首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Yamauchi  M Nagahama  H Hori  K Murakami 《FEBS letters》1988,230(1-2):205-208
Renin is an unique aspartyl (acid) protease with optimal activity at neutral pH. It has been suggested that Ala-317 of human renin contributes to neutral optimum pH of the enzyme [(1984) FEBS Lett. 174, 102–111]. The hypothesis was verified by the characterization of mutant renin in which Ala-317 was replaced with Asp by a site-directed mutagenesis. Wild-type and mutant renins, which were expressed in COS cells, exhibited different pH-activity profiles and optimum pH of the mutant enzyme was lower than that of the wild-type enzyme. This result suggests that Ala-317 of human renin plays an important role in the determination of optimum pH of the enzyme.  相似文献   

2.
Synthetic peptides described as dog renin inhibitors were found to effectively inhibit the aspartyl protease of human immunodeficiency virus (HIV). The selection of oligopeptides for the HIV protease inhibition study was based on 1) the current strategy of inhibiting aspartyl proteases with transition state analogs, and 2) our previous observations regarding optimal structural differentiation at the P2 position among human, dog, and rat renin inhibitors. In an in vitro assay system consisting of recombinant HIV protease and a synthetic decapeptide substrate (at pH 5.5), results show that HIV protease was unaffected by statine-containing analogs carrying histidine at the P2 position whereas analogs containing valine at the same position yielded anti-protease IC50 values ranging from 50 to 500 nM. As anticipated, some analogs were also shown to inhibit processing of recombinant polyprotein substrate by HIV protease in vitro. The anti-viral activity of three inhibitors was studied in HIV-infected CEM and MT-2 cells. Results showed that one compound, Ac-Naphthylalanyl-Pro-Phe-Val-Statine-Leu-Phe-NH2 (antiprotease IC50 value = 0.4 microM), protected the infected cells effectively with IC50 values (0.73 microM for CEM cells and 0.88 microM for MT-2 cells). This antiviral effect is comparable to those obtained with AZT and ddC in parallel studies of MT-2 cells.  相似文献   

3.
Histidine and its derivatives increased rabbit muscle fructose 1,6-bisphosphatase activity at neutral pH with positive cooperativity. In the presence of histidine and carnosine the optimum pH shifted from pH 8.0 to 7.4. The cooperative response of the enzyme to AMP and fructose 1,6-bisphosphate was observed in the presence of the histidine derivatives. Of a number of divalent cations tested, only Zn2+ was found to be an effective inhibitor of enzyme activity at low concentrations. The kinetic data suggested that Zn2+ acted as inhibitor as well as activator for the enzyme activity; a high affinity binding site was associated with Ki of approximately 0.5 microM Zn2+ and a catalytic site was associated with Km of approximately 10 microM Zn2+. Rabbit muscle fructose 1,6-bisphosphatase bound 4 equivalents of Zn2+/mol, presumably 1 per subunit, in the absence of fructose 1,6-bisphosphate. Two equivalents of Zn2+/mol bound to the enzyme were readily removed by dialysis or gel filtration in the absence of a chelating agent. The other two equivalents of Zn2+/mol were removed by histidine and histidine derivatives of naturally occurring chelators with concomitant increase in activity.  相似文献   

4.
Purified rabbit kidney fructose diphosphatase requires both a free cation and a metal-chelate when assayed at pH 8 or below. In the presence Mg2+ or Mn2+, effective metal chelates were Mn(II)-EDTA, Mg(II)-EDTA, and Co(III)-EDTA. With Mg2+ as the cation the affinity of the enzyme for Mn(II)-EDTA or Mg(II)-EDTA was approximately the same, and 300-fold greater than that for Co(III)-EDTA.Activation of the enzyme by the very stable Co(III)-EDTA complex, as well as failure of an ionophore antibiotic to replace EDTA as activator, exclude the possibility that the effects of EDTA are due to removal of metal inhibitors.Inhibition of fructose diphosphatase by Ca2+ was competitive with Mg2+, and noncompetitive with Mg(II)-EDTA, or Co(III)-EDTA. Conversely inhibition by Zn(II)-EDTA was competitive with Mg(II)-EDTA and noncompetitive with free Mg2+. The data suggest that the free metals bind to one site on the enzyme while the metal-EDTA chelates bind to a second site.  相似文献   

5.
6.
Peptide hormones are synthesized from larger precursors by cleavages at paired basic residues. We have isolated a pro-hormone converting enzyme from bovine neural and intermediate lobe secretory vesicles that cleaves pro-vasopressin and pro-opiomelanocortin at Lys-Arg residues to yield vasopressin, and adrenocorticotropin/endorphin-related peptides, respectively. The enzyme from both lobes is an aspartyl protease of approximately 70,000 Da, is a glycoprotein and has an optimum pH range of 4.0-5.0. Present within the same secretory vesicles is an aminopeptidase B-like enzyme which is a metalloprotease that is inhibited by Co2+ and Zn2+. This enzyme may play a role in trimming off the N-terminal extended basic residues from peptides liberated by the pro-hormone converting enzyme.  相似文献   

7.
1. Inhibition of collagenase from rabbit bone cultures by the chelating agents 1,10-phenanthroline and EDTA is almost completely reversed by Zn2+; other metal cations are less effective in reversing the inhibition. Optimal restoration of activity is achieved at Zn2+ concentrations below that of the chelator, but excess of Zn2+ is inhibitory. 2. Prolonged incubation of collagenase with either chelator causes irreversible inactivation. This inactivation is prevented by Zn2+ at the same concentrations needed to reverse the primary inhibition. 3. Collagenase incorporates 65Zn by exchange when incubated with 1,10-phenanthroline and Zn2+ containing this radioactive isotope. The 65Zn2+ can be removed from its binding site in collagenase by 1,10-phenanthroline or EDTA. Irreversible inactivation of collagenase by chelators destroys its ability to incorporate 65Zn2+. 4. Latent collagenase, the inhibited form in which collagenase first appears in culture, behaves similarly to the active enzyme in 65Zn2+-exchange experiments, but is resistant to irreversible inactivation by chelators. 5. It is concluded that collagenase is a zinc metalloenzyme that forms an inactive and unstable apoenzyme on treatment with chelators. The bound inhibitor component of latent collagenase evidently stabilizes the apoenzyme.  相似文献   

8.
As regulators of ubiquitous biological processes, serine proteases can cause disease states when inappropriately expressed or regulated, and are thus rational targets for inhibition by drugs. Recently we described a new inhibition mechanism applicable for the development of potent, selective small molecule serine protease inhibitors that recruit physiological Zn2+ to mediate high affinity (sub-nanomolar) binding. To demonstrate some of the structural principles by which the selectivity of Zn2+-mediated serine protease inhibitors can be developed toward or against a particular target, here we determine and describe the structures of thrombin-BABIM-Zn2+, -keto-BABIM-Zn2+, and -hemi-BABIM-Zn2+ (where BABIM is bis(5-amidino-2-benzimidazolyl)methane, keto-BABIM is bis(5-amidino-2-benzimidazolyl)methane ketone, and hemi-BABIM is (5-amidino-2-benzimidazolyl)(2-benzimidazolyl)methane), and compare them with the corresponding trypsin-inhibitor-Zn2+ complexes. Inhibitor binding is mediated by a Zn ion tetrahedrally coordinated by two benzimidazole nitrogen atoms of the inhibitor, by N(epsilon2)His57, and by O(gamma)Ser195. The structures of Zn2+-free trypsin-BABIM and -hemi-BABIM were also determined at selected pH values for comparison with the corresponding Zn2+-mediated complexes. To assess some of the physiological parameters important for harnessing Zn2+ as a co-inhibitor, crystal structures at multiple pH and [Zn2+] values were determined for trypsin-keto-BABIM. The Kdvalue of Zn2+ for the binary trypsin-keto-BABIM complex was estimated to be <12 nM at pH 7.06 by crystallographic determination of the occupancy of bound Zn2+ in trypsin-keto-BABIM crystals soaked at this pH in synthetic mother liquor containing inhibitor and 100 nM Zn2+. In synthetic mother liquor saturated in Zn2+, trypsin-bound keto-BABIM is unhydrated at pH 9.00 and 9.93, and has an sp2 hybridized ketone carbon bridging the 5-amidinobenzimidazoles, whereas at pH 7.00 and 8.00 it undergoes hydration and a change in geometry upon addition of water to the bridging carbonyl group. To show how Zn2+ could be recruited as a co-inhibitor of other enzymes, a method was developed for locating in protein crystals Zn2+ binding sites where design of Zn2+-mediated ligands can be attempted. Thus, by soaking trypsin crystals in high concentrations of Zn2+ in the absence of a molecular inhibitor, the site where Zn2+ mediates binding of BABIM and analogs was identified, as well as another Zn2+ binding site.  相似文献   

9.
D Fleischman  M Denisevich 《Biochemistry》1979,18(23):5060-5066
The guanylate cyclase activity of axoneme--basal apparatus complexes isolated from bovine retinal rods has been investigated. The Mg2+ and Mn2+ complexes of GTP4- serve as substrates. Binding of an additional mole of Mg2+ or Mn2+ per mole of enzyme is required. Among cations which are ineffective are Ca2+, Ni2+, Fe2+, Fe3+, Zn2+, and Co2+. The kinetics are consistent with a mechanism in which binding of Mg2+ or Mn2+ to the enzyme must precede binding of MgGTP or MnGTP. The apparent dissociation constants of the Mg--enzyme complex and the Mn--enzyme complex are 9.5 x 10(-4) and 1.1 x 10(-4) M, respectively. The apparent dissociation constants for binding of MgGTP and MnGTP to the complex of the enzyme with the same metal are 7.9 x 10(-4) and 1.4 x 10(-4) M, respectively. The cyclase activity is maximal and independent of pH between pH 7 and 9. KCl and NaCl are stimulatory, especially at suboptimal concentrations of Mg2+ or Mn2+. Ca2+ and high concentrations of Mg2+ and Mn2+ are inhibitory. Ca2+ inhibition appears to require the binding of 2 mol of Ca2+ per mol of enzyme. The dissociation constant of the Ca2--enzyme complex is estimated to be 1.4 x 10(-6) M2. The axoneme--basal apparatus preparations contain adenylate cyclase activity whose magnitude is 1--10% that of the guanylate cyclase activity.  相似文献   

10.
L-histidinol dehydrogenase, a Zn2+-metalloenzyme   总被引:3,自引:0,他引:3  
The enzymatic activity of L-histidinol dehydrogenase from Salmonella typhimurium was stimulated by the inclusion of 0.5 mM MnCl2 in the assay medium. At pH 9.2 the stimulation was correlated with binding of 1 g-atom of 54Mn2+/mol dimer, KD = 37 microM. ZnCl2, which prevented the MnCl2 stimulation, also bound to the enzyme, 1.2 g-atom/mol dimer, KD = 51 microM, and prevented Mn2+ binding. Enzyme activity was lost when histidinol dehydrogenase was incubated in 8 M urea. Reactivation was observed when urea-denatured enzyme was diluted into buffer containing 2-mercaptoethanol but required either MnCl2 or ZnCl2. Histidinol dehydrogenase was inactivated by the transition metal chelator 1,10-phenanthroline or by high levels of 2-mercaptoethanol. The nonchelating 1,7-phenanthroline was not an inactivator, and inactivation by either 1,10-phenanthroline or 2-mercaptoethanol was prevented by MnCl2. Enzyme inactivated by 1,10-phenanthroline could be reactivated by addition of MnCl2 or ZnCl2 in the presence of 2-mercaptoethanol. Reactivation was correlated with the binding of 1.5 g-atom 54Mn2+/mol dimer. Atomic absorption analysis of the native enzyme indicated the presence of 1.65 g-atom Zn/mol dimer, and no Mn was detected. The results demonstrate, therefore, that histidinol dehydrogenase contains two metal binding sites per enzyme dimer, which normally bind Zn2+, but which may bind Mn2+ while retaining enzyme function. Histidinol dehydrogenase is thus the third NAD-linked oxidoreductase in which Zn2+ fulfills an essential structural and/or catalytic role.  相似文献   

11.
The kinetics of the recombination of the metal-depleted active site of horse liver alcohol dehydrogenase (LADH) with metal ions have been studied over a range of pH and temperature. The formation rates were determined optically, by activity measurements, or by using the pH change during metal incorporation with a pH-indicator as monitor. The binding of Zn2+, Co2+, and Ni2+ ions occurs in a two-step process. The first step is a fast equilibrium reaction, characterized by an equilibrium constant K1. The spectroscopic and catalytic properties of the native or metal-substituted protein are recovered in a slow, monomolecular process with the rate constant k2. The rate constants k2 5.2 X 10(-2) sec-1 (Zn2+), 1.1 X 10(-3) sec-1 (Co2+), and 2 X 10(-4) sec-1 (Ni2+). The rate constants increase with increasing pH. Using temperature dependence, the activation parameters for the reaction with Co2+ and Ni2+ were determined. Activation energies of 51 +/- 2.5 kJ/mol (0.033 M N-Tris-(hydroxymethyl)methyl-2-aminomethane sulfonic acid (TES), pH 6, 9) for Co2+ and 48.5 +/- 4 kJ/mol (0.033 M TES, pH 7, 2) for Ni2+ at 23 degrees C were found. The correspondent activation entropies are - 146 +/- 10 kJ/mol K for Co2+ and - 163 +/- 9 kJ/mol K for Ni2+. Two protons are released during the binding of Zn2+ to H4Zn(n)2 LADH in the pH range 6.8-8.1. The binding of coenzyme, either reduced or oxidized, prevents completely the incorporation of metal ions, suggesting that the metal ions enter the catalytic site via the coenzyme binding domain and not through the hydrophobic substrate channel.  相似文献   

12.
Structural requirements for substrate binding to histidyl-tRNA synthetase from Salmonella typhimurium have been investigated using ATP analogues. Ki values and the relative binding affinity of the enzyme for these analogues have been determined in the tRNA aminoacylation reaction. The enzyme is highly specific for ATP: no binding was found for GTP, CTP, TTP and UTP. dATP is a very poor substrate for acylation of tRNA, with a Km 40-fold higher than that of ATP. Binding of adenosine 5'-triphosphate requires interactions of the amino group of adenosine and the sugar moiety; the 2' and the 5' positions of the ribose appear to be essential for recognition; the phosphate groups enhance the binding. AMP is a noncompetitive inhibitor with ATP. The interaction of histidyl-tRNA synthetase, a dimeric enzyme, with histidine and ATP was examined by fluorescence measurements at equilibrium and by equilibrium dialysis. Binding with L-histidine is significantly tighter at pH 6 than at pH 7, while the ATP binding is independent of pH. The stoichiometry was measured at pH 6 than at pH 7, while the ATP binding is independent of pH. The stoichiometry was measured at pH 7.5 by equilibrium dialysis and is 1 mol ATP/mol enzyme and, variably, close to 2 or 1 mol histidine/mol enzyme.  相似文献   

13.
Antrycide and ethidium bromide — 2 cationic trypanocides — inhibited NAD-linked α-glycerophosphate dehydrogenase from Leptomonas sp. The kinetics of enzyme inhibition was determined by Lineweaver-Burk, Dixon, or direct linear plots. Inhibition by Antrycide was noncompetitive for dihydroxyacetone phosphate in the presence of saturating Mg2+ or spermidine. With dihydroxyacetone phosphate at saturation, Antrycide inhibition was also noncompetitive with respect to Mg2+ (Ki = 115 μM) and spermidine (Ki = 85 μM). Inhibition by ethidium in the presence of saturating dihydroxyacetone phosphate, was noncompetitive for Mg2+ (Ki = 400 μM) but mixed for spermidine (Ki = 495 μM); inhibition was noncompetitive for dihydroxyacetone phosphate in the presence of saturating Mg2+ or spermidine. Rabbit-muscle α-glycerophosphate dehydrogenase was inhibited at all concentrations of Antrycide and ethidium tested, but the Leptomonas enzyme was stimulated up to 3.5-fold by low concentrations of inhibitors in the absence of polyamine. New chemotherapeutic possibilities may thus be opened and an evolutionary distinction between trypanosomatid and mammalian enzyme.  相似文献   

14.
Kidney alkaline phosphatase is an enzyme which requires two types of metals for maximal activity: zinc, which is essential, and magnesium, which is stimulatory. The main features of the Mg2+ stimulation have been analyzed. The stimulation is pH-dependent and is observed mainly between pH 7.5 and 10.5. Mg2+ binding to native alkaline phosphatase is characterized by a dissociation constant of 50 muM at pH 8.5,25 degrees. Binding of Zn2+ is an athermic process. Both the rate constants of association, ka, and of dissociation, kd, have low values. Typical values are 7 M(-1) at pH 8.0, 25 degrees, for ka and 4.10(-4) S(-1) at pH 8.0, 25 degrees, for kd. The on and off processes have high activation energies of 29 kcal mol (-1). Mg2+ can be replaced at its specific site by Mn2+, Co2+, Ni2+, and Zn2+. Zinc binding to the Mg2+ site inhibits the native alkaline phosphatase. Mn2+, Co2+, and Ni2+ also bind to the Mg2+ site with a stimulatory effect which is nearly identic-al with that of Mg2+, Mn2+ is the stimulatory cation which binds most tightly to the Mg2+ site; the dissociation constant of the Mn2+ kidney phosphatase complex is 2 muM at pH 8.5. The stoichiometry of Mn2+ binding has been found to be 1 eq of Mn2+ per mol of dimeric kidney phosphatase. The native enzyme displays absolute half-site reactivity for Mn2+ binding. Mg2+ binding site and the substrate binding sites are distinct sites. The Mg2+ stimulation corresponds to an allosteric effect. Mg2+ binding to its specific sites does not affect substrate recognition, it selectively affects Vmax values. Quenching of the phosphoenzyme formed under steady state conditions with [32P]AMP as a substrate as well as stopped flow analysis of the catalyzed hydrolysis of 2,4-dinitrophenyl phosphate or p-nitrophenyl phosphate have shown that the two active sites of the native and of the Mg2+-stimulated enzyme are not equivalent. Stopped flow analysis indicated that one of the two active sites was phosphorylated very rapidly whereas the other one was phosphorylated much more slowly at pH 4.2. Half of the sites were shown to be reactive at pH 8.0. Quenching experiments have shown that only one of the two sites is phosphorylated at any instant; this result was confirmed by the stopped flow observation of a burst of only 1 mol of nitrophenol per mol of dimeric phosphatase in the pre-steady state hydrolysis of p-nitrophenyl phosphate. The half-of-the-sites reactivity observed for the native and for the Mg2+-stimulated enzyme indicates that the same type of complex, the monophosphorylated complex, accumulates under steady state conditions with both types of enzymes. Mg2+ binding to the native enzyme at pH 8.0 increases considerably the dephosphorylation rate of this monophosphorylated intermediate. A possible mechanism of Mg2+ stimulation is discussed.  相似文献   

15.
Kinetic studies with myo-inositol monophosphatase from bovine brain   总被引:3,自引:0,他引:3  
A J Ganzhorn  M C Chanal 《Biochemistry》1990,29(25):6065-6071
The kinetic properties of myo-inositol monophosphatase with different substrates were examined with respect to inhibition by fluoride, activation or inhibition by metal ions, pH profiles, and solvent isotope effects. F- is a competitive inhibitor versus 2'-AMP and glycerol 2-phosphate, but noncompetitive (Kis = Kii) versus DL-inositol 1-phosphate, all with Ki values of approximately 45 microM. Activation by Mg2+ follows sigmoid kinetics with Hill constants around 1.9, and random binding of substrate and metal ion. At high concentrations, Mg2+ acts as an uncompetitive inhibitor (Ki = 4.0 mM with DL-inositol 1-phosphate at pH 8.0 and 37 degrees C). Activation and inhibition constants, and consequently the optimal concentration of Mg2+, vary considerably with substrate structure and pH. Uncompetitive inhibition by Li+ and Mg2+ is mutually exclusive, suggesting a common binding site. Lithium binding decreases at low pH with a pK value of 6.4, and at high pH with a pK of 8.9, whereas magnesium inhibition depends on deprotonation with a pK of 8.3. The pH dependence of V suggests that two groups with pK values around 6.5 have to be deprotonated for catalysis. Solvent isotope effects on V and V/Km are greater than 2 and 1, respectively, regardless of the substrate, and proton inventories are linear. These results are consistent with a model where low concentrations of Mg2+ activate the enzyme by stabilizing the pentacoordinate phosphate intermediate. Li+ as well as Mg2+ at inhibiting concentrations bind to an additional site in the enzyme-substrate complex. Hydrolysis of the phosphate ester is rate limiting and facilitated by acid-base catalysis.  相似文献   

16.
ATPase activities were measured in 10 mM MgCl2, 5 mM ATP, 1 mM ADP, and 1 microM FCCP with submitochondrial particles from bovine heart that had been stimulated by delta mu H+-forming substrates and with particles whose natural inhibitor protein was partially removed by heating. The activities were not linear with time. With both particles, the rate of ATP hydrolysis in the 7-fold greater than that in the steady state. Pre-steady-state and steady-state kinetic studies showed that the decrease of ATPase activity was due to the binding of ADP in a high-affinity site of the enzyme (K0.5 of 10 microM). Inhibition of ATP hydrolysis was accompanied by the binding of approximately 1 mol of ADP/mol of particulate F1; 10 microM ADP gave half-maximal binding. ADP could be replaced by IDP, but with an affinity 50-fold lower (K0.5 of 0.5 mM). Maximal inhibition by ADP and IDP was achieved in less than 5 s. Inhibition was enhanced by uncouplers. Even in the presence of pyruvate kinase and phosphoenolpyruvate, the rates of hydrolysis were about 2.5-fold higher in the first seconds of reaction than in the steady state. This decrease of ATPase activity also correlated with the binding of nearly 1 mol of ADP/mol of F1. This inhibitory ADP remained bound to the enzyme after several thousand turnovers. Apparently, it is possible to observe maximal rates of hydrolysis only in the first few catalytic cycles of the enzyme.  相似文献   

17.
Renin, a secretory glycoprotein, acquires phosphomannosyl residues   总被引:3,自引:2,他引:1       下载免费PDF全文
《The Journal of cell biology》1987,105(5):1947-1955
Renin is an aspartyl protease which is highly homologous to the lysosomal aspartyl protease cathepsin D. During its biosynthesis, cathepsin D acquires phosphomannosyl residues that enable it to bind to the mannose 6-phosphate (Man-6-P) receptor and to be targeted to lysosomes. The phosphorylation of lysosomal enzymes by UDP- GlcNAc:lysosomal enzyme N-acetylglucosaminylphosphotransferase (phosphotransferase) occurs by recognition of a protein domain that is thought to be present only on lysosomal enzymes. In order to determine whether renin, being structurally similar to cathepsin D, also acquires phosphomannosyl residues, human renin was expressed from cloned DNA in Xenopus oocytes and a mouse L cell line and its biosynthesis and posttranslational modifications were characterized. In Xenopus oocytes, the majority of the renin remained intracellular and underwent a proteolytic cleavage which removed the propiece. Most of the renin synthesized by oocytes was able to bind to a Man-6-P receptor affinity column (53%, 57%, and 90%, in different experiments), indicating the presence of phosphomannosyl residues. In the L cells, the majority of the renin was secreted but 5-6% of the renin molecules contained phosphomannosyl residues as demonstrated by binding of [35S]methionine- labeled renin to the Man-6-P receptor as well as direct analysis of [2- 3H]mannose-labeled oligosaccharides. Although the level of renin phosphorylation differed greatly between the two cell types examined, these results demonstrate that renin is recognized by the phosphotransferase and suggest that renin contains at least part of the lysosomal protein recognition domain.  相似文献   

18.
We determined some biochemical properties of Oulema melanopus larval gut proteases. We found adult midgut enzyme preparations yielded results similar to whole‐larval preparations, permitting studies of the very small whole‐larval preparations. Protein preparations were analyzed using FITC–casein as a substrate. Acidic pH is optimal for proteolytic activity (range 3.0–4.0). Cysteine protease activity increased at acidic pH and in the presence of β‐mercaptoethanol. Protease activities at all pH values were maximal at 45°C. Enzyme activity in larval preparations was inhibited by addition of Fe2+, Ca2+, Mg2+, Zn2+, and K+ (10 mM). Fe2+ and Zn2+ significantly decreased enzyme activity at all pH values, Ca2+ and Mg2+ at pH 6.2 and Mg2+ at pH 4.0. Inhibitors, including pepstatin A, showed the greatest inhibition at pH 4.0; phenylmethylsulfonyl fluoride, N‐p‐tosyl‐l‐phenylalanine chloromethyl ketone at pH 6.2; and phenylmethylsulfonyl fluoride, Nα‐tosyl‐l‐lysine chloromethyl ketone hydrochloride, N‐p‐tosyl‐l‐phenylalanine chloromethyl ketone, trans‐epoxysuccinyl‐l‐leucylamido‐(4‐guanidino) butane at pH of 7.6. Inhibition assays indicated that cysteine, aspartyl (cathepsin D), serine (trypsin, chymotrypsin‐like) proteases and metalloproteases act in cereal leaf beetle digestion.  相似文献   

19.
The Neurospora crassa plasma membrane H+-ATPase is inactivated by the periodate-oxidized nucleotides, oATP, oADP, and oAMP, with oAMP the most effective. Inhibition of the ATPase is essentially irreversible, because Sephadex G-50 column chromatography of the oAMP-treated ATPase does not result in a reversal of the inhibition. Inhibition of the ATPase by oAMP is protected against by the H+-ATPase substrate ATP, the product ADP, and the competitive inhibitors TNP (2',3'-O-(2,4,6-trinitrocyclohexadienylidine)-ATP and TNP-ADP, suggesting that oAMP inhibition occurs at the nucleotide binding site of the enzyme. The rate of inactivation of the ATPase by oAMP is only slightly affected by EDTA, indicating that the oAMP interaction with the nucleotide binding site of the H+-ATPase occurs in the absence of a divalent cation. The protection against oAMP inhibition by ADP is likewise unaffected by EDTA. The inhibition of the ATPase by oAMP is absolutely dependent on the presence of acidic phospholipids or acidic lysophospholipids known to be required for H+-ATPase activity, suggesting that these lipids either aid in the formation of the nucleotide binding site or render it accessible. Incubation of the ATPase with Mg2+ plus vanadate, which locks the enzyme in a conformation resembling the transition state of the enzyme dephosphorylation reaction, completely protects against inhibition by oAMP, suggesting that in this transition state conformation the nucleotide site either does not exist, or is inaccessible to oAMP. Labeling studies with [14C] oAMP indicate that the incorporation of 1 mol of oAMP is sufficient to cause complete inactivation of the ATPase.  相似文献   

20.
Protease activity was extracted from sea urchin sperm with 1% Triton X-100 and partially purified by DEAE-cellulose and Sephadex G-100 chromatography. The enzyme preferentially degraded histone H1, while showing only a weak activity toward other histones. Heat-denatured casein and bovine serum albumin were not digested by this enzyme under the present experimental conditions. This protease hydrolyzed only Boc-Val-Leu-Lys-MCA among various peptidyl-MCAs. The optimal pH ranged from 7 to 11. Its molecular weight was about 41,000. Among various known inhibitors of proteases, only omicron-phenanthroline effectively inhibited the activity. The enzyme was stimulated by Zn2+ or Co2+. It was inactivated by omicron-phenanthroline but could be reactivated by the addition of Zn2+ or Co2+. Therefore, this protease seems to be a metalloprotease dependent on Zn2+ or Co2+. The insensitivity of this enzyme to phosphoramidon and its very restricted substrate specificity suggest that this enzyme is very different from other metalloproteases described hitherto.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号