首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用温室土培试验,研究了不同氮磷钾复合型(NPK肥)施用水平下,油菜对B的吸收及其耐缺B机理以及缺B对某些生物学性状的影响,结果表明,缺B时,随NPK肥施用量的增加,油菜植株缺B症状加重,苗期叶面积及其生长速率减小,叶绿素含量增加,硝酸还原酶活性下降,成熟期单株有效分枝,有效角果数减少,籽粒产量降低,可以认为,油菜大苗期最新展开叶(YOL)与最新成熟叶(YML)的B浓度比值可作为不同基因型油菜植株体内B移动性大小的判氟指标,B移动性及B利用率的大小是不同基因型油菜耐缺B的重要营养机理之一。  相似文献   

2.
微量元素硼对林木生长的影响   总被引:1,自引:0,他引:1  
硼 (B)是植物生长过程中不可缺少的微量元素之一 ,它对植物中糖的运输、核酸与蛋白质的合成、光合作用、花粉萌发、受精和结实等均有作用。农业上对B的研究和应用较多。早在 192 3年英国人Warington[4 5] 就报道B对植物生长发育的重要性。此后 ,曾多人对此研究进行了较为详细的综述[33,34 ,36 ,4 3] 。我国低B和缺B土壤分布很广 ,主要分布在东部 ,尤其是东南部[9] 。在这些地区报道甘蓝型油菜、棉花和一些果树出现缺B症状 ,如甘蓝型油菜“花而不实”和棉花“蕾而无花”等。黑龙江省曾发现小麦、大麦、玉米、大豆、甜菜等严重…  相似文献   

3.
微量元素硼和锌在作物营养平衡中的作用   总被引:8,自引:3,他引:5  
许多土壤中B、Zn由于含量或有效性低而供给不足,成为作物营养平衡与大面积产量提高的重要限制因素。采取各种方法直接施用B、Zn,或者配制在尿素中施用,可以调节作物营养平衡,改善作物-环境生态关系,提高产量和品质。在水稻旱育苗地区还可把Zn配在育苗土壤调制剂中施用。在缺Zn褐土上,施入的Zn迅速转化为各种形态,其中碳酸盐结合态是有效Zn的主要仓库。配合施用P肥对Zn的有效性无不良影响,Zn与N、P配合施用有益于作物营养平衡。  相似文献   

4.
晚香玉 (Polianthestuberosa)是良好的观花及香料植物 ,花可提取珍贵的化妆品用的香精[5] ,出口量大 ,并且有逐年上升的趋势。Bankar等[5] 研究了晚香玉的营养特性 ;Yadav[6] 研究了球茎大小与栽植深度对生长和开花的影响。我国尚未见在特定的土壤上大面积栽培晚香玉的合理施肥与改土的报道。根据沙性无石灰潮土保水性差 ,干旱时土壤严重板结的特点 ,本试验应用具有保水、保肥、增大孔隙度的高吸水树脂[1~ 3 ] ,以不同的比例混于土壤 ,并施用不同比例的NPK肥 ,运用通用回归旋转设计 ,以确定适宜的高吸水树…  相似文献   

5.
云南地方稻核心种质耐低磷特性研究   总被引:16,自引:0,他引:16  
1引言磷是作物的必需性营养元素,人类将面临农业可持续发展与磷素资源严重短缺的矛盾[17].土壤普查结果表明,全国有59%以上的土壤缺磷[1].为了提高作物产量,生产中通过施用磷肥来解决土壤缺磷的问题.由于磷肥利用率低,不仅增加生产成本,还带来资源短缺、环境污染及食品安全等诸多问题[21,26].发掘水稻利用磷的内在潜力,培育磷高效利用新品种,可减少磷的施用量.近年来,野生或地方稻绿色基因发掘及改良进展显著,如资源高效利用[22~24]、高产基因[3,20,27]和抗性基因[2,13]等,利用植物基因型间磷元素利用效率的差异,筛选和培育磷高效基因型作物…  相似文献   

6.
酸性土壤上缺磷和铝毒对大豆生长的交互作用   总被引:3,自引:0,他引:3  
以7个磷效率不同的大豆基因型为材料,通过土壤盆栽试验进行石灰和磷肥处理,研究酸性土壤上缺磷和铝毒对大豆生长的交互影响及其基因型差异.结果表明:缺磷和铝毒是酸性土壤上同时存在的影响大豆生长的主要障碍因子,其中铝毒对大豆生长的限制更为严重;缺磷和铝毒对酸性土壤上大豆生长的影响具有显著的交互作用.同时施用石灰(降低铝毒)和磷肥(提高磷有效性)比单施石灰或单施磷肥处理对大豆生长的促进效果更显著;缺磷和铝毒对大豆磷吸收的影响远大于对氮、钾吸收的影响.合理种植大豆对酸性土壤具有较好的改良作用.同时施用石灰[1.103 g Ca(OH)2·kg-1土]和磷肥(2.018 g KH2PO4·kg-1土)可使酸性土壤pH值平均提高38.4%,交换性铝含量降低96.3%,有效磷含量提高3223.8%.种植磷高效大豆基因型比磷低效大豆基因型对酸性土壤的改良效果更好.  相似文献   

7.
不同硼效率甘蓝型油菜品种细胞壁中硼的分配   总被引:11,自引:0,他引:11  
应用不同硼效率甘蓝型油菜品种 ,研究硼在细胞壁中的分配。硼主要结合在细胞壁中 ,缺硼显著提高硼在细胞壁中的分配比例。根系细胞壁硼含量显著低于叶片 ,但根系细胞壁硼占根系总硼量之比例显著高于叶片。同一品种根系及其细胞壁、老叶细胞壁硼含量受生育期影响较小 ,新叶及其细胞壁、老叶硼含量受生育期影响较大。在正常供硼条件下 ,硼高效品种根系细胞壁和叶片细胞壁硼含量均低于低效品种 ;正常和缺硼条件下 ,硼高效品种细胞壁硼占器官总硼量之比例均低于低效品种。说明硼低效品种需较多的硼构建细胞壁。  相似文献   

8.
农田生态系统中 ,营养元素循环与平衡的研究已经受到许多学者的广泛关注 ,主要集中于N ,P ,K三要素的研究[1 ,2 ] 。微量元素养分循环的研究虽有一些报道[3 ,4] ,但主要集中于B和Zn元素 ,而对Mn的研究尚未见报道。微量元素Mn具有植物营养和污染危害双重作用。在我国 ,Mn肥的应用研究 ,包括肥效、施肥技术、丰缺诊断等已取得较大进展 ,Mn对环境污染及危害影响研究也取得了一些成果。随着Mn肥应用面积日益扩大 ,研究其在土壤 植物系统中循环与平衡 ,以维持Mn肥对作物适量供应 ,促进农田生态系统Mn肥的良性循环以及控制土…  相似文献   

9.
张敏  谢运球 《生态科学》2007,26(4):367-373
硼和镉两种元素是影响油菜产量和品质的两个重要因素.硼是植物生长所必需的微量元素,施硼是油菜种植的必需环节;镉是植物生长的非必要元素,易在油菜体内富集,可能通过食物链危害人体健康.本文主要从镉含量与油菜食品安全品质角度考虑,阐述了油菜对镉的积累和耐受机制;同时,概括了前人总结的硼对油菜的产量和品质的影响.最后,结合本人研究区广西地区土壤有效硼含量低,全镉含量高的现状,提出运用硼镉交互作用机理,通过施加适量硼肥,提高油菜的产量和品质,消除土壤镉的潜在危害,从本质上改善该地区土壤存在的低硼高镉现状.  相似文献   

10.
本试验通过水培和土培试验的方法,研究了缺硼对棉花、油菜和黄瓜乙烯释放的影响。结果表明:缺硼条件下,棉花、黄瓜乙烯释放量显著增加,而油菜无论缺硼和正常硼条件下,乙烯释放量较低且没有明显差异,乙烯释放量的增加对棉花和黄瓜的生长发育有抑制作用;喷施乙烯合成抑制剂和乙烯生理效应抑制剂在一定程度上能减轻棉花和黄瓜的缺硼症状。黄瓜水培结果表明:在黄瓜缺硼症状出现前,乙烯释放量没有明显增加,随着缺硼时间的延长,缺硼症状的出现,乙烯释放量显著增加,因而乙烯释放量的增加不是缺硼导致黄瓜生理失调的直接反应。  相似文献   

11.
通过土培试验,研究了土壤水分和供硼状况对不同硼效率油菜苗期生长、叶片水分含量和硼形态的影响.结果表明:低水分胁迫条件下,硼高效甘蓝品种和硼低效甘蓝品种在高供硼水平下的单株鲜质量比低供硼水平分别增加了43.1%和31.7%,但品种间没有显著差异;硼高效品种在两种供硼水平下的束缚态水分含量分别比低效品种高11.4%和1.7%,半束缚态硼分配比例分别比低效品种高6.9%和23.8%.正常水分条件下,硼高效甘蓝品种和硼低效甘蓝品种在高供硼水平下的单株鲜质量比低供硼水平分别增加了11.1%和27.4%;硼高效品种在两种供硼水平下的自由态水分含量较硼低效品种多,自由态硼累积量为低效品种的2倍多,这有利于硼在高效植物体内的移动运输.  相似文献   

12.
The role of nitrogen-efficient cultivars in sustainable agriculture   总被引:4,自引:0,他引:4  
To improve nitrogen (N) efficiency in agriculture, integrated N management strategies that take into consideration improved fertilizer, soil, and crop management practices are necessary. This paper reports results of field experiments in which maize (Zea mays L.) and oilseed rape (Brassica napus L.) cultivars were compared with respect to their agronomic N efficiency (yield at a given N supply), N uptake efficiency (N accumulation at a given N supply), and N utilization efficiency (dry matter yield per unit N taken up by the plant). Under conditions of high N supply, significant differences among maize cultivars were found in shoot N uptake, soil nitrate depletion during the growing season, and the related losses of nitrate through leaching after the growing season. Experiments under conditions of reduced N supply indicated a considerable genotypic variation in reproductive yield formation of both maize and oilseed rape. High agronomic efficiency was achieved by a combination of high uptake and utilization efficiency (maize), or exclusively by high uptake efficiency (rape). N-efficient cultivars of both crops were characterized by maintenance of a relatively high N-uptake activity during the reproductive growth phase. In rape this trait was linked with leaf area and photosynthetic activity of leaves. We conclude that growing of N-efficient cultivars may serve as an important element of integrated nutrient management strategies in both low- and high-input agriculture.  相似文献   

13.
Oilseed rape (Brassica napus L.) reacts differently to foliar application of sulfur (S) and boron (B), and for that reason it is important to find an early indicator that would inform about the direction of this reaction. This study aimed at evaluating the early response of two double-low cultivars of winter oilseed rape: hybrid (Nelson) and open pollinated (Digger) on the foliar fertilization with S and B in two terms: fall and spring, based on the rate of leaf greenness index (SPAD) and seven indicators of chlorophyll a fluorescence (FL). On 7th or 9th day after the application of liquid fertilizers, the selected parameters of FL and SPAD were determined on the leaves of rape. As a result, a significant effect of foliar B and S supplementation on the yield of oilseed rape was found. Principal component analysis (PCA) allowed for a separation for each of the cultivars the two parameters of FL, namely Tfm and Fv/F0, which are sensitive indicators of a physiological state of the rape plants shortly after foliar S and B dressing.  相似文献   

14.
Oilseed rape (Brassica napus L.) is one of the most important oilseed crops in temperate climates. Erysiphe cruciferarum is an important disease of oilseed rape and causes crop loss in warmer areas of Europe. The research investigated the effect of nitrogen fertilizer and fungicidal treatment against powdery mildew infection caused by E. cruciferarum of oilseed rape on seed components, including protein, oil, oleic acid, linolenic acid and undesirable substances such as sinapic acid esters (SAE) and glucosinolates (GSL), using near infrared spectroscopy (NIRS). Five susceptible oilseed rape varieties were employed in this research using four treatment groups: no nitrogen fertilization and no fungicidal treatment (N0–F0); no nitrogen fertilization but fungicidal treatment (N0–F1); and nitrogen fertilization but no fungicidal treatment (N1–F0); nitrogen fertilization and fungicidal treatment (N1–F1). Nitrogen fertilization increased the protein, but lowered the oil content, of the seeds. Fungicidal treatments significantly increased oil contents in all varieties tested, however reduced protein levels in fertilized and non-fertilized plots. The level of linolenic acid did not change significantly in any plots of any treatment combinations; a similar result was observed in the level of oleic acid in most of the genotypes. Nitrogen fertilization increased GSL and SAE levels, whereas fungicidal treatment had no effect. Our findings demonstrated that nitrogen fertilization can markedly influence some quality parameters in oilseed rape; however, the application of fungicides reduced side effects of nitrogen fertilizer and resulted a reduction on GSL, SAE and protein contents but an increase on total oil and oleic acid contents.  相似文献   

15.
The cabbage stem flea beetle (CSFB), Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae), is one of the most important pests in European winter oilseed rape production. Adult beetles feed on young leaves whereas larvae mine within the petioles and stems. Larval infestation can cause significant crop damage. In this study, the host quality for CSFB of four oilseed rape (Brassica napus L.) cultivars and seven other brassicaceous species with different glucosinolate (GSL) profiles was assessed under controlled conditions. Larval instar weights and mortality were measured after 14 and 21 days of feeding in the petioles of test plants. To study the impact of GSL on the performance of larvae, the GSL contents in petioles from non-infested and infested plants were analysed before, and 21 days after, the start of larval infestation. Larval performance was not significantly different between the four cultivars of oilseed rape, but differed considerably among the other brassicaceous species tested. In comparison to the weight of larvae in the standard B. napus cv. Robust, the larval weight was higher in turnip rape (Brassica rapa L. var. silvestris) and significantly reduced in white mustard (Sinapis alba L.), oil radish (Raphanus sativa L. var. oleiformis), and cabbage (Brassica oleracea L. convar. capitata var. alba). The duration of larval development increased in white mustard and oilseed radish. The GSL profiles of the petioles showed little difference between non-infested and infested plants of oilseed rape whereas the content of aliphatic GSL increased in the infested turnip rape plants. In contrast, the aliphatic and benzenic GSL decreased in infested Indian rape (B. rapa subsp. dichotoma Roxb.). Larval weight was not correlated with the total GSL content of plants, neither before infestation nor 21 days after. Larval weight was positively correlated with progoitrin and 4-hydroxyglucobrassicin. White mustard, which provides inferior host quality for larval development, has the potential to introduce insect resistance into high-yielding oilseed rape cultivars in breeding programmes.  相似文献   

16.
The genetic control of self-incompatibility in Brassica napus was investigated using crosses between resynthesized lines of B. napus and cultivars of oilseed rape. These crosses introduced eight C-genome S alleles from Brassica oleracea (S16, S22, S23, S25, S29, S35, S60, and S63) and one A-genome S allele from Brassica rapa (SRM29) into winter oilseed rape. The inheritance of S alleles was monitored using genetic markers and S phenotypes were determined in the F1, F2, first backcross (B1), and testcross (T1) generations. Two different F1 hybrids were used to develop populations of doubled haploid lines that were subjected to genetic mapping and scored for S phenotype. These investigations identified a latent S allele in at least two oilseed rape cultivars and indicated that the S phenotype of these latent alleles was masked by a suppressor system common to oilseed rape. These latent S alleles may be widespread in oilseed rape varieties and are possibly associated with the highly conserved C-genome S locus of these crop types. Segregation for S phenotype in subpopulations uniform for S genotype suggests the existence of suppressor loci that influenced the expression of the S phenotype. These suppressor loci were not linked to the S loci and possessed suppressing alleles in oilseed rape and non-suppressing alleles in the diploid parents of resynthesized B. napus lines.  相似文献   

17.
探讨大气CO2浓度和水分变化对3种典型绿肥植物光合性能及水分利用效率的影响,可为未来气候变化情形下草地生态系统适应性管理提供理论支持。本试验利用可精准控制CO2浓度的人工气候室,设置400(自然大气)和800 μmol·mol-1(倍增)两个CO2浓度,80%土壤田间持水量(FC)(充分灌水对照)、55%~60%FC(轻度水分亏缺)、35%~40%FC(中度水分亏缺)、<35%FC(重度水分亏缺)4个水分梯度,研究CO2浓度增加和水分亏缺对甘蓝型油菜、白三叶和紫花苜蓿叶绿素含量、气体交换参数及水分利用效率(WUE)的影响。结果表明: 同一CO2浓度下,与充分灌水对照相比,当土壤水分<40%FC时,3种植物的叶绿素含量和气体交换参数均显著降低;土壤水分为55%~60%FC时,3种植物的叶绿素总含量无显著变化,而白三叶和紫花苜蓿的光合速率(Pn)、蒸腾速率(Tr)降低了6%~25%,但WUE无显著性差异。与大气CO2浓度相比,CO2浓度倍增使充分灌水处理下甘蓝型油菜的Pn显著降低了21.5%,而显著增加了轻度水分亏缺下3种植物的Pn,且增加了中度水分亏缺下甘蓝型油菜和紫花苜蓿的Pn,但只对重度水分亏缺下紫花苜蓿的Pn有所改善;CO2浓度倍增显著增加了白三叶和紫花苜蓿在所有水分处理下的WUE,但只增加了甘蓝型油菜在轻度水分亏缺下的WUE。CO2浓度和水分的交互作用对3种植物的Pn均有显著影响,但仅对甘蓝型油菜的WUE有显著影响。综上,3种植物对大气CO2浓度倍增和水分亏缺的响应存在明显差异,CO2浓度升高能改善轻度水分亏缺对3种植物光合性能和WUE的不利影响,但只改善了重度水分亏缺下紫花苜蓿的光合性能。  相似文献   

18.
Direct field emissions of nitrous oxide (N2O) may determine whether biodiesel from oilseed rape (Brassica napus L.) fulfills the EU requirement of at least 50% reduction of greenhouse gas emissions as compared to fossil diesel. However, only few studies have documented fertilizer N emission factors (EF) and mitigation options for N2O emissions from oilseed rape cropping systems. We conducted a field experiment with three N levels (0, 171, and 217 kg/ha), where the N fertilizer was applied as ammonium sulfate nitrate with or without the nitrification inhibitor 3,4‐dimethylpyrazole phosphate (DMPP). N2O fluxes were measured using static chambers technique and soil samples were analyzed for water and mineral N content during a monitoring period of 368 days. The DMPP treatments showed a significantly increased level of ammonium () for up to 18 weeks after spring fertilization as compared to the treatments without DMPP. However, this difference did not result in a corresponding decrease in soil content, and no differences in cumulative N2O emissions were found between any fertilized treatments with or without DMPP (mean, 1.26 kg N2O‐N ha?1 year?1). More field experiments are needed to clarify whether DMPP‐coated mineral fertilizers could mitigate N2O emissions under different weather conditions, for example, under conditions where fertilization events concurred with rainfall events increasing water‐filled pore space to the assumed 60% threshold for denitrification. Emission factors for mineral N fertilizer were 0.28%–0.36% with a mean of 0.32% across the fertilized treatments. These data concur with recent European studies suggesting that the EF for mineral N fertilizers in oilseed rape cropping systems may typically be lower than the default IPCC value of 1%. Further studies are needed to consolidate an EF for oilseed rape under temperate conditions, which will be determining for the sustainability of Northern European oilseed rape cultivation for biodiesel.  相似文献   

19.
根肿病是由芸薹根肿菌侵染引起的专性寄生性土传病害,严重制约着油菜等十字花科作物的可持续生产.前期研究发现,大豆作为前茬作物可以显著降低后茬油菜根肿病的发生和危害,"豆-油轮作"模式是一种值得探索和应用的根肿病防治新途径.为了解开大豆作为前茬防治根肿病发生的机理,本研究基于扩增子测序技术探究大豆与油菜根际土壤微生物的群落结构差异.结果表明:大豆和油菜根际土壤微生物类群在门水平的优势类群相同,包括变形菌门、拟杆菌门、酸杆菌门、放线菌门、子囊菌门、接合菌门、担子菌门和壶菌门等丰度都较高.但相比于油菜根际土壤,大豆根际土壤富含具有生防作用和促进植物生长的微生物,如黄杆菌属、鞘脂单胞菌属、芽孢杆菌属、链霉菌属、假单胞菌属、木霉属和盾壳霉属等;而一些植物病原细菌(如肠杆菌、黄单胞菌)和真菌(炭疽菌和尾孢菌)含量则低于油菜根际土壤;另外,大豆根际土壤中还富含具有固氮功能的根瘤菌属、慢生根瘤菌属和丛枝菌根真菌(如球囊霉属).可见,大豆根际土壤利于有益微生物生长并可抑制病原菌繁殖.大豆和油菜根际微生物组差异为大豆-油菜轮作防治根肿病提供了理论依据,并为根肿病的防治提供了一些潜在的生物防治资源.  相似文献   

20.
Oilseed rape is one of the leading feedstocks for biofuel production in Europe. The climate change mitigation effect of rape methyl ester (RME) is particularly challenged by the greenhouse gas (GHG) emissions during crop production, mainly as nitrous oxide (N2O) from soils. Oilseed rape requires high nitrogen fertilization and crop residues are rich in nitrogen, both potentially causing enhanced N2O emissions. However, GHG emissions of oilseed rape production are often estimated using emission factors that account for crop‐type specifics only with respect to crop residues. This meta‐analysis therefore aimed to assess annual N2O emissions from winter oilseed rape, to compare them to those of cereals and to explore the underlying reasons for differences. For the identification of the most important factors, linear mixed effects models were fitted with 43 N2O emission data points deriving from 12 different field sites. N2O emissions increased exponentially with N‐fertilization rates, but interyear and site‐specific variability were high and climate variables or soil parameters did not improve the prediction model. Annual N2O emissions from winter oilseed rape were 22% higher than those from winter cereals fertilized at the same rate. At a common fertilization rate of 200 kg N ha?1 yr?1, the mean fraction of fertilizer N that was lost as N2O‐N was 1.27% for oilseed rape compared to 1.04% for cereals. The risk of high yield‐scaled N2O emissions increased after a critical N surplus of about 80 kg N ha?1 yr?1. The difference in N2O emissions between oilseed rape and cereal cultivation was especially high after harvest due to the high N contents in oilseed rape's crop residues. However, annual N2O emissions of winter oilseed rape were still lower than predicted by the Stehfest and Bouwman model. Hence, the assignment of oilseed rape to the crop‐type classes of cereals or other crops should be reconsidered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号