首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differences in RNA patterns of influenza A viruses.   总被引:44,自引:24,他引:20       下载免费PDF全文
Analysis of the segmented RNAs of influenza A viruses by electrophoresis on polyacrylamide urea slab gels has provided a method for sharper resolution of the number and migration rates of different segments than previously has been possible. Using this system, the RNA genome of influenza A/WSN (HON1) virus can be separated into seven to nine separate bands, depending on whether virus is obtained after high or low multiplicity of infection, and the genome of influenza A/PR/8 (HON1) virus can be resolved into eight bands, six of which migrate differently from comparable RNA bands of WSN virus. Comparision of the RNA patterns produced by influenza A/PR/8 (HON1) and A/England/42/72 (H8n2) virus also reveals major differences in migration speeds of different bands, and analysis of the RNAs of the RNAs of an HON2 recombinant virus derived from these two strains permits the identification of RNA segments which have been derived from one particular parent. By extension of these techniques, it may be possible to define which RNA segment codes for each viral protein and to analyze recombinant strains to identify which genes have been derived from each of its parents.  相似文献   

2.
The RNAs of influenza virus recombinants were analyzed on polyacrylamide gels under conditions in which the derivation of specific RNA segments (including those coding for hemagglutinin and neuraminidase) could be determined. Analysis of the RNAs of recombinant viruses with identical hemagglutinin and neuramindase revealed that the derivation of the remaining genes could be influenced by UV irradiation of one of the parent viruses. In five of seven such recombinants all of the remaining identifiable genes were derived from the nonirradiated parent, whereas in two others only the three largest RNA segments were derived from the nonirradiated parent. Analysis of the RNA pattern of a recombinant isolated from mixed infection in which neither parent was irradiated demonstrated a random mixture of RNA segments derived from the two parent viruses.  相似文献   

3.
It was shown that all eight RNA segments of influenza B viruses are most likely monocistronic and code for eight virus-specific polypeptides. A genetic map of the influenza B virus genome was established, and six polypeptides (P1 protein, nucleoprotein, hemagglutinin, neuraminidase, M protein, and nonstructural protein) were unambiguously assigned to specific RNA segments. Molecular weight estimates of the eight individual genes are obtained by using the glyoxal method. These results suggest that each influenza B virus RNA segment has a greater molecular weight than the influenza A virus RNA segment which codes for the analogous gene product.  相似文献   

4.
An avian influenza A virus, A/Mallard/NY/6750/78(H2N2), was restricted in in replication in the respiratory tract of squirrel monkeys. Avian-human influenza A reassortant viruses possessing the six RNA segments coding for nonsurface proteins (i.e., internal genes) of this avian virus were as restricted in replication in squirrel monkeys as their avian influenza parent. These findings indicated that restriction of replication of the avian influenza virus is a function of one or more of its internal genes. For an investigation of which of the avian influenza genes was responsible for restricted replication in the respiratory tract of primates, reassortant viruses were produced that contained human influenza virus surface antigens from the A/Udorn/72(H3N2) virus and one or more of the internal genes derived from the avian influenza virus parent. Avian-human reassortant influenza A viruses containing only the nucleoprotein or matrix protein RNA segment from the avian influenza virus parent were as restricted in their growth as an avian-human influenza reassortant virus containing each of the six avian influenza internal genes. In addition, an avian-human influenza reassortant virus possessing only the avian RNA 1 and nonstructural genes (which by themselves do not specify restricted replication) manifested a significant reduction of virus replication in squirrel monkey tracheas. Thus, the avian nucleoprotein and matrix genes appear to play a major role in the host range restriction exhibited by the A/Mallard/78 virus and its reassortants, but the combination of RNA 1 and nonstructural genes also contributes to restriction of replication.  相似文献   

5.
Recently, an avian influenza A virus (A/Hong Kong/156/97, H5N1) was isolated from a young child who had a fatal influenza illness. All eight RNA segments were of avian origin. The H5 hemagglutinin is not recognized by neutralizing Abs present in humans as a result of infection with the human H1, H2, or H3 subtypes of influenza A viruses. Subsequently, five other deaths and several more human infections in Hong Kong were associated with this avian-derived virus. We investigated whether influenza A-specific human CD8+ and CD4+ T lymphocytes would recognize epitopes on influenza A virus strains derived from swine or avian species, including the 1997 H5N1 Hong Kong virus strains. Our results demonstrate that adults living in an urban area of the U.S. possess influenza A cross-serotype reactive CD8+ and CD4+ CTL that recognize multiple epitopes on influenza A viruses of other species. Bulk culture cytotoxicity was demonstrated against avian and human influenza A viruses. Enzyme-linked immunospot assays detected precursor CTL specific for both human CTL epitopes and the corresponding A/HK/97 viral sequences. We hypothesize that these cross-reactive CTL might provide partial protection to humans against novel influenza A virus strains introduced into humans from other species.  相似文献   

6.
In contrast to influenza A and B viruses, which encode their matrix (M) proteins via an unspliced mRNA, the influenza C virus M protein appears to be coded for by a spliced mRNA from RNA segment 6. Although an open reading frame in RNA segment 6 of influenza C/JJ/50 virus could potentially code for a protein of 374 amino acids, a splicing event results in an mRNA coding for a 242-amino-acid M protein. The message for this protein represents the major M gene-specific mRNA species in C virus-infected cells. Despite the difference in coding strategies, there are sequence homologies among the M proteins of influenza A, B, and C viruses which confirm the evolutionary relationship of the three influenza virus types.  相似文献   

7.
In 1997, an H5N1 influenza virus outbreak occurred in chickens in Hong Kong, and the virus was transmitted directly to humans. Because there is limited information about the avian influenza virus reservoir in that region, we genetically characterized virus strains isolated in Hong Kong during the 1997 outbreak. We sequenced the gene segments of a heterogeneous group of viruses of seven different serotypes (H3N8, H4N8, H6N1, H6N9, H11N1, H11N9, and H11N8) isolated from various bird species. The phylogenetic relationships divided these viruses into several subgroups. An H6N1 virus isolated from teal (A/teal/Hong Kong/W312/97 [H6N1]) showed very high (>98%) nucleotide homology to the human influenza virus A/Hong Kong/156/97 (H5N1) in the six internal genes. The N1 neuraminidase sequence showed 97% nucleotide homology to that of the human H5N1 virus, and the N1 protein of both viruses had the same 19-amino-acid deletion in the stalk region. The deduced hemagglutinin amino acid sequence of the H6N1 virus was most similar to that of A/shearwater/Australia/1/72 (H6N5). The H6N1 virus is the first known isolate with seven H5N1-like segments and may have been the donor of the neuraminidase and the internal genes of the H5N1 viruses. The high homology between the internal genes of H9N2, H6N1, and the H5N1 isolates indicates that these subtypes are able to exchange their internal genes and are therefore a potential source of new pathogenic influenza virus strains. Our analysis suggests that surveillance for influenza A viruses should be conducted for wild aquatic birds as well as for poultry, pigs, and humans and that H6 isolates should be further characterized.  相似文献   

8.
RNAs of influenza A, B, and C viruses.   总被引:29,自引:20,他引:9       下载免费PDF全文
The nucleic acids of influenza A, B, and C viruses were compared. Susceptibility to nucleases demonstrates that influenza C virus, just as influenza A and B viruses, possesses single-stranded RNA as its genome. The base compositions of the RNAs of influenza A, B, and influenza C virus are almost identical and comparative analysis on polyacrylamide gels shows that the genome of influenza C/GL/1167/54 virus, like that of the RNAs of influenza A and B viruses, is segmented. Eight distinct RNA bands were found for influenza A/PR/8/34 virus and for influenza B/Lee/40 virus. The RNA of influenza C/GL/1167/54 virus separated into at least four segments. The total molecular weights of the RNA of influenza A/PR/8/34 and B/Lee/40 virus were calculated to be 5.29 X 10(6) and 6.43 X 10(6), respectively. A minimum value of 4.67 X 10(6) daltons was obtained for influenza C/GL/1167/54 virus RNA. The data suggest that influenza C viruses are true members of the influenza virus group.  相似文献   

9.
In 1990, Palese and colleagues established a method (reverse genetics) that allowed one to generate influenza virus containing a gene segment derived from cloned cDNA. Although this method contributed tremendously to our understanding of influenza pathogenesis, the requirement of helper viruses limited its use in many experimental settings. Recently, we and others established systems for the generation of influenza viruses entirely from cloned cDNAs. These systems require only DNA cloning and transfection techniques, and can therefore be easily implemented by laboratories working in the fields of molecular biology and virology. Thus, for the first time, a system is now available that allows highly efficient generation of influenza virus without technical limitations. Using this technology, we generated the same strain of H5N1 influenza viruses that caused an outbreak in Hong Kong in 1997, killing six people.  相似文献   

10.
Gao Q  Brydon EW  Palese P 《Journal of virology》2008,82(13):6419-6426
Influenza viruses are classified into three types: A, B, and C. The genomes of A- and B-type influenza viruses consist of eight RNA segments, whereas influenza C viruses only have seven RNAs. Both A and B influenza viruses contain two major surface glycoproteins: the hemagglutinin (HA) and the neuraminidase (NA). Influenza C viruses have only one major surface glycoprotein, HEF (hemagglutinin-esterase fusion). By using reverse genetics, we generated two seven-segmented chimeric influenza viruses. Each possesses six RNA segments from influenza virus A/Puerto Rico/8/34 (PB2, PB1, PA, NP, M, and NS); the seventh RNA segment encodes either the influenza virus C/Johannesburg/1/66 HEF full-length protein or a chimeric protein HEF-Ecto, which consists of the HEF ectodomain and the HA transmembrane and cytoplasmic regions. To facilitate packaging of the heterologous segment, both the HEF and HEF-Ecto coding regions are flanked by HA packaging sequences. When introduced as an eighth segment with the NA packaging sequences, both viruses are able to stably express a green fluorescent protein (GFP) gene, indicating a potential use for these viruses as vaccine vectors to carry foreign antigens. Finally, we show that incorporation of a GFP RNA segment enhances the growth of seven-segmented viruses, indicating that efficient influenza A viral RNA packaging requires the presence of eight RNA segments. These results support a selective mechanism of viral RNA recruitment to the budding site.  相似文献   

11.
The A/teal/Hong Kong/W312/97 (H6N1) influenza virus and the human H5N1 and H9N2 influenza viruses possess similar genes encoding internal proteins, suggesting that H6N1 viruses could become novel human pathogens. The molecular epidemiology and evolution of H6 influenza viruses were characterized by antigenic and genetic analyses of 29 H6 influenza viruses isolated from 1975 to 1981 and 1997 to 2000. Two distinct groups were identified on the basis of their antigenic characteristics. Phylogenetic analysis revealed that all H6N1 viruses isolated from terrestrial poultry in 1999 and 2000 are closely related to A/teal/Hong Kong/W312/97 (H6N1), and the nucleotide sequences of these viruses and of A/Hong Kong/156/97 (H5N1) were more than 96% homologous. The hemagglutinin (HA) of the 1999 and 2000 terrestrial viruses does not have multiple basic amino acids at the site of cleavage of HA1 to HA2; however, a unique insertion of aspartic acid in HA1 between positions 144 and 145 (H3 numbering) was found. The neuraminidase of these terrestrial H6N1 viruses has a deletion of 19 amino acids characteristic of A/Hong Kong/156/97 (H5N1). Evolutionary analysis suggested that these H6N1 viruses coevolved with A/quail/Hong Kong/G1/97-like H9N2 viruses and became more adapted to terrestrial poultry. These terrestrial 1999 and 2000 A/teal/Hong Kong/W312/97 (H6N1)-like viruses, along with the H9N2 viruses, could have been involved in the genesis of the pathogenic H5N1 influenza viruses of 1997. The presence of H6N1 viruses in poultry markets in Hong Kong that possess seven of the eight genes of the A/Hong Kong/156/97 (H5N1) virus raises the following fundamental questions relevant to influenza pandemic preparedness: could the pathogenic H5N1 virus reemerge and could the H6N1 viruses directly cross the species barrier to mammals?  相似文献   

12.
A current view of the emergence of pandemic influenza viruses envisages a gene flow from the aquatic avian reservoir to humans via reassortment in pigs, the hypothetical "mixing vessel." Understanding arising from recent H5N1 influenza outbreaks in Hong Kong since 1997 and the isolation of avian H9N2 virus from humans raises alternative options for the emergence of a new pandemic virus. Here we report that H9N2 influenza viruses established in terrestrial poultry in southern China are transmitted back to domestic ducks, in which the viruses generate multiple reassortants. These novel H9N2 viruses are double or even triple reassortants that have amino acid signatures in their hemagglutinin, indicating their potential to directly infect humans. Some of them contain gene segments that are closely related to those of A/Hong Kong/156/97 (H5N1/97, H5N1) or A/Quail/Hong Kong/G1/97 (G1-like, H9N2). More importantly, some of their internal genes are closely related to those of novel H5N1 viruses isolated during the outbreak in Hong Kong in 2001. This study reveals a two-way transmission of influenza virus between terrestrial and aquatic birds that facilitates the generation of novel reassortant H9N2 influenza viruses. Such reassortants may directly or indirectly play a role in the emergence of the next pandemic virus.  相似文献   

13.
Influenza A virus genomes are composed of eight negative sense RNAs. In total, 16 proteins encoded by eight positive sense RNAs were identified. One putative protein coding sequence (PCS) encoded by genomic strand RNA of segment 8 has been previously proposed. In this study, 95,608, 123,965 and 35,699 genomic strand RNA sequences from influenza A viruses from avian, human and mammalian hosts, respectively, were used to identify PCSs encoded by the genomic strand RNAs. In total, 326,069 PCSs with lengths equal to or longer than 80 amino acids were identified and clustered into 270 PCS groups. Twenty of the 270 PCS groups which have greater than 10% proportion in influenza A viruses from avian, human or mammalian hosts were selected for detailed study. Maps of the 20 PCSGs in the influenza A virus genomes were constructed. The proportions of the 20 PCSGs in influenza A viruses from different hosts and serotypes were analyzed. One secretory and five membrane proteins predicted from the PCS groups encoded by genomic strand RNAs of segments 1, 2, 4, 6, 7 and 8 were identified. These results suggest the possibility of the ambisense nature of the influenza A virus genomic RNAs and a potential coding sequence reservoir encoding potential pan proteomes of influenza A viruses.  相似文献   

14.
High-efficiency formation of influenza virus transfectants.   总被引:35,自引:29,他引:6       下载免费PDF全文
M Enami  P Palese 《Journal of virology》1991,65(5):2711-2713
cDNA-derived RNAs were introduced into the genomes of influenza viruses by using an improved ribonucleoprotein (RNP) transfection protocol. Up to 10(5) viral transfectants with a novel neuraminidase gene could be obtained by using a 35-mm dish (10(6) cells) for RNP transfection. In addition to genes coding for surface proteins (hemagglutinin and neuraminidase), we also exchanged a gene coding for nonsurface proteins. The cDNA-derived influenza A/PR/8/34 virus NS gene was introduced into a temperature-sensitive mutant with a defect in this gene. We suggest that the term influenza virus transfectant be used for those viruses which are made by RNP transfection with cDNA-derived RNA.  相似文献   

15.
At the final step in viral replication, the viral genome must be incorporated into progeny virions, yet the genomic regions required for this process are largely unknown in RNA viruses, including influenza virus. Recently, it was reported that both ends of the neuraminidase (NA) coding region are critically important for incorporation of this vRNA segment into influenza virions (Y. Fujii, H. Goto, T. Watanabe, T. Yoshida, and Y. Kawaoka, Proc. Natl. Acad. Sci. USA 100:2002-2007, 2003). To determine the signals in the hemagglutinin (HA) vRNA required for its virion incorporation, we made a series of deletion constructs of this segment. Subsequent analysis showed that 9 nucleotides at the 3' end of the coding region and 80 nucleotides at the 5' end are sufficient for efficient virion incorporation of the HA vRNA. The utility of this information for stable expression of foreign genes in influenza viruses was assessed by generating a virus whose HA and NA vRNA coding regions were replaced with those of vesicular stomatitis virus glycoprotein (VSVG) and green fluorescent protein (GFP), respectively, while retaining virion incorporation signals for these segments. Despite the lack of HA and NA proteins, the resultant virus, which possessed only VSVG on the virion surface, was viable and produced GFP-expressing plaques in cells even after repeated passages, demonstrating that two foreign genes can be incorporated and maintained stably in influenza A virus. These findings could serve as a model for the construction of influenza A viruses designed to express and/or deliver foreign genes.  相似文献   

16.
An H6N1 virus, A/teal/Hong Kong/W312/97 (W312), was isolated during the "bird flu" incident in Hong Kong in 1997. Genetic analysis suggested that this virus might be the progenitor of the A/Hong Kong/156/97 (HK/97) H5N1 virus, as seven of eight gene segments of those viruses had a common source. Continuing surveillance in Hong Kong showed that a W312-like virus was prevalent in quail and pheasants in 1999; however, the further development of H6N1 viruses has not been investigated since 2001. Here we report influenza virus surveillance data collected in southern China from 2000 to 2005 that show that H6N1 viruses have become established and endemic in minor poultry species and replicate mainly in the respiratory tract. Phylogenetic analysis indicated that all H6N1 isolates had W312-like hemagglutinin and neuraminidase genes. However, reassortment of internal genes between different subtype virus lineages, including H5N1, H9N2, and other avian viruses, generated multiple novel H6N1 genotypes in different types of poultry. These novel H6N1/N2 viruses are double, triple, or even quadruple reassortants. Reassortment between a W312-like H6N1 virus and an A/quail/Hong Kong/G1/97 (HK/97)-like H9N2 virus simultaneously generated novel H6N2 subtype viruses that were persistent in poultry. Molecular analyses suggest that W312-like viruses may not be the precursors of HK/97 virus but reassortants from an HK/97-like virus and another unidentified H6 subtype virus. These results provide further evidence of the pivotal role of the live poultry market system of southern China in generating increased genetic diversity in influenza viruses in this region.  相似文献   

17.
In 1997 and 1998, H9N2 influenza A viruses were isolated from the respiratory organs of Indian ring-necked parakeets (Psittacula Krameri manillensis) that had been imported from Pakistan to Japan. The two isolates were closely related to each other (>99% as determined by nucleotide analysis of eight RNA segments), indicating that H9N2 viruses of the same lineage were maintained in these birds for at least 1 year. The hemagglutinins and neuraminidases of both isolates showed >97% nucleotide identity with those of H9N2 viruses isolated from humans in Hong Kong in 1999, while the six genes encoding internal proteins were >99% identical to the corresponding genes of H5N1 viruses recovered during the 1997 outbreak in Hong Kong. These results suggest that the H9N2 parakeet viruses originating in Pakistan share an immediate ancestor with the H9N2 human viruses. Thus, influenza A viruses with the potential to be transmitted directly to humans may be circulating in captive birds worldwide.  相似文献   

18.
Emergence of avian H1N1 influenza viruses in pigs in China.   总被引:20,自引:1,他引:19       下载免费PDF全文
Avian influenza A viruses from Asia are recognized as the source of genes that reassorted with human viral genes to generate the Asian/57 (H2N2) and Hong Kong/68 (H3N2) pandemic strains earlier in this century. Here we report the genetic analysis of avian influenza A H1N1 viruses recently isolated from pigs in southern China, a host suspected to generate new pandemic strains through gene reassortment events. Each of the eight gene segments was of avian origin. Phylogenetic analysis indicates that these genes form an Asian sublineage of the Eurasian avian lineage, suggesting that these viruses are an independent introduction into pigs in Asia. The presence of avian influenza viruses in pigs in China places them in an optimal position for transmission to humans and may serve as an early warning of the emergence of the next human influenza virus pandemic.  相似文献   

19.
The genomes of influenza A viruses consist of eight negative-strand RNA segments. Recent studies suggest that influenza viruses are able to specifically package their segmented genomes into the progeny virions. Segment-specific packaging signals of influenza virus RNAs (vRNAs) are located in the 5' and 3' noncoding regions, as well as in the terminal regions, of the open reading frames. How these packaging signals function during genome packaging remains unclear. Previously, we generated a 7-segmented virus in which the hemagglutinin (HA) and neuraminidase (NA) segments of the influenza A/Puerto Rico/8/34 virus were replaced by a chimeric influenza C virus hemagglutinin/esterase/fusion (HEF) segment carrying the HA packaging sequences. The robust growth of the HEF virus suggested that the NA segment is not required for the packaging of other segments. In this study, in order to determine the roles of the other seven segments during influenza A virus genome assembly, we continued to use this HEF virus as a tool and analyzed the effects of replacing the packaging sequences of other segments with those of the NA segment. Our results showed that deleting the packaging signals of the PB1, HA, or NS segment had no effect on the growth of the HEF virus, while growth was greatly impaired when the packaging sequence of the PB2, PA, nucleoprotein (NP), or matrix (M) segment was removed. These results indicate that the PB2, PA, NP, and M segments play a more important role than the remaining four vRNAs during the genome-packaging process.  相似文献   

20.
Since the outbreak in humans of an H5N1 avian influenza virus in Hong Kong in 1997, poultry entering the live-bird markets of Hong Kong have been closely monitored for infection with avian influenza. In March 1999, this monitoring system detected geese that were serologically positive for H5N1 avian influenza virus, but the birds were marketed before they could be sampled for virus. However, viral isolates were obtained by swabbing the cages that housed the geese. These samples, known collectively as A/Environment/Hong Kong/437/99 (A/Env/HK/437/99), contained four viral isolates, which were compared to the 1997 H5N1 Hong Kong isolates. Analysis of A/Env/HK/437/99 viruses revealed that the four isolates are nearly identical genetically and are most closely related to A/Goose/Guangdong/1/96. These isolates and the 1997 H5N1 Hong Kong viruses encode common hemagglutinin (H5) genes that have identical hemagglutinin cleavage sites. Thus, the pathogenicity of the A/Env/HK/437/99 viruses was compared in chickens and in mice to evaluate the potential for disease outbreaks in poultry and humans. The A/Env/HK/437/99 isolates were highly pathogenic in chickens but caused a longer mean death time and had altered cell tropism compared to A/Hong Kong/156/97 (A/HK/156/97). Like A/HK/156/97, the A/Env/HK/437/99 viruses replicated in mice and remained localized to the respiratory tract. However, the A/Env/HK/437/99 isolates caused only mild pathological lesions in these tissues and no clinical signs of disease or death. As a measure of the immune response to these viruses, transforming growth factor beta levels were determined in the serum of infected mice and showed elevated levels for the A/Env/HK/437/99 viruses compared to the A/HK/156/97 viruses. This study is the first to characterize the A/Env/HK/437/99 viruses in both avian and mammalian species, evaluating the H5 gene from the 1997 Hong Kong H5N1 isolates in a different genetic background. Our findings reveal that at least one of the avian influenza virus genes encoded by the 1997 H5N1 Hong Kong viruses continues to circulate in mainland China and that this gene is important for pathogenesis in chickens but is not the sole determinant of pathogenicity in mice. There is evidence that H9N2 viruses, which have internal genes in common with the 1997 H5N1 Hong Kong isolates, are still circulating in Hong Kong and China as well, providing a heterogeneous gene pool for viral reassortment. The implications of these findings for the potential for human disease are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号