首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An Alpha-class glutathione transferase (GST) has been cloned from pig gonads. In addition to two conservative point mutations our nucleotide sequence presents a frame shift resulting from a missing A as compared to a previously published porcine GST A1-1 sequence. The deduced C-terminal amino-acid segment of the protein differs between the two variants. Repeated sequencing of cDNA isolated from different tissues and animals ruled out the possibility of a cloning artifact, and the deduced amino acid sequence of our clone showed higher similarity to related mammalian GST sequences. Hereafter, we refer to our cloned enzyme as GST A1-1 and to the previously published enzyme as GST A1-1. The study of the tissue distribution of the GSTA1 mRNA revealed high expression levels in many organs, in particular adipose tissue, liver, and pituitary gland. Porcine GST A1-1 was expressed in Escherichia coli and its kinetic properties were determined using alternative substrates. The catalytic activity in steroid isomerization reactions was at least 10-fold lower than the corresponding values for porcine GST A2-2, whereas the activity with 1-chloro-2,4-dinitrobenzene was approximately 8-fold higher. Differences in the H-site residues of mammalian Alpha-class GSTs may explain the catalytic divergence.  相似文献   

3.
Abstract:  An enzyme that possesses glutathione S -transferase (GST) activity was found in the fall webworm, Hyphantria cunea . The enzyme was purified to homogeneity for the first time by ammonium sulphate fractionation and affinity chromatography. The N-terminal sequence of the purified protein was similar to those of Sigma-class GSTs. The purified GST retained more than 75% of its original GST activity after incubation at pH 5–8. Incubation for 30 min at temperatures below 50°C scarcely affected the activity. The enzyme was able to catalyse the reaction of glutathione with 1-chloro-2,4-dinitrobenzene, a universal substrate for GST, as well as with 4-hydroxynonenal, a product of lipid peroxidation.  相似文献   

4.
Glutathione S-transferases (GSTs; EC 2.5.1.18) have recently been proposed to form one large group among the auxin-induced proteins. However. the properties and regulation of such auxin-responsive GSTs in the plant still await detailed investigation. In this study, a 2,4-dichloro-phenoxyacetic acid (2,4-D)-inducible GST isozyme from soybean ( Glycine max [L.] Merr. cv. Williams) was purified to near homogeneity by anion-exchange and affinity chromatography on S-hexylglutathione agarose. The native enzyme had a molecular mass of 49 kDa, as determined by gel filtration, and consisted of 26-kDa subunits. The purified GST conjugated glutathione to 1-chloro-2,4-dinitrobenzene and to the herbicide metolachlor, but not to the other GST substrates atrazine. fluorodifen or trans-cinnamic acid. The N-termmal amino acid sequence shared significant homology with the deduced polypeptide sequences of two 2,4-D-inducible genes from tobacco, par A and CNT107 . The levels of the 26-kDa GST subunit protein in soybean hypocotyls were analysed by immunoblotting. At micromolar concentrations, 2,4-D induced a transient increase in net accumulation of GST, whereas indole-3-acetic acid or I-naphthaleneacetic acid did not increase the GST levels. Known inhibitors of polar auxin transport, including 2.3.5-tri-iodobenzoic acid. N-I-naphthylphthalamic acid and analogues thereof, differed widely in their ability to elicit GST protein accumulation. It is concluded that the induction of soybean GST by 2,4-D and by some of the auxin transport inhibitors is not related to auxin activity or to changes in the endogenous auxin levels.  相似文献   

5.
We purified cytosolic glutathione S-transferase (GST) of adult Paragonimus westermani monitoring its activity with 1-chloro-2,4-dinitrobenzene (CDNB). The enzyme was purified 18.4-fold to electrophoretic homogeneity with 21% recovery rate through a three-step procedure. The purified enzyme (Pw28GST) has a subunit molecular weight of 28 kDa with an isoelectric point at 4.6. Monoclonal antibody (anti-Pw28GST) against Pw28GST did not cross-react with GSTs from other helminths. cDNA library was constructed in lambdaZAP II bacteriophage and screened with anti-Pw28GST. The corresponding gene containing a single open reading frame of 804 bp encoded 211 amino acids. The predicted amino acid sequence exhibited a higher homology with catalytic domain near N-terminus of class sigma GSTs (58%) than with schistosome 28-kDa GSTs (45-41%) or with class sigma GSTs themselves (33-31%). The sequence contained both Tyr-6 and Tyr-10 that are highly conserved in mammalian and helminth GSTs. The apparent K(m) value of a recombinant enzyme was 0.78 mM. Both native and recombinant enzymes showed the highest activity against CDNB, relatively weak activity against ethacrynic acid and reactive carbonyls, and no activity against epoxy-3-(p-nitrophenoxy)-propane. The activities were inhibited by bromosulfophthalein, cibacron blue, and albendazole, but not by praziquantel. These findings indicate that adult P. westermani has a class sigma GST.  相似文献   

6.
A glutathione (GSH) S-transferase (GST), catalyzing the inactivation of reactive sulfate esters as metabolites of carcinogenic arylmethanols, was isolated from the male Sprague-Dawley rat liver cytosol and purified to homogeneity in 12% yield with a purification factor of 901-fold. The purified GST was a homo-dimeric enzyme protein with subunit Mr 26,000 and pI 7.9 and designated as Yrs-Yrs because of its enzyme activity toward "reactive sulfate esters." GST Yrs-Yrs could neither be retained on the S-hexylglutathione gel column nor showed any activity toward 1,2-dichloro-4-nitrobenzene, 4-nitrobenzyl chloride, and 1,2-epoxy-3-(4'-nitrophenoxy)propane. 1-Chloro-2,4-dinitro-benzene was a very poor substrate for this GST. 1-Menaphthyl sulfate was the best substrate for GST Yrs-Yrs among the examined mutagenic arylmethyl sulfates. The enzyme had higher activities toward ethacrynic acid and cumene hydroperoxide. N-terminal amino acid sequence of subunit Yrs, analyzed up to the 25th amino acid, had no homology with any of the known class alpha, mu, and pi enzymes of the Sprague-Dawley rat. Anti-Yrs-IgG raised against GST Yrs-Yrs showed no cross-reactivity with any of subunits Ya, Yc, Yb1, Yb2, and Yp. Anti-IgGs raised against Ya, Yc, Yb1, Yb2, and Yp also showed no cross-reactivity with GST Yrs-Yrs. The purified enzyme proved to differ evidently from the 12 known cytosolic GSTs in various tissues of the rat in all respects. Immunoblot analysis of various tissue cytosols of the male rat indicated that apparent concentrations of the GST Yrs-Yrs protein were in order of liver greater than testis greater than adrenal greater than kidney greater than lung greater than brain greater than skeletal muscle congruent to heart congruent to small intestine congruent to spleen congruent to skin congruent to 0.  相似文献   

7.
Glutathione S-transferases (GSTs; EC 2.5.1.18) are encoded by a gene family. Some GSTs have the capacity to bind to indole-3-acetic acid (IAA), whereas the gene expression of other GSTs is regulated by auxin. In order to assess a possible physiological significance of the auxin binding of GST, we investigated effects of auxins on the activity of GST expressed in Escherichia coli. cDNA cloning was carried out for the fifth gene ( GST5 ) of GST in Arabidopsis. Although the deduced amino acid sequence of GST5 was remotely related to that of the other Arabidopsis GSTs (less than 20% identical), the GST5 protein (GST5) expressed in E. coli showed GST activity. Apparent Km values of GST5 are 0.86 and 1.29 m M for glutathione (GSH) and 1-chloro-2,4-dinitrobenzene, respectively. IAA, 2,4-dichlorophenoxyacetic acid (2,4-D), 1-naphthaleneacetic acid (1-NAA) and 2-NAA inhibited the enzyme activity competitively with respect to GSH. The apparent Ki of IAA is 1.56 m M . Salicylic acid inhibited GST activity in a noncompetitive manner. 2,4-D was the most inhibitory among the tested chemicals. GST5 bound to GSH-immobilized agarose gel was effectively eluted by IAA. These results indicate that IAA and the related substances bind to GST5 at the GSH-binding site, and exclude the possibility that the compounds could be substrates for GST5. Although the Ki value of IAA is too high for any physiological consequences, it might be assumed that GST activity is modulated in vivo by an auxin-related substance(s). The steady-state level of the GST5 mRNA was increased by wounding, heat shock, and spraying buffer on the plant, but was not influenced by auxin treatment.  相似文献   

8.
A glutathione S-transferase (GST) isozyme from maize (Zea mays Pioneer hybrid 3906) treated with the dichloroacetamide herbicide safener benoxacor (CGA-154281) was purified to homogeneity and partially characterized. The enzyme, assayed with metolachlor as a substrate, was purified approximately 200-fold by ammonium sulfate precipitation, anion-exchange chromatography on Mono Q resins, and affinity chromatography on S-hexylglutathione agarose from total GST activity present in etiolated shoots. The purified protein migrated during sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) as a single band with a molecular mass of 27 kD. Using nondenaturing PAGE, we determined that the native protein has a molecular mass of about 57 kD and that the protein exists as a dimer. Two-dimensional electrophoresis revealed only a single protein with an isoelectric point of 5.75 and molecular mass of 27 kD. These results further suggest that the protein exists as a homodimer of two identical 27-kD subunits. The enzyme was most active with substrates possessing a chloroacetamide structure. trans-Cinnamic acid and 1-chloro-2,4-dinitrobenzene were not effective substrates. Apparent Km values for the enzyme were 10.8 microM for the chloroacetamide metolachlor and 292 microM for glutathione. The enzyme was active from pH 6 to 9, with a pH optimum between 7.5 and 8. An apparently blocked amino terminus of the intact protein prevented direct amino acid sequencing. The enzyme was digested with trypsin, and the amino acid sequences of several peptide fragments were obtained. The sequence information for the isolated GST we have designated "GST IV" indicates that the enzyme is a unique maize GST but shares some homology with maize GSTs I and III.  相似文献   

9.
Glutathione S-transferases (GST) catalyzing the conjugation of reduced glutathione to a vast range of xenobiotics including insecticides were characterized in the whitefly Bemisia tabaci. GST activities were determined in susceptible and resistant strains of B. tabaci towards artificial substrates, i.e. 1-chloro-2,4-dinitrobenzene (CDNB) in a photometric microplate assay and monochlorobimane (MCB) in a fluoroemtric microplate assay and characterized by their Michaelis-Menten kinetics. The inhibitory potential of ethacrynic acid was very effective with IC50-values between 0.9 and 5.8 microM depending on substrate and strain. The inhibitory effect of dicumarol was 10 times lower. Glutathione-affinity chromatography purified GST enzymes of two different B. tabaci strains appeared as a single band on SDS-PAGE and had a molecular mass of 23.5 kDa determined by MALDI mass spectrometry. The N-terminus of the purified enzyme was sequenced by Edman degradation. The nearly full-length cDNA of the enzyme was isolated by RT-PCR using a degenerate primer derived from the N-terminal amino acid sequence and contained an open reading frame encoding a 194-amino-acid protein. Comparison of the deduced amino acid sequence with GSTs from other species revealed that the enzyme is closely related to insect class sigma GSTs.  相似文献   

10.
Glutathione transferases (GSTs) are known as promiscuous enzymes capable of catalyzing the conjugation of glutathione with a broad range of electrophilic substrates. A previous study based on recombinant chimeras derived from human GST M1-1 and GST M2-2 demonstrated the formation of a subset of F1 generation GSTs, which had lost high activity with substrates distinguishing parental enzymes. In the present study, the members of this subset were recombined by DNA shuffling to produce an F2 generation of GSTs. Screening of 930 bacterial clones demonstrated that 83% of recombinant enzyme variants were active with at least one of three alternative substrates: phenethyl isothiocyanate (PEITC), 1-chloro-2,4-dinitrobenzene, or p-nitrophenyl acetate. The majority had similar low activity as the parental GSTs in the F1 generation. However, 17 novel enzymes displayed high activity with PEITC. Half of these enzymes were similar to GST M1-1, which also has high activity with the same substrate, and all of these GSTs featured Tyr116/Ser210 in the active site. This group of F2 variants apparently had reverted to the GST M1-1 type. A second group of F2 variants with high PEITC activity was characterized by His116 in the active site. This category represented a new variety of GSTs, which demonstrated higher selectivity for isothiocyanate substrates than the GST M1-1 type. The different groups of GSTs can be considered as distinct molecular quasi-species, each of which comprises variant amino acid sequences. The quasi-species are structurally distinguished by active-site residues that govern their substrate selectivities. Clearly, minimal alterations of the active site can generate enzymes with highly distinctive functional properties.  相似文献   

11.
12.
Cunninghamella elegans grown on Sabouraud dextrose broth had glutathione S-transferase (GST) activity. The enzyme was purified 172-fold from the cytosolic fraction (120000 x g) of the extract from a culture of C. elegans, using Q-Sepharose ion exchange chromatography and glutathione affinity chromatography. The GST showed activity against 1-chloro-2,4-dinitrobenzene, 1,2-dichloro-4-nitrobenzene, 4-nitrobenzyl chloride, and ethacrynic acid. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel filtration chromatography revealed that the native enzyme was homodimeric with a subunit of M(r) 27000. Comparison by Western blot analysis implied that this fungal GST had no relationship with mammalian alpha-, mu-, and pi-class GSTs, although it showed a small degree of cross-reactivity with a theta-class GST. The N-terminal amino acid sequence of the purified enzyme showed no significant homology with other known GSTs.  相似文献   

13.
1. The enzyme glutathione S-transferase (GST), a critical element in xenobiotic metabolism, was isolated from the marine rotifer Brachionus plicatilis and its freshwater congener B. calyciflorus. 2. In B. plicatilis, GST comprised 4.2% of cytosolic protein and was present as three separate isozymes with mol. wts 30,000, 31,400 and 33,700. Specific activity of crude homogenates was 56 nmol min-1 mg-1 protein, while that of affinity chromatography purified GST was 1850. 3. In B. calyciflorus, GST was present as two isozymes with mol. wts of 26,300 and 28,500, representing 1.0% of cytosolic protein. Crude GST specific activity was 1750 nmol min-1 mg-1 protein and purified was 72,400. 4. Rotifer GSTs are unusual because they are monomers whereas all other animals thus far investigated posses dimeric GSTs.  相似文献   

14.
A mouse glutathione S-transferase (GST) isozyme designated as GST 5.7 or mGSTA4-4 belongs to a distinct subclass of the α-class isozymes of GST. It is characterized by kinetic properties intermediate between the α- and π-classes of GSTs. We have recently cloned and expressed this isozyme (rec-mGSTA4-4) in E. coli and have reported its complete primary sequence (Zimniak, P. et al. (1992) FEBS Lett., 313, 173–176). Using antibodies raised against the homogenous rec-mGSTA4-4 expressed in E. coli, we now demonstrate that an ortholog of this isozyme was selectively expressed in various human tissues. The human ortholog of mGST A4-4 purified from liver had a pI value of 5.8 and constituted approx. 1.7% of total GST protein of human liver. Similar to other α-class GSTs, the N-terminus of this isozyme (GST 5.8) was also blocked. CNBr digestion of the enzyme yielded two major fragments with Mr values of 12 kDa and 6 kDa. The sequences of these two fragments showed identities in 16 out of 20 residues and 17 out of 20 residues with the corresponding sequences of its mouse ortholog (mGSTA4-4), and showed significant homologies with the rat and chicken orthologs, GST 8-8 and GST CL3. Human liver GST 5.8 showed more than an order of magnitude higher activity towards t-4-hydroxy-2-nonenal as compared to 1-chloro-2,4-dinitrobenzene. This isozyme also expressed glutathione-peroxidase activity towards fatty acid, as well as phospholipid hydroperoxidase suggesting its role in protection mechanisms against the toxicants generated during lipid peroxidation. Western blot analysis of human tissues revealed that this GST isozyme was selectively expressed in human liver, pancreas, heart, brain and bladder tissues, but absent in lung, skeletal muscle, spleen and colon.  相似文献   

15.
Glutathione S-transferases (GSTs) are multifunctional enzymes present in virtually all organisms. Besides having an essential role in cellular detoxification, they also perform various other functions, including responses in stress conditions and signaling. GSTs are highly studied in plants and animals; however, the knowledge regarding GSTs in cyanobacteria seems rudimentary. In this study, we report the characterization of a highly pH stable GST from the model cyanobacterium- Synechocystis PCC 6803. The gene sll0067 was expressed in Escherichia coli (E. coli), and the protein was purified to homogeneity. The expressed protein exists as a homo-dimer, which is composed of about 20 kDa subunit. The results of the steady-state enzyme kinetics displayed protein’s glutathione conjugation activity towards its class specific substrate- isothiocyanate, having the maximal activity with phenethyl isothiocyanate. Contrary to the poor catalytic activity and low specificity towards standard GST substrates such as 1-chloro-2,4-dinitrobenzene by bacterial GSTs, PmGST B1-1 from Proteus mirabilis, and E. coli GST, sll0067 has broad substrate degradation capability like most of the mammalian GST. Moreover, we have shown that cyanobacterial GST sll0067 is catalytically efficient compared to the best mammalian enzymes. The structural stability of GST was studied as a function of pH. The fluorescence and CD spectroscopy in combination with size exclusion chromatography showed a highly stable nature of the protein over a broad pH range from 2.0 to 11.0. To the best of our knowledge, this is the first GST with such a wide range of pH related structural stability. Furthermore, the presence of conserved Proline-53, structural motifs such as N-capping box and hydrophobic staple further aid in the stability and proper folding of cyanobacterial GST- sll0067.  相似文献   

16.
17.
The activities of hepatic cytosolic glutathione S-transferases (GSTs) towards 1,2-dichloro-4-nitrobenzene in male rats were higher than those in females, however, the enzyme activities towards 1-chloro-2,4-dinitrobenzene were not significantly different between the two sexes. SDS-PAGE analysis of GSTs purified from male and female rat hepatic cytosols by affinity column chromatography showed that there was a significant difference in the subunit composition between the two sexes. With regard to the several isozymes of GSTs in male and female rats, isozymes with basic and neutral/acidic isoelectric points were separated into seven molecular species by chromatofocusing. These sex differences in the quantitative proportions of GST isozymes were also confirmed by immunotitration using anti-GST-BL and -AC antibodies. On the other hand, glutathione peroxidase (GSH-Px) activities in rat hepatic cytosol towards hydrogen peroxide and cumene hydroperoxide were markedly higher in females than in males. Of the two types of GSH-Px, selenoenzyme (Se-GSH-Px) and the Se-independent enzyme (non-Se-GSH-Px), the former was found to be mainly responsible for the sex difference in the enzyme activities. Moreover, the GSH-Px activity of GSTs, non-Se-GSH-Px, was also higher in females than that in males. Since GST isozymes of the BL type are known to possess GSH-Px activity towards cumene hydroperoxide, the increased activities of non-Se-GSH-Px in the female hepatic cytosol seemed to be mainly due to the increased transferase activities of the isozymes, GST-L2 and -BL.  相似文献   

18.
Hexaploid wheat (Triticum aestivum L.) has very low constitutive glutathione S-transferase (GST) activity when assayed with the chloroacetamide herbicide dimethenamid as a substrate, which may account for its low tolerance to dimethenamid in the field. Treatment of seeds with the herbicide safener fluxofenim increased the total GST activity extracted from T. aestivum shoots 9-fold when assayed with dimethenamid as a substrate, but had no effect on glutathione levels. Total GST activity in crude protein extracts from T. aestivum, Triticum durum, and Triticum tauschii was separated into several component GST activities by anion-exchange fast-protein liquid chromatography. These activities (isozymes) differed with respect to their activities toward dimethenamid or 1-chloro-2,4-dinitrobenzene as substrates and in their levels of induction by safener treatment. A safener-induced GST isozyme was subsequently purified by anion-exchange and affinity chromatography from etiolated shoots of the diploid wheat species T. tauschii (a progenitor of hexaploid wheat) treated with the herbicide safener cloquintocet-mexyl. The isozyme bound to a dimethenamid-affinity column and had a subunit molecular mass of 26 kD based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme (designated GST TSI-1) was recognized by an antiserum raised against a mixture of maize (Zea mays) GSTs. Amino acid sequences obtained from protease-digested GST TSI-1 had significant homology with the safener-inducible maize GST V and two auxin-regulated tobacco (Nicotiana tabacum) GST isozymes.  相似文献   

19.
Cytosolic glutathione transferases (GSTs) were purified from the rat spleen by S-hexyl-GSH-Sepharose chromatography, and two major forms were identified as GSTs 2-2 and 7-7 (GST P). Besides these forms an acidic form (pI 5.8) was purified by chromatofocusing at pH 7-4 and it accounted for about 1% of the total GST activity bound to S-hexyl-GSH-Sepharose. Two-dimensional gel electrophoresis revealed that it is a homodimer (subunit Mr 26,000 with pI 5.8). Immunoblot analysis demonstrated that it was immunologically related to GSTs 2-2 and 1-1, and its N-terminal amino acid was apparently blocked, similarly to other forms of the class Alpha. This form had a low activity towards cumene hydroperoxide or 4-hydroxynon-2-enal, indicating that this form differed from GSTs 10-10 and 8-8 as well as from GSTs 1-1 and 2-2. These results suggest that it is a new form of GST belonging to the class Alpha.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号