse in plants than in animals. Previously, we reported that an Arabidopsis half-size type ABC transporter gene, COF1/AtWBC11/AtABCG11, is involved in lipid transport for the construction of cuticle layers and pollen coats in normal organ formation, as compared to CER5/AtWBC12/AtABCG12. However, physiological functions of most other ABCG members are unknown. Here, we identified another family gene, AtABCG26, which is required for pollen development in Arabidopsis. An AtABCG26 mutant developed very few pollen grains, resulting in a male-sterile phenotype. By investigating microspore and pollen development in this mutant, we observed that there was a slight abnormality in tetrad morphology prior to the formation of haploid microspores. At a later stage, we could not detect exine deposition on the microspore surface. During pollen maturation, many grains in the mutant anthers got aborted, and surviving grains were found to be defective in mitosis. Transmission of the mutant allele through male gametophytes appeared to be normal in genetic transmission analysis, supporting the view that the pollen function was disturbed by sporophytic defects in the AtABCG26 mutant. AtABCG26 can be expected to be involved in the transport of substrates such as sporopollenin monomers from tapetum to microspores, which both are plant-specific structures critical to pollen development.  相似文献   

6.
Guan YF  Huang XY  Zhu J  Gao JF  Zhang HX  Yang ZN 《Plant physiology》2008,147(2):852-863
During microsporogenesis, the microsporocyte (or microspore) plasma membrane plays multiple roles in pollen wall development, including callose secretion, primexine deposition, and exine pattern determination. However, plasma membrane proteins that participate in these processes are still not well known. Here, we report that a new gene, RUPTURED POLLEN GRAIN1 (RPG1), encodes a plasma membrane protein and is required for exine pattern formation of microspores in Arabidopsis (Arabidopsis thaliana). The rpg1 mutant exhibits severely reduced male fertility with an otherwise normal phenotype, which is largely due to the postmeiotic abortion of microspores. Scanning electron microscopy examination showed that exine pattern formation in the mutant is impaired, as sporopollenin is randomly deposited on the pollen surface. Transmission electron microscopy examination further revealed that the primexine formation of mutant microspores is aberrant at the tetrad stage, which leads to defective sporopollenin deposition on microspores and the locule wall. In addition, microspore rupture and cytoplasmic leakage were evident in the rpg1 mutant, which indicates impaired cell integrity of the mutant microspores. RPG1 encodes an MtN3/saliva family protein that is integral to the plasma membrane. In situ hybridization analysis revealed that RPG1 is strongly expressed in microsporocyte (or microspores) and tapetum during male meiosis. The possible role of RPG1 in microsporogenesis is discussed.  相似文献   

7.
8.
9.
The effects on anther development of a fusion of the Arabidopsis anther-specific apg gene promoter to a ribonuclease (barnase) in transgenic tobacco plants were examined. Contrary to expectations, viable pollen grains were produced by these plants despite the demonstration that ribonuclease expression in the microspores and tapetum caused targeted cell ablation. Transformed plants were reduced in male fertility due to ablation of a proportion of pollen dependent on apg-barnase locus number. Plants were otherwise phenotypically normal and fully female fertile, confirming the anther-specific nature of the apg promoter. In microspores inheriting an apg-barnase locus following meiosis, loss of cell viability, as judged by fluorescein diacetate staining, occurred during mid to late microspore development. Microspores not inheriting a transgene went on to mature into viable pollen grains. Premature degeneration of the tapetum was also observed as a result of apg-barnase expression, but this did not appear to disrupt the subsequent microspore and pollen developmental programmes. This was substantiated by observations of microspore development in plants in which the tapetum was rescued from ablation by crossing in a second transgene encoding a tapetum-specific inhibitor of the ribonuclease. It was determined that tapetum cell disruption occurs at the early to mid uninucleate microspore stage in apg-barnase transformants. The data presented show that after this point in microspore development the tapetum is no longer essential for the production of viable pollen in tobacco.  相似文献   

10.
拟南芥雄性不育突变体ms1142的遗传定位与功能分析   总被引:1,自引:0,他引:1  
常玉花  周鹊  杨仲南  张森 《植物学报》2010,45(4):404-410
经EMS诱变野生型拟南芥(Arabidopsis thaliana)群体筛选得到一株雄性不育突变体ms1142, 突变体的果荚短小, 不含种子。细胞学观察和扫描电镜结果表明, 突变体花药发育过程中, 花药中小孢子外壁异常、破裂, 最后没有花粉形成。遗传分析表明, 该突变体为隐性单核基因突变所致; 利用图位克隆的方法将MS1142基因定位于第1条染色体的BAC克隆F16P17上44 kb区间内, 目前尚未见该区间内有雄性不育基因的报道。以上结果结合生物信息学分析表明, MS1142是一个新的调控花药发育的关键基因。该工作为花药发育关键基因MS1142的克隆及功能分析奠定了基础。  相似文献   

11.
Callose (beta-1,3-glucan) is produced at different locations in response to biotic and abiotic cues. Arabidopsis contains 12 genes encoding callose synthase (CalS). We demonstrate that one of these genes, CalS5, encodes a callose synthase which is responsible for the synthesis of callose deposited at the primary cell wall of meiocytes, tetrads and microspores, and the expression of this gene is essential for exine formation in pollen wall. CalS5 encodes a transmembrane protein of 1923 amino acid residues with a molecular mass of 220 kDa. Knockout mutations of the CalS5 gene by T-DNA insertion resulted in a severe reduction in fertility. The reduced fertility in the cals5 mutants is attributed to the degeneration of microspores. However, megagametogenesis is not affected and the female gametes are completely fertile in cals5 mutants. The CalS5 gene is also expressed in other organs with the highest expression in meiocytes, tetrads, microspores and mature pollen. Callose deposition in the cals5 mutant was nearly completely lacking, suggesting that this gene is essential for the synthesis of callose in these tissues. As a result, the pollen exine wall was not formed properly, affecting the baculae and tectum structure and tryphine was deposited randomly as globular structures. These data suggest that callose synthesis has a vital function in building a properly sculpted exine, the integrity of which is essential for pollen viability.  相似文献   

12.
Histological and histochemical examinations of sodium 2,3-dichloroisobutyrate(DCB)treated tomato floral buds at various stages of developmentshowed that DCB affected the development of microspores andtapetal cells. DCB at 0.075 and 0.15% resulted in the formationof uninucleate microspores, absence of microspore starch, retardationof exine formation, degeneration of microspore cytoplasm, anda delay in the breakdown of the tapetum. Embryo sac developmentwas unaffected by DCB. The interference of carbohydrate metabolismby DCB was indicated. Reduction of fruit set by DCB was causedby abnormal or lack of pollen formation.  相似文献   

13.
Seven new male-sterile mutants (ms7–ms13) of Arabidopsis thaliana (L.) Heynh. (ecotype columbia) are described that show a postmeiotic defect of microspore development. In ms9 mutants, microspores recently released from the tetrad appear irregular in shape and are often without exines. The earliest evidence of abnormality in ms12 mutants is degeneration of microspores that lack normal exine sculpturing, suggesting that the MS12 product is important in the formation of pollen exine. Teratomes (abnormally enlarged microsporocytes) are also occasionally present and each has a poorly developed exine. In ms7 mutant plants, the tapetal cytoplasm disintegrates at the late vacuolate microspore stage, apparently causing the degeneration of microspores and pollen grains. With ms8 mutants, the exine of the microspores appears similar to that of the wild type. However, intine development appears impaired and pollen grains rupture prior to maturity. In ms11 mutants, the first detectable abnormality appears at the mid to late vacuolate stage. The absence of fluorescence in the microspores and tapetal cells after staining with 4′,6-diamidino-2-phenylindole (DAPI) and the occasional presence of teratomes indicate degradation of DNA. Viable pollen from ms10 mutant plants is dehisced from anthers but appears to have surface abnormalities affecting interaction with the stigma. Pollen only germinates in high-humidity conditions or during in-vitro germination experiments. Mutant plants also have bright-green stems, suggesting that ms10 belongs to the eceriferum (cer) class of mutants. However, ms10 and cer6 are non-allelic. The ms13 mutant has a similar phenotype to ms10, suggesting is also an eceriferum mutation. Each of these seven mutants had a greater number of flowers than congenic male-fertile plants. The non-allelic nature of these mutants and their different developmental end-points indicate that seven different genes important for the later stages of pollen development have been identified. Received: 14 August 1997 / Accepted: 7 October 1997  相似文献   

14.
经EMS诱变野生型拟南芥(Arabidopsis thaliana)群体筛选得到一株雄性不育突变体ms1142,突变体的果荚短小,不含种子。细胞学观察和扫描电镜结果表明,突变体花药发育过程中,花药中小孢子外壁异常、破裂,最后没有花粉形成。遗传分析表明,该突变体为隐性单核基因突变所致;利用图位克隆的方法将MS1142基因定位于第1条染色体的BAC克隆F16P17上44kb区间内,目前尚未见该区间内有雄性不育基因的报道。以上结果结合生物信息学分析表明,MS1142是一个新的调控花药发育的关键基因。该工作为花药发育关键基因MS1142的克隆及功能分析奠定了基础。  相似文献   

15.
In Arabidopsis, the tapetum plays important roles in anther and pollen development by providing enzymes for callose dissolution, materials for pollen wall formation, and nutrients for microspore development. This paper describes the functional analyses of the ST273 gene in anther and pollen development by using Arabidopsis male sterile mutant st273. Mutant st273 was identified from a T DNA insertion mutant population, and genetic analysis showed that st273 mutant was controlled by a single recessive nuclear gene. A map based cloning approach was used, and ST273 gene was mapped to be linked to a molecular marker CIW11 on chromosome 3. Bioinformatics analysis revealed that there is a TDF1 gene near the marker CIW11. Sequencing analysis indicated that st273 mutant had a G459 to A459 base pair change in the third exon of TDF1 gene, which resulted in premature termination mutation in this region. Allelism test indicated that ST273 and TDF1 belong to the same locus. The mutant plant grows normally during the vegetative growth stage, but show developmental defects at the reproductive growth stage. Alexander staining showed that there was no pollen in the mature anther locule. Cytology observation indicated that the mutant tapetum was enlarged and vacuolated, the tetrads could not release the microspores timely, and finally no pollen was formed in the anther. These results demonstrated that ST273 protein plays an important role in tapetum and microspore development.  相似文献   

16.
The effects of a nuclear male-sterile mutant (ms2) of soybean, Glycine max (L.) Merr., on anther development were analyzed by means of light- and electron-microscopy. The structure of microspore mother cells (MMCs) in male-sterile plants was identical to that of male-fertile plants. Meiosis was completed, and tetrads of microspores formed. Microspores degenerated after the deposition of primexine and probacullae. The sheath of callose surrounding microspores did not dissolve. No structural abnormalities of the microspores were detected before the onset of degeneration. The tapetal and anther wall layers were characterized by aberrant development. Tapetal abnormalities included premature vacuolation, a persistent inner tangential cell wall, failure to differentiate normal concentrations of endoplasmic reticulum and dictyosomes, disruption of plastids, and premature degeneration. Malfunction of the tapetal layer preceded, and may have induced, microspore degeneration. Gross anther morphology was not influenced until advanced stages of development.  相似文献   

17.
18.
Teng C  Dong H  Shi L  Deng Y  Mu J  Zhang J  Yang X  Zuo J 《Plant physiology》2008,146(3):1322-1332
Sphingolipids are important signaling molecules involved in various cellular activities. De novo sphingolipid synthesis is initiated by a rate-limiting enzyme, serine palmitoyltransferase (SPT), a heterodimer consisting of LONG-CHAIN BASE1 (LCB1) and LCB2 subunits. A mutation in the Arabidopsis thaliana LCB1 gene, lcb1-1, was found to cause embryo lethality. However, the underpinning molecular and cellular mechanisms remain largely unclear. Here, we report the identification of the fumonisin B(1) resistant11-2 (fbr11-2) mutant, an allele of lcb1-1. The fbr11-2 mutation, most likely an allele stronger than lcb1-1, was transmitted only through female gametophytes and caused the formation of abortive microspores. During the second pollen mitosis, fbr11-2 initiated apoptotic cell death in binucleated microspores characteristic of nuclear DNA fragmentation, followed by cytoplasm shrinkage and organelle degeneration at the trinucleated stage. In addition, a double mutant with T-DNA insertions in two homologous LCB2 genes showed a phenotype similar to fbr11-2. Consistent with these observations, the FBR11/LCB1 expression was confined in microspores during microgametogenesis. These results suggest that SPT-modulated programmed cell death plays an important role in the regulation of male gametophyte development.  相似文献   

19.
Members of the glucan synthase-like (GSL) family are believed to be involved in synthesis of the cell-wall component callose in specialized locations throughout the plant. We identified two members of the Arabidopsis GSL gene family, GSL8 and GSL10 , that are independently required for male gametophyte development and plant growth. Analysis of gsl8 and gsl10 mutant pollen during development revealed specific malfunctions associated with asymmetric microspore division. GSL8 and GSL10 are not essential for normal microspore growth and polarity, but play a role in entry of microspores into mitosis. Impaired function of GSL10 also leads to perturbation of microspore division symmetry, irregular callose deposition and failure of generative-cell engulfment by the cytoplasm of the vegetative cell. Silencing of GSL8 or GSL10 in transgenic lines expressing gene-specific dsRNAi constructs resulted in a dwarfed growth habit, thereby revealing additional and independent wild-type gene functions for normal plant growth.  相似文献   

20.
Metabolic engineering was used to disrupt glutamine metabolism in microspores in order to block pollen development. We used a dominant-negative mutant (DNM) approach of cytosolic glutamine synthetase (GS1) gene under the microspore-specific promoter NTM19 to block glutamine synthesis in developing pollen grains. We observed partial male sterility in primary transgenic plants by using light microscopy, FDA, DAPI and in vitro pollen germination test. Microspores started to die in the early unicellular microspore stage, pollen viability in all primary transgenic lines ranged from 40-50%. All primary transgenics produced seeds like control plants, hence the inserted gene did not affect the sporophyte and was inherited through the female germline. We regenerated plants by in vitro microspore embryogenesis from 4 individual lines, pollen viability of progeny ranged from 12 to 20%, but some of them also showed 100% male sterility. After foliage spray with glutamine, 100% male-sterile plants were produced viable pollen and seed set was also observed. These results suggested that mutated GS1 activity on microspores had a significant effect on normal pollen development. Back-cross progenies (T2) of DH 100% male-sterile plants showed normal seed set like primary transgenics and control plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号